Ab initio prediction of protein interaction

Dirk Husmeier

Biomathematics & Statistics Scotland (BioSS) JCMB, The King's Buildings, Edinburgh EH9 3JZ United Kingdom http://www.bioss.ac.uk/~dirk

Pathways and systems biology

Protein-Protein

Metabolic Pathways

Molecular Interaction Networks

Apoptosis

Signaling Pathways Lac Operon

Gene Regulation

SH3 domain protein interaction network in S. cerevisiae; from Tong et al. (2002)

Experimental high-throughput techniques

Yeast two-hybrid Phage display

Fig. 1. Interaction detection by yeast two-hybrid assay. (a) Activation of reporter gene by transcriptional activator; (b) Activation of reporter gene by reconstituted transcriptional activator.

From See-Kiong Ng and Soon-Heng Tan, J. Bioinf. Comp. Bio. (2004)

Fig. 2. Schematic diagrams of (a) a phage; and (b) interaction detection by phage display. From See-Kiong Ng and Soon-Heng Tan, J. Bioinf. Comp. Bio. (2004)

Tong et al. (2002), Science 295, 321-324. SH3 domain proteins in *Saccharomyces cerevisiae*. **Yeast two-hybrid** interaction network 285 interactions between 28 SH3 proteins and 143 binding peptides Phage display interaction network 394 interactions between 28 SH3 proteins and 178 binding peptides

- High-throughput experiments (yeast two-hybrid, phage display) are expensive and intrinsically noisy.
- It would be desirable to more specifically target or partially bypass them with complementary *in silico* approaches.

- High-throughput experiments (yeast two-hybrid, phage display) are expensive and intrinsically noisy.
- It would be desirable to more specifically target or partially bypass them with complementary *in silico* approaches.
- Objective: develop a probabilistic model to predict protein-protein interactions from sequence data.
- Method: We want to capture the way protein recognition modules recognise and bind to peptide ligands that contain a specific binding motif.

Peptide recognition modules

Example: SH3 domain

			MYC3		PPPP TROPAC
		27 YPR164W 25 24 29			
	2	BP CONSERV	EDDDDDDDD KALL (SRS	EDVDVDVD S S S S S S S S S S S S S S S S	e proposition and the proposition of the propositio
VRP1	RVS167	20 YNL094W	BZZ 1	20 LAS17	SLA1
			PPPPPP CASES		TECTOLIAL
BUD14	YHL002W	a BOI2	BNI1	BNR1	YGR196W
TPAL REP ISKSPLITE			PP///////		₽ PD IDS
YHR016C		ABP1	5HO1		
P V DV PR Resault	BLATE STOR		BAYESSAN		

•

•

•

TCGAATTCTATA GCCAC

•

•

•

TCGAA TTCTATA G C C A C

•

•

•

٠

			MYC3		PPPP TROPAC
		27 YPR164W 25 24 29			
	2	BP CONSERV	EDDDDDDDD KALL (SRS	EDVDVDVD S S S S S S S S S S S S S S S S	e proposition
VRP1	RVS167	20 YNL094W	BZZ 1	20 LAS17	SLA1
			PPPPPP CASES		TECTOLIAL
BUD14	YHL002W	a BOI2	BNI1	BNR1	YGR196W
TPAL REP ISKSPLITE			PP///////		₽ PD IDS
YHR016C		ABP1	5HO1		
P V DV PR Resault	BLATE STOR		BAYESSAN		

Position Specific Scoring Matrix (PSSM)

Search for a motif of length W in binding sequences.

Position Specific Scoring Matrix (PSSM) Search for a motif of length W in binding sequences. $W \times 4$ matrix $\psi_k(l)$: Probability that the nucleotide in the kth position, $k \in [1, \dots, W]$, is an $l \in \{A, C, G, T\}$.

Position Specific Scoring Matrix (PSSM) Search for a motif of length W in binding sequences. $W \times 4$ matrix $\psi_k(l)$: Probability that the nucleotide in the kth position, $k \in [1, ..., W]$, is an $l \in \{A, C, G, T\}$. Background model for non-binding sequences 4-dim vector $\theta_0(l)$:

Probability of nucleotide l; this distribution is position-independent.

