Heuristic methods for alignment Sequence databases Multiple alignment Gene and protein prediction

Assumptions for Heuristic Approaches

- Even linear time complexity is a problem for large genomes
- Databases can often be pre-processed to a degree
- Substitutions more likely than gaps
- Homologous sequences contain a lot of substitutions without gaps which can be used to help find start points in alignments

BLAST definitions

- Given two strings S_1 and S_2
- A segment pair is a pair of equal lengths substrings of S₁ and S₂ aligned without gaps
- A *locally maximal segment* is a segment whose alignment score (without gaps) cannot be improved by extending or shortening it.
- A maximum segment pair (MSP) in S_1 and S_2 is a segment pair with the maximum score over all segment pairs.

BLAST Process

- 1. Find all the *w*-length substrings from the database with an alignment score >t
 - Each of these (similar to a hot spot in FASTA) is called a *hit*
 - Does not have to be identical
 - Scored using substitution matrix and score compared to the threshold *t* (which determines number found)
 - Words size can therefore be longer without losing sensitivity: AA - 3-7 and DNA ~12

Armstrong, 2010

BLAST Process

- 2. Extend hits:
 - extend each hit to a local maximal segment
 - extension of initial w size hit may increase or decrease the score
 - terminate extension when a threshold is exceeded
 - find the best ones (HSP)
- This first version of Blast did not allow gaps....

(Improved) BLAST

Altshul, Madden, Schaffer, Zhang, Zhang, Miller & Lipman (1997) Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Research 25:3389-3402

- Improved algorithms allowing gaps
 - these have superceded the older version of BLAST
 - two versions: Gapped and PSI BLAST

(Improved) BLAST Process

• Allow local alignments with gaps

- allow the words to merge by introducing gaps
- each new alignment comprises two words with a number of gaps
- unlike FASTA does not restrict the search to a narrow band
- as only two word hits are expanded this makes the new blast about 3x faster

BLAST Programs

• blastp	compares an amino acid query sequence against a protein sequence database.
• blastn	compares a nucleotide query sequence against a nucleotide sequence database.
• blastx	compares a nucleotide query sequence translated in all reading frames against a protein sequence database.
• tblastn	compares a protein query sequence against a nucleotide sequence database dynamically translated in all reading frames.
• tblastx	compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database. (SLOW)

	SEARCH TITLE	REBULTS	PROGRAM	DATABASES
	Sequence	interactive 💌	tosta3	Protein Swiss-prot Swiss-new
GAP PENALTIE	8 SCORES & ALIGNMENTS	KTUP/ HISTOORAM	DNA STRAND	MATRIX
OPEN -12 RESIDUE 2	SCORES 50 - ALIGN 50 -	KTUP2	none 💌	BLOSUM50
EXPECTATION UPPER VALUE	EXPECTATION	SEQUENCE RANGE	DATABASE RANGE	MOLECULE TYPE
1.0 •	default 💌	START-END	START-END	default 💌
Enter or Paste a	I NOTEN Setu	mee in any ionia	4 .	E
				E

Alignment Heuristics

- Dynamic Programming is better but too slow
- BLAST (and FASTA) based on several assumptions about good alignments
 - substitutions more likely than gaps
 - good alignments have runs of identical matches
- FASTA good for DNA sequences but slower
- BLAST better for amino acid sequences, pretty good for DNA, fastest, now dominant.

Biological Databases

- Introduction to Sequence Databases
- Overview of primary query tools and the databases they use (e.g. databases used by BLAST and FASTA)
- Demonstration of common queries
- Interpreting the results
- Overview of annotated 'meta' or 'curated' databases Armstrong, 2010
 Bioinformatics 2

- Raw DNA (and RNA) sequence
- Submitted by Authors
- Patent, EST, Gemomic sequences
- Large degree of redundancy
- Little annotation
- Annotation and Sequence errors!

Main DNA DBs

- Genbank US
- EU • EMBL
- DDBJ Japan
- Celera genomics
 Commercial DB

Armstrong, 2010

International Nucleotide Sequence Database Collaboration

- Partners are EMBL, Genbank & DDBJ
- Each collects sequence from a variety of sources
- New additions to any of the three databases are shared to the others on a daily basis.

