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The Central Dogma of Molecular Biology
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Transcription

Activators

These proteins bind to genes
at sites known as enhancers.
Activators help determine
which genes will be switched
on, and they speed the rate
of transcription.

Repressors
These proteins bind
to selected sets of genes
at sites known as silencers.
They interfere with the
gnhance, functioning of activators

N and thus slow transcription.

Coding
region
e

Coactivators
These "adapter" molecules
integrate signals from activators ;
and perhaps repressors and Basal transcription factors
relay the results to basal factors. In response to injunctions
from activators, these
factors position RNA
polymerase at the start
of the protein-coding
region of a gene and
send the enzyme on
its way.
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Gene structure
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Example PWM for the human P33 protein

CONSENSUSIR R R C W W G Y ¥ ¥ R R R C W W G Y Y Y
p53 target score
GADDA45A G A A C A T G6G T €C T A A G C A T G C T G| 241
MDM2_1 G A A C G T G T € T A A A C T T G A C C|221
MDM2_2 A G A C A A G T C A G G A C T T A A C T | 226
BAX G € € € A €C 6 €C € € A G G C T T G T C T]| 23
MMP2 A G A C A A G C C T G A A C T T G T €C T | 245
GDF15_1 A G A C A A G T €C T 6 G G C A A G A T G| 248
GDF15_2 A G € € A T 6 €C €C C 6 G G € A A G A A C|2M
GTSET A G 6 ¢C A A G C €C C C A A C T T G C T C| 23
CDKN1A G A A C A T G T € C C A A C A T G T T G| 244
GML G 6 A C A T G € €C T G 6 G €C A A G C A T| 251
SCARA3 G G 6 € A A G €C C €C A G A C A A G T T G| 24
RRMZB T 6 A C A T 6 € € € A G G € A T G T C T | 259
PMAIP1 A G 6 €C T T 6 € € € € 6 G € A A G T T G| 242
TP53INP1 G A A C T T G 6 G G G A A C A T G T T T | 211
TNFRSFIoB| G G G € A T G T € € GG 6 G € A A G A C G| 258
P53AIP1 T ¢ T € T ¥ 6 € € €€ 6 G G € T T G T C G| 2w
TP5313 G A G €C A T 6 6 G T 6 6 G €C A A G C T G| 223
BBC3 G 6 A C A A G T €C A G G A C T T G C A G| 24
TNFRSF6 T 6 6 ¢ T T 6 T € A G G G € T T GG T C C | 242
IGFBP3 A G G €C T T 6 6 €C A G G T C T T G € C C | 227
SFN G € A T T A G € € € A G A C A T G T C C | 222
p53_PWM
A 7 5 11 [177] 14 7 [AT7][AT7[177] 4 E 6 9 (177|112 7 1 5 3
c 3 2 20 [177| 1 (77|10 19 10 3 [A77[A77) 21 [A77]177/177| 6 10 &
G 11 13 7 [177) 1 177|213 2 1 12 15 11 [-177[-177]-177] 20 [-177| -89 | 9
T 3 [177] 1 1 6 13 177 8 [-177] & [ -89 [-177] 1 -177, 9 14 177,10 8 6
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The classic footprinting method
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Classic phylogenetic footprinting approach
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Limitations of the classical approach to finding TFBSs

*The number and quality of binding site sequences is low

*There is no explicit relation between conservation and function
i.e. sites are often conserved, but conserved sites do not necessarily function

*Assumptions have to be made about where to look and how to score

*Extremely biased information, low number of experiments to determine sites

*Non-physiological conditions used during assessment

*Measurements made only in specific tissue or cells at specific times
local solutions to the PWM problem, may be wrong for other conditions
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Problems with the available data sources

*Main source of site specific data remains pattern or PWM (or HMM)

Common name Binary nomenclature Number of PWMs

human Homo sapiens 476
mouse Mus musculus 423
rat Rattus norvegicus 253
chick Gallus gallus 133
clawed frog Xenopus laevis 84
fruit fly Drosophila melanogaster 68
thale cress Arabidopsis thaliana 45
yeast Saccha_romyces 39
cerevisiae
monkey Cercopithecus aethiops 29
gibbon ape Hylobates lar 24
cattle Bos taurus 23
domestic pig Sus scrofa 20
zebra fish Brachydanio rerio 19

TransfacPro2009.1
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Replacing classical prediction with direct localisation

What do we need

*Assays that cover the whole genome (aren't biased)

*Applicable to all transcription factors (good coverage)

*Can be measured in lots of different conditions (condition specific, biologically relevant)
*Can be mapped onto precise (and small) genome locations (high resolution)

*Cost effective, accurate and reliable
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Chromatin immuno-precipitation (ChlP)
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How do we get from populations of DNA fragments to positions on chromosomes ?