Sequence S_1, S_2, \ldots, S_N

Sequence S_1, S_2, \dots, S_N Non-binding sequence: R=0 $P(S_1, S_2, \dots, S_N | R = 0) = \prod_{t=1}^N \theta_0(S_t)$ Sequence S_1, S_2, \dots, S_N Non-binding sequence: R=0 $P(S_1, S_2, \dots, S_N | R = 0) = \prod_{t=1}^N \theta_0(S_t)$

Binding sequence: R=1, motif starting at position m+1

$$P(S_1, S_2, \dots, S_N | R = 1, start = m + 1)$$

$$= \prod_{t=1}^{m} \theta_0(S_t) \prod_{k=1}^{W} \psi_k(S_{m+k}) \prod_{t=m+W+1}^{N} \theta_0(S_t)$$

$$= \prod_{t=1}^{N} \theta_0(S_t) \prod_{k=1}^{W} \frac{\psi_k(S_{m+k})}{\theta_0(S_{m+k})}$$

Binding sequence: R=1, motif starting at position m+1

$$P(S_1, S_2, \dots, S_N | R = 1, start = m+1) = \prod_{t=1}^N \theta_0(S_t) \prod_{k=1}^W \frac{\psi_k(S_{m+k})}{\theta_0(S_{m+k})}$$

Binding sequence: R=1, motif starting at position m+1

$$P(S_1, S_2, \dots, S_N | R = 1, start = m+1) = \prod_{t=1}^N \theta_0(S_t) \prod_{k=1}^W \frac{\psi_k(S_{m+k})}{\theta_0(S_{m+k})}$$

Binding sequence: R=1, motif starting anywhere

$$P(S_1, S_2, \dots, S_N | R = 1)$$

$$= \sum_{m=0}^{N-W} P(start = m+1) P(S_1, S_2, \dots, S_N | R = 1, start = m+1)$$

$$= \prod_{t=1}^{N} \theta_0(S_t) \frac{1}{N-W+1} \sum_{m=0}^{N-W} \prod_{k=1}^{W} \frac{\psi_k(S_{m+k})}{\theta_0(S_{m+k})}$$

Binding sequence: R=1, motif starting at position m+1

$$P(S_1, S_2, \dots, S_N | R = 1, start = m+1) = \prod_{t=1}^N \theta_0(S_t) \prod_{k=1}^W \frac{\psi_k(S_{m+k})}{\theta_0(S_{m+k})}$$

Binding sequence: R=1, motif starting anywhere

$$P(S_1, S_2, \dots, S_N | R = 1)$$

$$= \sum_{m=0}^{N-W} P(start = m+1) P(S_1, S_2, \dots, S_N | R = 1, start = m+1)$$

$$= \prod_{t=1}^{N} \theta_0(S_t) \frac{1}{N-W+1} \sum_{m=0}^{N-W} \prod_{k=1}^{W} \frac{\psi_k(S_{m+k})}{\theta_0(S_{m+k})}$$

Gibbs sampling

Posterior probability of a binding location, given the parameters

$$P(start = m + 1 | S_1, S_2, \dots, S_N, Parameters) = \frac{P(S_1, S_2, \dots, S_N | start = m + 1)P(start = m + 1)}{P(S_1, S_2, \dots, S_N)}$$

Motif starting at position m+1

$$P(S_1, S_2, \dots, S_N | start = m + 1) = \prod_{t=1}^N \theta_0(S_t) \prod_{k=1}^W \frac{\psi_k(S_{m+k})}{\theta_0(S_{m+k})}$$

Motif starting anywhere

$$P(S_1, S_2, \dots, S_N) = \sum_{m=0}^{N-W} P(start = m+1)P(S_1, S_2, \dots, S_N | start = m+1)$$

Posterior probability of the parameters, given the binding locations

Sufficient statistics: Count matrix $C_{k,l}$

 $C_{k,l}$: Number of times amino acid l appears in position k.