Limited annotation

- Unique accession number
- Submitting author(s)
- Brief annotation if available
- Source (cDNA, EST, genomic etc)
- Species

Armstrong, 2010

• Reference or Patent details

Armstrong, 2010

Bioinformatics 2

EMBL file tags

Bioinformatics 2

FlyBase

flybase.bio.indiana.edu

- Includes the entire annotated genome searchable by BLAST or by text queries
- Also includes a detailed ontology or standard nomenclature for *Drosophila*
- Also provides information on all literature, researchers, mutations, genetic stocks and technical resources.

Bioinformatics 2

• Full mirror at EBI

UniProtKB/Swiss-Prot

- Consists of protein sequence entries
- Contains high-quality annotation
- Is non-redundant
- Cross-referenced to many other databases

Bioinformatics 2

- 104,559 sequences in Jan 02
- 120,960 sequences in Jan 03
- 514,789 sequences in Feb 10 (latest)

Armstrong, 2010

<section-header><text><code-block><code-block></code></code>

Swis-Prot by Species (Oct '05)

Number	Frequency	Species
1	12860	Homo sapiens (Human)
2	9933	Mus musculus (Mouse)
3	5139	Saccharomyces cerevisiae (Baker's yeast)
4	4846	Escherichia coli
5	4570	Rattus norvegicus (Rat)
6	3609	Arabidopsis thaliana (Mouse-ear cress)
7	2840	Schizosaccharomyces pombe (Fission yeast)
8	2814	Bacillus subtilis
9	2667	Caenorhabditis elegans
10	2273	Drosophila melanogaster (Fruit fly)
11	1782	Methanococcus jannaschii
12	1772	Haemophilus influenzae
13	1758	Escherichia coli 0157:H7
14	1653	Bos taurus (Bovine)
15	1512	Salmonella typhimurium

Armstrong, 2010

Bioinformatics 2

Swis-Prot by Species (Oct '05)

Number	Frequency	Species	
1	20272	Homo sapiens (Human)	
2	16216	Mus musculus (Mouse)	
3	8847	Arabidopsis thaliana (Mouse-ear cress)	
4	7476	Rattus norvegicus (Rat)	
5	6552	Saccharomyces cerevisiae (Baker's yeast)	
6	5743	Bos taurus (Bovine)	
7	4974	Schizosaccharomyces pombe (Fission yeast)	
8	4367	Escherichia coli (strain K12)	
9	4249	Bacillus subtilis	
10	4129	Dictyostelium discoideum (Slime mold)	
11	3281	Caenorhabditis elegans	
12	3205	Xenopus laevis (African clawed frog)	
13	3052	Drosophila melanogaster (Fruit fly)	
14	2598	Danio rerio (Zebrafish) (Brachydanio rerio)	
15	2365	Oryza sativa subsp. japonica (Rice)	
16	2206	Pongo abelii (Sumatran orangutan)	
17	2151	Gallus gallus (Chicken)	
18	1993	Escherichia coli 0157:H7	
19	1782	Methanocaldococcus jannaschii (Methanococcus	jannaschii)
20	1773	Haemophilus influenzae	
strong 2010			Bioinformatics 2

UniProtKB/TrEMBL

- Computer annotated Protein DB
- Translations of all coding sequences in EMBL DNA Database
- Remove all sequences already in Swiss-Prot
- November 01: 636,825 peptides
- Feb 10: 10,376,872 peptides
- TrEMBL is a weekly update
- ArmsGenDept is the Genbank equivalent Bioinformatics 2

- "The database grows at 90 SNPs per month"
- 130 versions since start in 1998

Armstrong, 2010

- Currently 156 million SNPs in v130
- 23 million added between version 129 and 130!