Currently there are two main choices

ChlIP-chip Hybridisation onto a genomic tiling array
Chip-seq Direct sequencing of the bound (now released) fragments
ChIP-chip

Here a manufactured slide is used in which fragments spanning the genome
have been synthesised and attached to the slide surface in a geometric
Arrangement. We label our TF retrieved fragments, hybridise them to the slide
and then read fluorescence from the features.

ChlP-seq

Taking advantage of high throughput sequencing technology (so called next-gen)
we attempt to sequence all the fragments. This is quantitative.

In both cases we have issues with mapping, signal processing (noise) and
significance testing
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Detection method 1 - Genome tiling arrays (ChlP-chip)

Genome
10-base pair gap
==
T”EdPFDbEST —T [ ] ] [ ] [ ]

\ﬂ_}

35-base pair spacing

Probe Selection Regions for the GeneChip® Human Promoter 1.0R Array

Putative 5' Exon

Genome ﬂ

Additional 2.5 kb for 7.5 kb
1,300 cancer genes

Minimum promoter coverage

lan Simpson, Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh

GeneChip® Human
Tiling 1.0R Array Set

GeneChip® Human
Tiling 2.0R Array Set

GeneChip®
Human Promoter
1.0R Array




Features of genome tiling arrays

*Generally resolution can be as low as ~3kb, Tfs bind to on average 6-8bp
*How do we know which gene to map to ? (meta-data)
microarray, gene proximity, functional annotation, in-vivo expression
comparison to true positive
*Redundancy probes map to more than one location
*Coverage, cannot cover the genome. This introduces bias.
even in Drosophila commonly only 50% of genome possible
2 human chromosomes at 35bp resolution — 1 million features
«Can estimate site occupancy frequency

*Cross-hybridisation can be big problem with repetitive DNA (~5% human genome)

*Processed just like a gene expresison microarray
SAM, limma (modelled error, tight control of FDR)
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Detection method 2 — direct sequencing (ChlP-seq)

lllumina/Solexa SBS sequencing system

_ Ligate adaptors onto  Denature and attach  Anneal and extend bridgj‘e

DNA fragments to substrate
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Detection method 2 — direct sequencing (ChlP-seq)

Complete Denature Repeat to

extension ready for next build cluster
round
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Detection method 2 — direct sequencing (ChlP-seq)

Add fluorescent Scan chip for Enzymatically

nucleotides and first base release block and
primer repeat addition of
fluorescent base
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Detection method 2 — direct sequencing (ChlP-seq)
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Features of high-throughput sequence data

*\Very high resolution, typically 25-mers with mid-spacing ~35bp
*Huge datasets, many Gb of sequence, assembly non-trivial
*Complete genome coverage, no assumption, no bias

*Generally superior at identifying bound sites beyond expectation
(this is related to a more accurate ability to discriminate signal from noise)

*Sequences are counted to determine the frequency of site occupancy
(better than chip, here seq num is proportional to bound sites)

*Sequences are mapped and converted into signal peaks
(typical sizes of bound peaks can range from 50bp-1kb)

*Strong correlation between statistical significance of peak and presence of
binding motif (might seem obvious!)
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Example ChIP-Chip and ChlP-seq data spanning the atonal locus
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Real world examples of ChlP-chip and ChlP-seq in use

Genome-Wide Mapping of in Vivo Protein-DNA Interactions
David S. Johnson, et al.

Science 316, 1497 (2007);

DOI: 10.1126/science.1141319

AYAAAS

Developmental Cell 10, 797-807, June, 2006 ©2006 Elsevier Inc. DOI 10.1016/j.devcel.2006.04.009

A Temporal Map of Transcription Factor Activity:
Mef2 Directly Regulates Target Genes
at All Stages of Muscle Development

Thomas Sandmann=11 Lars J. Jensen,’ 1 OPENaACCESS Freely available online PLUS

Janus S. Jakobsen,” Michal M. Karzynski,

Michalel P. Eichenlaub,’ 1F"fer Bork,’ . . . . .