$$P(D, binding \ locations | parameters) = \prod_{k=1}^{W} \prod_{l=1}^{20} \psi_{k,l}^{C_{k,l}}$$

Conjugate prior distribution: Dirichlet

$$P(parameters) \propto \prod_{l=1}^{20} \psi_{k,l}^{\alpha_l - 1}$$

Posterior distribution

 $P(parameters|D, binding \ locations) \circ$

$$\prod_{k=1}^{W} \prod_{l=1}^{20} \psi_{k,l}^{\mathbf{C}_{k,l} + \alpha_l - 1}$$

Counts = C

A	0	0	0	0	0
С	0	0	0	0	0
G	0	0	0	0	0
Т	0	0	0	0	0
	1	2	3	4	5

Т

Sufficient statistics: $C_{d,s}$ $C_{d,s,k,l} = \delta(sequence_{s,a_{d,s}+k} = l)$

Sufficient statistics: $C_{d,s}$ $C_{d,s,k,l} = \delta(sequence_{s,a_{d,s}+k} = l)$

Sequence s

•

H P K W S P L P P W H K

•

•

Sufficient statistics: $C_{d,s}$ $C_{d,s,k,l} = \delta(sequence_{s,a_{d,s}+k} = l)$

Sufficient statistics:
$$C_{d,s}$$

 $C_{d,s,k,l} = \delta(sequence_{s,a_{d,s}+k} = l$

•

•

Sufficient statistics: $C_{d,s}$

$$C_{d,s,k,l} = \delta(sequence_{s,a_{d,s}+k} = l)$$

In words: $C_{d,s,k,l}$ is 1 if the *k*th position of the binding motif in sequence *s* that binds to PRM domain *d* is amino acid *l*. Otherwise, it is zero.

Sufficient statistics: $C_{d,s}$

$$C_{d,s,k,l} = \delta(sequence_{s,a_{d,s}+k} = l)$$

In words: $C_{d,s,k,l}$ is 1 if the *k*th position of the binding motif in sequence *s* that binds to PRM domain *d* is amino acid *l*. Otherwise, it is zero.

Problem:

There are too few binding peptide sequences (average: 9 sequences per domain) \Rightarrow high estimation uncertainty.

BIOINFORMATICS

Predicting protein–peptide interactions via a network-based motif sampler

David J. Reiss* and Benno Schwikowski

Institute for Systems Biology, 1441 North 34th street, Seattle, WA 98103-8904, USA

Received on January 15, 2004; accepted on March 1, 2004

Modify the count matrix $C_{d,s}$, using the network topology.

 $\mathbf{ ilde{C}}_{d,s}$

$$ilde{\mathbf{C}}_{d,s} = \sum_{s} \varepsilon_{d,s} \mathbf{C}_{d,s}$$

 $\tilde{\mathbf{C}}_{d,s} = \sum_{s} \varepsilon_{d,s} \mathbf{C}_{d,s} + \lambda_1 \sum_{d} \varepsilon_{d,s} \mathbf{C}_{d,s}$

 $\tilde{\mathbf{C}}_{d,s} = \sum_{s} \varepsilon_{d,s} \mathbf{C}_{d,s} + \lambda_1 \sum_{d} \varepsilon_{d,s} \mathbf{C}_{d,s}$

 $\tilde{\mathbf{C}}_{d,s} = \sum_{s} \varepsilon_{d,s} \mathbf{C}_{d,s} + \lambda_1 \sum_{d} \varepsilon_{d,s} \mathbf{C}_{d,s} + \lambda_2 \sum_{s} \sum_{d} \varepsilon_{d,s} \mathbf{C}_{d,s}$

SH3 domain protein interaction network in S. cerevisiae; from Tong et al. (2002)

			B P P P P P P P P P P P P P P P P P P P		PPPP TROPAC
		27 YPR164W 25 24 29			
	2	BP CONSERV	EDDDDDDDD KALL (SRS	EDVDVDVD S S S S S S S S S S S S S S S S	e proposition and the proposition of the propositio
VRP1	RVS167	20 YNL094W	BZZ 1	20 LAS17	SLA1
			PPPPPP CASES		TECTOLIAL
BUD14	YHL002W	a BOI2	BNI1	BNR1	YGR196W
TPAL REP ISKSPLITE			PP///////		₽ PD IDS
YHR016C		ABP1	5HO1		
P V DV PR Resault	BLATE STOR		BAYESSAN		

