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Transcription

Activators
These proteins bind to genes
at sites known as enhancers.
Activators help determine m':'p'&';m bind
which genes will be switched 10 selected sets of genes
gfﬂt and |r}egospeed the rate at sites known as siencers.
ranscription. They interfere with the
gnhanceg functioning of activators
,"\ :

and thus slow transcription.

Coding

Coactivators

These “adapter” molecules el i

integrate signals from activators

and perhaps repressors and Basal transcription factors
relay the results to basal factors. In response to injunctions

from activators, these
factors position RNA
polymerase at the start
of the protein-coding
region of a gene and
send the enzyme on
its way.
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Gene structure

introns
ans 1 la 2 3 4 4a5 6 7 8 9
9 — 00 ®# 0 —mmm wmm— + - N e - ee¢ ¢ = mmmm
structure promoter \/ enhancer
exons
1237829 la256789
mMRNA  esee— S —
5'UTR ORF 3'UTR 5'UTR ORF 3'UTR
e  —
protein isoform-1 isoform-2
nuclear targeted mitochondrially targeted

lan Simpson, Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh



Example PWM for the human P53 protein
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The classic footprinting method
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Classic phylogenetic footprinting approach
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Limitations of the classical approach to finding TFBSs

*The number and quality of binding site sequences is low

*There is no explicit relation between conservation and function
i.e. sites are often conserved, but conserved sites do not necessarily function

*Assumptions have to be made about where to look and how to score

*Extremely biased information, low number of experiments to determine sites

*Non-physiological conditions used during assessment

*Measurements made only in specific tissue or cells at specific times
local solutions to the PWM problem, may be wrong for other conditions
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Problems with the available data sources

*Main source of site specific data remains pattern or PWM (or HMM)

Common name Binary nomenclature Number of PWMs

human Homo sapiens 476
mouse Mus musculus 423
rat Rattus norvegicus 253
chick Gallus gallus 133
clawed frog Xenopus laevis 84
fruit fly Drosophila melanogaster 68
thale cress Arabidopsis thaliana 45
yeast Saccha_romyces 39
cerevisiae
monkey Cercopithecus aethiops 29
gibbon ape Hylobates lar 24
cattle Bos taurus 23
domestic pig Sus scrofa 20
zebra fish Brachydanio rerio 19

TransfacPro2009.1
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Replacing classical prediction with direct localisation

What do we need

*Assays that cover the whole genome (aren't biased)

*Applicable to all transcription factors (good coverage)

«Can be measured in lots of different conditions (condition specific, biologically relevant)
«Can be mapped onto precise (and small) genome locations (high resolution)

+Cost effective, accurate and reliable
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Chromatin immuno-precipitation (ChlP)
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How do we get from populations of DNA fragments to positions on chromosomes ?

Currently there are two main choices

ChIP-chip Hybridisation onto a genomic tiling array
Chip-seq Direct sequencing of the bound (now released)
fragments

ChIP-chip

Here a manufactured slide is used in which fragments spanning the genome
have been synthesised and attached to the slide surface in a geometric
Arrangement. We label our TF retrieved fragments, hybridise them to the slide
and then read fluorescence from the features.

ChlP-seq

Taking advantage of high throughput sequencing technology (so called next-gen)
we attempt to sequence all the fragments. This is quantitative.

In both cases we have issues with mapping, signal processing (noise) and
significance testing
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Detection method 1 - Genome tiling arrays (ChlP-chip)

Genome
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Features of genome tiling arrays

*Generally resolution can be as low as ~3kb, Tfs bind to on average 6-8bp
*How do we know which gene to map to ? (meta-data)
microarray, gene proximity, functional annotation, in-vivo expression
comparison to true positive
*Redundancy probes map to more than one location
*Coverage, cannot cover the genome. This introduces bias.
even in Drosophila commonly only 50% of genome possible
2 human chromosomes at 35bp resolution — 1 million features
«Can estimate site occupancy frequency
*Cross-hybridisation can be big problem with repetitive DNA (~5% human genome)

*Processed just like a gene expresison microarray
SAM, limma (modelled error, tight control of FDR)
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Detection method 2 — direct sequencing (ChlP-seq)

lllumina/Solexa SBS sequencing system

&7 1
+
Ligate adaptors onto Denature and attach  Anneal and extend bridge
DNA fragments to substrate
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Detection method 2 — direct sequencing (ChIP-seq)

Complete Denature Repeat to
extension ready for next build cluster
round
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Detection method 2 — direct sequencing (ChlP-seq)
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Detection method 2 — direct sequencing (ChlP-seq)
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Features of high-throughput sequence data

*VVery high resolution, typically 25-mers with mid-spacing ~35bp
*Huge datasets, many Gb of sequence, assembly non-trivial
*Complete genome coverage, no assumption, no bias

*Generally superior at identifying bound sites beyond expectation
(this is related to a more accurate ability to discriminate signal from noise)

*Sequences are counted to determine the frequency of site occupancy
(better than chip, here seq num is proportional to bound sites)

*Sequences are mapped and converted into signal peaks
(typical sizes of bound peaks can range from 50bp-1kb)

«Strong correlation between statistical significance of peak and presence of
binding motif (might seem obvious!)

lan Simpson, Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh



Example ChIP-Chip and ChlP-seq data spanning the atonal locus
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Real world examples of ChIP-chip and ChlP-seq in use

Genome-Wide Mapping of in Vivo Protein-DNA Interactions
David S. Johnson, et al.