T European Motsculr Beiogy Laborstory Combinatorial Binding Leads to Diverse Regulatory

rnitlieaal Responses: Lmd Is a Tissue-Specific Modulator of Mef2
Activity

Paulo M. F. Cunha®, Thomas Sandmann >, E. Hilary Gustafson, Lucia Ciglar, Michael P. Eichenlaub”®,
Eileen E. M. Furlong®

European Molecular Biology Laboratory, Heidelberg, Germany
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Studying Drosophila musculature development using ChlP-chip
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ChlIP-chip blocks integrated with gene expression data for Mef2 and Lmd
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Validation of enhancers and TF binding sites

Rfx
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Validation of enhancer activity for Mef2/Lmd candidate target genes

Enhancer binding Enhancer activity
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Temporal binding profiles of over-represented Mef2 bound blocks

A 1.4
1.3 324
/b\ fragments
P |
=
= 466
o O fragments
;
::ml
[
5 / \I\\
E [ERC Y / i..\-“
His 214
g fragments
o
-4 hrs A-5 hrs -8 hrs B-10 hrs 18-12 hrs

3.75 4

Fold enrichment over background

Time (hrs after egg-laying)

Corrected p-values:
*= p < 10
mew p o< 107"

il ‘_‘

0.75

lan Simpson, Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh

1 or more 2 or more 3 or more 4 or more
Number of predicted DMef2 sites per fragment

+ T
8O0 T4,

NlVe
N £

\
Gy

€DIN30



Synthesis of the target gene network and known myogensis pathway

EGF-signaling

"

Ras/
MAPK-
signaling
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Chip-seq analysis of the neuron restrictive silencing factor (NRSF)
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ChlP-seq reveals new binding motif flexibility for NRSF

Canonical NRSF PWM logo
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The gene regulatory network downstream of NRSF constructed from ChlP-seq data
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Summary for ChIP based target prediction methods

*ChlP-chip and ChIP-seq allow for the first time physical identification of bound regions
on the genomic scale

*ChlP-seq presents higher resolution and is replacing ChIP-chip
*Both methods require large data-processing and analysis
*Novel methods have been developed to call bound regions from these data
they are predominantly based on hidden markov models (HMM) and are naturally

normally 2-state models (peak, non-peak)

*The resulting regions can be used with classical methods to refine the nature of
the regulatory element (PWM Gibbs/HMM profiling, motif detection, conservation)

«Can also be refined by more precise experiments on the ChlP DNA such as targeted PCR

*Revolutionises the analysis of gene regulatory networks by integration with gene
expression data
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3 A hidden Markov model for analyzing ChIP-chip
ot experiments on genome tiling arrays and its
Fﬂ application to p53 binding sequences
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Probe Measurements Mapping and Normalization

v

Repetitive Probe Measurements Removal

/

Probe Behavior Estimation

/

ChIP-enriched Regions Identification
using Hidden Markov Model

/

ChlIP-enriched Sequence Retrieval and Repeat-Masking

/

de novo Motif Findng
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(1) Initial probabilities: J/K for ChIP-enriched state,
I — J/K for non-enriched state.

(2) Transition probabilities: J/K for transition to a different
state, 1 — J/K for staying in the same state.

(3) Emission probability distribution of probe i in single
dataset: N (u; +20;,(1.50; )2) for ChIP-enriched state,
N(u ,-,oi-z) for non-enriched state. The parameters are
based on the results on the Affymetrix SNP arrays
(Lieberfarb et al., 2003).

(4) A probe i, with (PM—MM) value p;, is defined as an
outlier if its Z-value is >3 or <—2.5. We reassigned
the Z-value of each outlier probe as 3 if Z >3 and
-25ifZ< —25.

(5) If two adjacent probes are farther apart than 500 bp
in the genome (usually due to a long repeat sequence
between the two probes), in the forward and back-
ward procedure, the enriched and non-enriched state
probabilities of the latter probe are reset to the initial
probabilities.




Qin et al. BMC Bioinformatics 2010, 11:369
http://www.biomedcentral.com/1471-2105/11/369
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HPeak: an HMM-based algorithm for defining
read-enriched regions in ChlIP-Seq data

Zhaohui S Qin*'23, Jianjun Yu3#, Jincheng Shen', Christopher A Maher23#4, Ming Hu', Shanker Kalyana-Sundaram?34,
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HPeak
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