Reiss & Schwikowski (2004)

 $\tilde{\mathbf{C}}_{d,s} = \sum_{s} \varepsilon_{d,s} \mathbf{C}_{d,s} + \lambda_{1} \sum_{d} \varepsilon_{d,s} \mathbf{C}_{d,s} + \lambda_{2} \sum_{s} \sum_{d} \varepsilon_{d,s} \mathbf{C}_{d,s}$

Reiss & Schwikowski (2004)

$\tilde{\mathbf{C}}_{d,s} = \sum_{s} \varepsilon_{d,s} \mathbf{C}_{d,s} + \lambda_{1} \sum_{d} \varepsilon_{d,s} \mathbf{C}_{d,s} + \lambda_{2} \sum_{s} \sum_{d} \varepsilon_{d,s} \mathbf{C}_{d,s}$

Heuristic modification to make the model more discriminative: Give higher probability to sites that are distinct from non-binding motifs. New tuning parameter λ_3

Sequence analysis

A regularized discriminative model for the prediction of protein–peptide interactions

Wolfgang P. Lehrach^{1,2,*}, Dirk Husmeier² and Christopher K. I. Williams¹ ¹University of Edinburgh, Edinburgh EH1 2QL, UK and ²Biomathematics and Statistics Scotland, Edinburgh EH9 3JZ, UK Received on August 4, 2005; revised on November 23, 2005; accepted on November 25, 2005

Received on August 4, 2005; revised on November 23, 2005; accepted on November 25, 2005 Advance Access publication January 5, 2006 Associate Editor: Keith A Crandall Binding sequence: R=1, motif starting at position m+1

$$P(S_1, S_2, \dots, S_N | R = 1, start = m + 1) = \prod_{t=1}^N \theta_0(S_t) \prod_{k=1}^W \frac{\psi_k(S_{m+k})}{\theta_0(S_{m+k})}$$
Binding sequence: R=1, motif starting anywhere

$$P(S_1, S_2, \dots, S_N | R = 1)$$

$$= \sum_{m=0}^{N-W} P(start = m+1) P(S_1, S_2, \dots, S_N | R = 1, start = m+1)$$

$$= \prod_{t=1}^{N} \theta_0(S_t) \frac{1}{N-W+1} \sum_{m=0}^{N-W} \prod_{k=1}^{W} \frac{\psi_k(S_{m+k})}{\theta_0(S_{m+k})}$$

Binding sequence: R=1, motif starting at position m+1

$$P(S_1, S_2, \dots, S_N | R = 1, start = m + 1) = \prod_{t=1}^N \theta_0(S_t) \prod_{k=1}^W \frac{\psi_k(S_{m+k})}{\theta_0(S_{m+k})}$$
Binding sequence: R=1, motif starting anywhere

$$P(S_1, S_2, \dots, S_N | R = 1)$$

$$= \sum_{m=0}^{N-W} P(start = m+1) P(S_1, S_2, \dots, S_N | R = 1, start = m+1)$$

$$= \prod_{t=1}^{N} \theta_0(S_t) \frac{1}{N-W+1} \sum_{m=0}^{N-W} \prod_{k=1}^{W} \frac{\psi_k(S_{m+k})}{\theta_0(S_{m+k})}$$

Objective: Prediction of binding activity from sequence: $P(R = 1 | S_1, S_2, ..., S_N)$

Apply Bayes rule:

$$P(R = 1|S_1, S_2, \dots, S_N) = \frac{P(S_1, S_2, \dots, S_N | R = 1)P(R = 1)}{P(S_1, S_2, \dots, S_N)}$$

=
$$\frac{P(S_1, S_2, \dots, S_N | R = 1)P(R = 1)}{P(S_1, S_2, \dots, S_N | R = 0)P(R = 0) + P(S_1, S_2, \dots, S_N | R = 1)P(R = 1)}$$