Science 316, 1497 (2007);

DOI: 10.1126/science.1141319

AYAAAS

Developmenia’ Coll 10, 797-807, June, 2008 2008 Elsevier Inc. DO 10101645 devoel 2006.04,000

A Temporal Map of Transcription Factor Activity:

Mef2 Directly Regulates Target Genes

at All Stages of Muscle Development

S it A 0701 § AccEss racty svolble estive FLOS

Janus S, Jakobsen,' Michal M. Karzynski,’
Michael P. Eichenlaub,' Peer Bork,'

i AR Combinatorial Binding Leads to Diverse Regulatory
il Responses: Lmd Is a Tissue-Specific Modulator of Mef2
Activity

Paulo M. F. Cunha®, Thomas Sandmann ™", E. Hilary Gustafson, Lucia Ciglar, Michael P. Eichenlaub™®,
Eileen E. M. Furlong*

Luropesn Woleculy Biology Laborstory, Mewdelberg. Germany

lan Simpson, Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh



Studying Drosophila musculature development using ChlIP-chip

Somatic Musculature Visceral Musculature

I somatic mesoderm / musculature B visceral mesodermivisceral musculature
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ChlP-chip blocks integrated with gene expression data for Mef2 and Lmd
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Validation of enhancers and TF binding sites
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Validation of enhancer activity for Mef2/Lmd candidate target genes
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Temporal binding profiles of over-represented Mef2 bound blocks

A 1.4
1.2 324
/'\ fragments
|
g -
§ o8 fragments
Loe
$ / / \
5 0.4 / \
a3 / 214
/ —
= 24 hrs 48 s 58Ny 610 hrs 190-12 hrs
Time (hrs after egg-laying)
B g 475 Corrected p.-uluo': -
g *+ p < 10°
4.25 < *++ p < 10"
g 3.75 - —-
$ 225
S -
! 2.75 «
. -
E 2.35 9 -
% ‘.75 d -—.e
'2 0.75
1 or more 2 or more 3 or more 4 or more

Number of predicted DMef2 sites per fragment

lan Simpson, Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh



Synthesis of the target gene network and known myogensis pathway

EGF-signaling




Chip-seq analysis of the neuron restrictive silencing factor (NRSF)
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ChlIP-seq reveals new binding motif flexibility for NRSF

Canonical NRSF PWM logo
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The gene regulatory network downstream of NRSF constructed from ChlP-seq data
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Summary for ChIP based target prediction methods

*ChlP-chip and ChIP-seq allow for the first time physical identification of bound regions
on the genomic scale

*ChlP-seq presents higher resolution and is replacing ChlIP-chip
*Both methods require large data-processing and analysis
*Novel methods have been developed to call bound regions from these data
they are predominantly based on hidden markov models (HMM) and are naturally

normally 2-state models (peak, non-peak)

*The resulting regions can be used with classical methods to refine the nature of
the regulatory element (PWM Gibbs/HMM profiling, motif detection, conservation)

«Can also be refined by more precise experiments on the ChIP DNA such as targeted PCR

*Revolutionises the analysis of gene regulatory networks by integration with gene
expression data
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Discovering gene regulatory control using ChIP-chib and ChlP-seq
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(S A hidden Markov model for analyzing ChIP-chip
ot experiments on genome tiling arrays and its
application to p53 binding sequences
2 Wei Li, Clifford A. Meyer and X. Shirley Liu*

Department of Bostatistics and Computational Biology, Dana-Farber Cancer Institute,
Harvard Schoo! of Public Health, Boston, MA 02115, USA

Hecaed on January 15, 2009; accapted on Masch 27, 2006

<
B

=

]
fea)

lan Simpson, Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh



HMMtiling
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ChiP-enriched Regions Identification
using Hidden Markov Model (1) Inatial probabilitics: VK for ChlP-enriched state,
1 = J/K for non-ennched state.
(2) Transition probabilities: J'K fortransition toa different
ChIP-cariched Sequence Retricval and Repeat-Masking state, 1 — J/K for staying in the same state,
(3) Emission probability distribution of probe ¢ in single
‘ dataset: N (1, + 205, (1.50;)%) for ChiP-enriched state,

A Ny, .af) for non-ennched state, The parameters are
de novo Motif Findng based on the resulis on the Affymetrix SNP arrays
(Lieberfard er af,, 2003),

(4) A probe i, with (PM—~MM) value p;. is delined as an
outlier of its Z-value 15 =3 or <—235. We reassigned
the Z-value of cach outlier probe as 3 if Z = 3 and
-25ifZ < =~ 28.

(5) If two adjacent probes are farther apart than 500 bp
in the genome (usually due 10 2 long repeat sequence
between the two probes). in the forward and back-
ward procedure, the enniched and non-ennched state
probabilities of the latter probe are reset to the initial
probabilities.
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Comparison to known p53 binding sites

Tiling Array MDScan profile
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HPeak: an HMM-based algorithm for defining
read-enriched regions in ChIP-Seq data

Zhaohui S Gin*'<3, Jianjun Yu?4, Jincheng Shen', Christopher A Maher2*4, Ming Hu', Shanker Kalyana-Sundaram*4,

Jindan Yu® and Arul M ChinnaiyaniiAs
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ChlP-seq, from short sequence reads to enriched intervals
analysis pipeline using HPeak

short seq reads genome
(e.g. NCBI-SRA) sequence
Bowtie Genome Browser

(e.g. UCSC, Ensembl)

Ymory

Reads aligned
to genome ——| SAM tools BigWiggle file
(SAM file) l 1

BAM file T :
i enriched sequence :

l . intervals (peaks)

BED tools | Tt
| /

BED file ——{ HPeak
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Finding and using resources

Where to find the data

How to visualise genome scale data
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