SRS data sources

- Primary Sequence: EMBL, SwissProt
- References/Literature: Medline
- Protein Homology: Prosite, Prints
- Sequence Related: Blocks, UTR, Taxonomy
- Transcription Factor: TFACTOR, TFSITE
- Search Results: BLAST, FASTA, CLUSTALW
- Protein Structure: PDB
- Also, Mutations, Pathways, other specialist DBs

Armstrong, 2010

Entrez

- Text based searching at NCBI's Genbank
- Very simple and easy to use
- Not as flexible or extendable as SRS
- No user customisation

Armstrong, 2010

Sequence Based Searching

• Queries:

DNA query against DNA db Translated DNA query against Protein db Translated DNA query against translated DNA db Translated Protein query against DNA db Protein query against Protein db

• BLAST & FASTA

Armstrong, 2010

Bioinformatics 2

Secondary Databases

- PDB
- Pfam
- PRINTS
- PROSITE
- ProDom
- SMART
- TIGRFAMs

Armstrong, 2010

Multiple Sequence Alignment

- What and Why?
- Dynamic Programming Methods
- Heuristic Methods

Armstrong, 2010

• A further look at Protein Domains

Multiple Alignment

Bioinformatics 2

- Normally applied to proteins
- Can be used for DNA sequences
- Finds the common alignment of >2 sequences.
- Suggests a common evolutionary source between related sequences based on similarity

- Can be used to identify sequencing errors
Armstrong, 2010
Bioinformatics 2

Multiple Alignment of DNA

- Take multiple sequencing runs
- Find overlaps
 - variation of ends-free alignment
- Locate cloning or sequencing errors
- Derive a consensus sequence
- Derive a confidence degree per base

Bioinformatics 2

Protein Families

- Proteins are complex structures built from functional and structural sub-units
 - When studying protein families it is evident that some regions are more heavily conserved than others.
 - These regions are generally important for the structure or function of the protein
 - Multiple alignment can be used to find these regions

- These regions can form a signature to be used Armstrong; 2010 dentifying the protein family or functional^{tics 2}

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Multiple alignment table

dlg_CG1725-PH Sap97_dlgh1 chapsyn-110_dlgh2 Sap102_dlgh3 PSD-95_dlgh4 ALFDYDPNRDDGLPSRGLPFKH ALFDYDKTKDSGLPSQGLNFRF AMFDYDKSKDSGLPSQGLSFKY ALFDYDRTRDSCLPSQGLSFSY ALFDYDKTKDCGFLSQALSFHF *:**** .:* : *:.* *

Bioinformatics 2

A consensus character is the one that minimises the distance between it and all the other characters in the column

Conservatived or Identical residues are colour coded

Column Costs

- Several strategies exist for calculating the column cost in a multiple alignment
- Simplest is to sum the pairwise **costs** of each base/residue pair in the column using a matrix (e.g. PAM250).
- Gap scoring rules can be applied to these as well.

Bioinformatics 2

Optimal Multiple Alignment

- The best alignment is generally the one with the lowest score (i.e. least difference)
 depends on the scoring rules used.
- Like pairwise cases, each alignment represents a path through a matrix
- For multiple alignment, the matrix is *n*-dimensional

Bioinformatics 2

- where *n*=number of sequences

Multiple alignment table

dlg_CG1725-PH Sap97_dlgh1 chapsyn-110_dlgh2 Sap102_dlgh3 PSD-95_dlgh4

ALFDYDPNRDDGLPSRGLPFKH ALFDYDKTKDSGLPSQGLNFRF AMFDYDKSKDSGLPSQGLSFKY ALFDYDRTRDSCLPSQGLSFSY ALFDYDKTKDCGFLSQALSFHF *:**** .:* : *:.* *

The consensus character is the one that minimises the distance between it and all the other characters in the column

Armstrong, 2010

Gene prediction

- What is a gene?
 - Simple definition: A stretch of DNA that encodes a protein and includes the regulatory sequences required for temporal and spatial control of gene transcription.
- Characteristics of genes.
 - What genetic features can we use to recognise a gene?

Bioinformatics 2

Codons and ORFs

- Three bases that encode an amino acid or stop site.
- A run of valid codons is an Open Reading Frame.

Bioinformatics 2

- An ORF usually starts with a Met
- Ends with a nonsense or stop codon.