=
$$\left(1 + \frac{P(R = 0)P(S_1, S_2, \dots, S_N | R = 0)}{P(R = 1)P(S_1, S_2, \dots, S_N | R = 1)}\right)^{-1}$$

=
$$\left(1 + \left[\frac{P(R = 1)}{P(R = 0)}\frac{1}{(N - W + 1)}\sum_{m=0}^{N - W}\prod_{k=1}^{W}\frac{\psi_k(S_{m+k})}{\theta_0(S_{m+k})}\right]^{-1}\right)^{-1}$$

Apply Bayes rule:

$$P(R = 1|S_1, S_2, \dots, S_N) = \frac{P(S_1, S_2, \dots, S_N | R = 1) P(R = 1)}{P(S_1, S_2, \dots, S_N)}$$

= $\frac{P(S_1, S_2, \dots, S_N | R = 1) P(R = 1)}{P(S_1, S_2, \dots, S_N | R = 0) P(R = 0) + P(S_1, S_2, \dots, S_N | R = 1) P(R = 1)}$
= $\left(1 + \frac{P(R = 0) P(S_1, S_2, \dots, S_N | R = 0)}{P(R = 1) P(S_1, S_2, \dots, S_N | R = 1)}\right)^{-1}$
= $\left(1 + \left[\frac{P(R = 1)}{P(R = 0)} \frac{1}{(N - W + 1)} \sum_{m=0}^{N - W} \prod_{k=1}^{W} \frac{\psi_k(S_{m+k})}{\theta_0(S_{m+k})}\right]^{-1}\right)^{-1}$

Define:

$$w_k(l) = \log \frac{\psi_k(l)}{\theta_0(l)}, \ w_0 = \frac{P(R=1)}{P(R=0)}, \ \log it(z) = \frac{1}{1 + \exp(-z)}$$

$$P(R = 1 | S_1, S_2, \dots, S_N) = \log \left(\log \left[\frac{w_0}{N - W + 1} \sum_{m=0}^{N - W} \exp \left(\sum_{k=1}^{W} w_k(S_{t+k}) \right) \right] \right)$$

4 imes W + 1 parameters: $w_k(l)$, w_0

•

•

•

•

TCGAATTCTATA GCCAC

•

•

•

•

•

•

•

٠

$$P(R = 1 | S_1, S_2, \dots, S_N) = \log \left(\log \left[\frac{w_0}{N - W + 1} \sum_{m=0}^{N - W} \exp \left(\sum_{k=1}^{W} w_k(S_{t+k}) \right) \right] \right)$$

4 imes W + 1 parameters: $w_k(l)$, w_0

Data D: Set of sequences \mathbf{x}_i with associated interaction indicators $R_i \in \{0, 1\}$

Model predicts an interaction R_i given the sequence \mathbf{x}_i :

$$y(\mathbf{x}_i, \mathbf{w}) = P(R_i = 1 | \mathbf{x}_i, \mathbf{w})$$

Data D: Set of sequences \mathbf{x}_i with associated interaction indicators $R_i \in \{0, 1\}$

Model predicts an interaction R_i given the sequence \mathbf{x}_i :

$$y(\mathbf{x}_i, \mathbf{w}) = P(R_i = 1 | \mathbf{x}_i, \mathbf{w})$$
$$P(D|\mathbf{w}) = \prod_i y(\mathbf{x}_i, \mathbf{w})^{R_i} [1 - y(\mathbf{x}_i, \mathbf{w})]^{(1-R_i)}$$
$$\log P(D|\mathbf{w}) = \sum_i R_i \log y(\mathbf{x}_i, \mathbf{w}) + (1 - R_i) \log y(\mathbf{x}_i, \mathbf{w})$$

Maximum likelihood: $\operatorname{argmax}_{\mathbf{w}} P(D|\mathbf{w})$

Maximum likelihood: $\operatorname{argmax}_{\mathbf{w}} P(D|\mathbf{w})$

Iterative optimisation scheme with gradient descent:

$$E_D(\mathbf{w}) = -\log P(D|\mathbf{w})$$

 $\Delta \mathbf{w} \propto -\nabla_{\mathbf{w}} E_D(\mathbf{w})$

Parameter estimation Maximum likelihood: $\operatorname{argmax}_{\mathbf{w}} P(D|\mathbf{w})$ Iterative optimisation scheme with gradient descent: $E_D(\mathbf{w}) = -\log P(D|\mathbf{w})$ $\Delta \mathbf{w} \propto -\nabla_{\mathbf{w}} E_D(\mathbf{w})$ Problem: overfitting!

Parameter estimation Maximum likelihood: $\operatorname{argmax}_{\mathbf{w}} P(D|\mathbf{w})$ Iterative optimisation scheme with gradient descent: $E_D(\mathbf{w}) = -\log P(D|\mathbf{w})$ $\Delta \mathbf{w} \propto -\nabla_{\mathbf{w}} E_D(\mathbf{w})$ Problem: overfitting! **Regularisation**: $P(\mathbf{w}) = \frac{1}{Z} \exp(-\alpha E_R(\mathbf{w}))$

Maximum a posteriori:

 $\operatorname{argmax}_{\mathbf{w}} P(\mathbf{w}|D)$ Bayes rule: $P(\mathbf{w}|D) \propto P(D|\mathbf{w})P(\mathbf{w})$ $\operatorname{argmax}_{\mathbf{w}} [\log P(D|\mathbf{w}) + \log P(\mathbf{w})]$

Maximum a posteriori: $\operatorname{argmax}_{\mathbf{w}} P(\mathbf{w}|D)$ Bayes rule: $P(\mathbf{w}|D) \propto P(D|\mathbf{w})P(\mathbf{w})$ $\operatorname{argmax}_{\mathbf{w}}[\log P(D|\mathbf{w}) + \log P(\mathbf{w})]$ $P(\mathbf{w}) \propto \exp[-\alpha E_R(\mathbf{w})]$ $P(D|\mathbf{w}) \propto \exp[-E_D(\mathbf{w})]$ $\Delta \mathbf{w} \propto -\nabla_{\mathbf{w}} E_D(\mathbf{w}) - \alpha \nabla_{\mathbf{w}} E_R(\mathbf{w})$

Weight decay:

$$\Delta \mathbf{w} \propto -\nabla_{\mathbf{w}} E_D(\mathbf{w}) - \alpha \nabla_{\mathbf{w}} E_R(\mathbf{w})$$

Gaussian prior: $E_R(\mathbf{w}) = \mathbf{w}^2$

Laplacian prior:
$$E_R(\mathbf{w}) = |\mathbf{w}|$$

Justification of regularisation

$$P(R = 1|S_1, S_2, \dots, S_N) = \frac{P(S_1, S_2, \dots, S_N | R = 1) P(R = 1)}{P(S_1, S_2, \dots, S_N)}$$

$$= \frac{P(S_1, S_2, \dots, S_N | R = 1) P(R = 1)}{P(S_1, S_2, \dots, S_N | R = 0) P(R = 0) + P(S_1, S_2, \dots, S_N | R = 1) P(R = 1)}$$

$$= \left(1 + \frac{P(R = 0) P(S_1, S_2, \dots, S_N | R = 0)}{P(R = 1) P(S_1, S_2, \dots, S_N | R = 1)}\right)^{-1}$$

$$= \left(1 + \left[\frac{P(R = 1)}{P(R = 0)} \frac{1}{(N - W + 1)} \sum_{m=0}^{N - W} \prod_{k=1}^{W} \frac{\psi_k(S_{m+k})}{\theta_0(S_{m+k})}\right]^{-1}\right)^{-1}$$

Define:
$$w_k(l) = \log \frac{\psi_k(l)}{\theta_0(l)}$$
, $w_0 = \log \frac{P(R=1)}{P(R=0)}$

Weight decay: $\Delta \mathbf{w} \propto -\nabla_{\mathbf{w}} E_D(\mathbf{w}) - \alpha \nabla_{\mathbf{w}} E_R(\mathbf{w})$

Gaussian prior: $E_R(\mathbf{w}) = \mathbf{w}^2$

Laplacian prior:
$$E_R(\mathbf{w}) = |\mathbf{w}|$$

The hyperparameter α can be integrated out analytically

$$P(\mathbf{w}) = \int_0^\infty P(\mathbf{w}|\alpha) P(\alpha) d\alpha$$

$$P(\mathbf{w}|\alpha) = \frac{\exp(-\alpha E_R)}{Z(\alpha)}$$
$$Z(\alpha) \propto \left(\frac{1}{\alpha}\right)^W$$

where W is the dimension of \mathbf{w} (number of weights).

$$P(\mathbf{w}) = \int_0^\infty P(\mathbf{w}|\alpha) P(\alpha) d\alpha$$

Scale parameter: uninformative prior $P(\alpha) \propto \frac{1}{\alpha}$

$$P(\mathbf{w}) = \int_0^\infty P(\mathbf{w}|\alpha) P(\alpha) d\alpha$$

= $C \int_0^\infty \exp(-\alpha E_R) \alpha^{W-1} d\alpha$
= $C E_R^{-W} \int_0^\infty \exp(-\alpha E_R) (\alpha E_R)^{(W-1)} d(\alpha E_R)$
= $C E_R^{-W} \int_0^\infty \exp(-u) u^{W-1} du$
= $C E_R(\mathbf{w})^{-W} \Gamma(W)$

$$\log P(\mathbf{w}) = -W \log E_R(\mathbf{w}) + const$$
$$\nabla_{\mathbf{w}} \log P(\mathbf{w}) = -\frac{W}{E_R} \nabla_{\mathbf{w}} E_R(\mathbf{w})$$

Weight decay:

$$\Delta \mathbf{w} \propto -\nabla_{\mathbf{w}} E_D(\mathbf{w}) - \tilde{\alpha} \nabla_{\mathbf{w}} E_R(\mathbf{w}); \quad \tilde{\alpha} = \frac{W}{E_R}$$

Gaussian prior: $E_R(\mathbf{w}) = \mathbf{w}^2$ Laplacian prior: $E_R(\mathbf{w}) = |\mathbf{w}|$

Peter Williams (1995)

Bayesian regularisation and pruning using a Laplacian prior

Neural Computation 7, 117–143

Evaluation

True network

Predicted network

Probabilistic inference

True network

Predicted network

Thresholding

True network

Predicted network

Thresholding

True positives

False positives

SH3 yeast two-hybrid interaction network
Tong et al. (2002), Science 295, 321-324
285 interactions between 28 SH3 proteins and 143 binding peptides

9 binding partners per SH3 domain on average

SH3 domain protein interaction network in S. cerevisiae; from Tong et al. (2002)

No regularisation

With regularisation

N-fold crossvalidation

Tong et al. (2002), Science 295, 321-324. SH3 domain proteins in *Saccharomyces cerevisiae*. **Yeast two-hybrid** interaction network 285 interactions between 28 SH3 proteins and 143 binding peptides Phage display interaction network 394 interactions between 28 SH3 proteins and 178 binding peptides

Models compared in our study

- Generative model of Reiss
- Discriminative model, informative initialisation
- Ensemble of discriminative models, random initialisations

AUROC scores

Model	\rightarrow	Generative	Discriminative,	Discriminative,
		(Reiss et al.)	informative init	ensemble
Yeast	AUROC	0.61	0.67	0.67

AUROC scores

Model	\rightarrow	Generative	Discriminative,	Discriminative,
		(Reiss et al.)	informative init	ensemble
Yeast	AUROC	0.61	0.67	0.67
Phage	AUROC	0.69	0.83	0.71

Biological validation

400 highest scoring interactions

•

Enrichment for higher in silico scores, filter for noisy high-throughput data.

Summary

- High-throughput interactomic data are noisy
 → Complement data with in silico predictions.
- Generative probabilistic model of Reiss & Schwikowski (2004): Several user-defined tuning parameters
- Discriminative probabilistic model of Segal et al. (2003): Overfitting
- Regularisation with Laplacian prior (Williams 1995).