			Second bas	e of codon			
		U	C	Α	6		
u	U	UUU UUC UUA UUG	UCU UCC UCA UCG	UAU UAC UAA UAA	UGU UGC UGA UGG Trp	U C A G	
ise of codo	С	CUU CUC CUA CUG		CAU CAC CAA CAA CAG Gln	CGU CGC CGA CGG	U C A G	of codon
First ba	4	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG	U C A G	Third base
	6	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA CAG GIu	66U 66C 66A 666 666	U C A G	
The genetic code, written by convention in the form in which the Codons appear in mRNA. The three terminator codons, UAA, UAG, and UGA, are boxed in red; the AUG initiator codon is shown in green.							

Predicting ORFs

- 64 total codons
- 3 stop codons, 61 codons for amino acids
- Random sequence 1:21 ratio for stop:coding.
- = 1 stop codon every 63 base pairs
- Gene lengths average around 1000 base pairs.

Bioinformatics 2

Amino Acid Bias

• The amino acids in proteins are not random

Bioinformatics 2

- leucine has 6 codons
- alanine has 4 codons
- tryptophan has 1 codon
- The random the ratio would be 6:4:1
- In proteins it is 6.9:6.5:1
 - i.e. it is not random

robab	ility	y ma	atrix	for	TA	TA
Pos:	1	2	3	4	5	6
А	2	95	26	59	51	1
С	9	2	14	13	20	3
G	10	1	16	15	13	0
Т	79	3	44	13	17	96
ong, 2010						Bioir

HMMs for codons

- Homogenous models have two tables, one for coding, one non coding.
- Each table is has 4096 entries for the potential 6 base pair sequences
- Non-homogenous models have three tables for possible reading frames
- Short exons cause these models problems

Bioinformatics 2

• Hard to detect splice sites

Armstrong, 2010

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

HMMgene

- Based on an HMM model of gene structure
- Predicts intron/exon boundries
- Predicts start and stop codons
- Known information can be added (e.g. from ESTS etc)

Bioinformatics 2

• Outputs in GFF format

Protein Families

- Proteins are complex structures built from functional and structural sub-units
 - When studying protein families it is evident that some regions are more heavily conserved than others.
 - These regions are generally important for the structure or function of the protein
 - Multiple alignment can be used to find these regions

- These regions can form a signature to be used Armstrong; 2010 dentifying the protein family or functional^{tics 2}

Matching sequences to profiles

- We can define a distance/similarity cost for a base in each sequence being present at any location based on the probabilities in the profile.
- We define define costs for opening and extending gaps in the sequence or profile.
- Therefore we can essentially treat the alignment of a sequence to a profile as a Armspeirwise alignment and use dynamic Bioinformatics 2

Protein profiles

- Multiple alignments can be used to give a consensus sequence.
- The columns of characters above each entry in the consensus sequence can be used to derive a table of probabilities for any amino acid or base at that position.

Armstrong, 2010

Protein profiles

- The table of percentages forms a profile of the protein or protein subsequence.
- With a gap scoring approach sequence similarity to a profile can be calculated.
- The alignment and similarity of a sequence / profile pair can be calculated using a dynamic programming algorithm.

Bioinformatics 2

Tools for HMM profile searches

- Meme and Mast at UCSD (SDSC)
- http://meme.sdsc.edu/
- MEME
 - input: a group of sequences
 - output: profiles found in those sequences
- MAST
 - input: a profile and sequence database
- output: locations of the profile in the database Armstrong, 2010 Bioinformatics 2

- Multiple alignment is used to define and find conserved features within DNA and protein sequences
- Profiles of multiply aligned sequences are a better description and can be searched using pairwise sequence alignment.
- Many different programs and databases available.

Secondary Databases

- PDB
- Pfam
- PRINTS
- PROSITE
- ProDom
- SMART
- TIGRFAMs

Armstrong, 2010

- Database of 'protein fingerprints'
- Group of motifs that combined can be used to characterise a protein family

Bioinformatics 2

• ~11,000 motifs in PRINTS DB

Armstrong, 2010

• Provide more info than motifs alone

Linking it all together...

- Database Searches
 - Multiple Alignments
 - Find known motifs and domains
 - Find possible similar folds
- Prediction algorithms
 - Properties of amino acids
 - Predicting folding
 - Finding cysteine bonds

Armstrong, 2010

	Inter	Pro	
DATABASE	VERSION	ENTRIES	
SWISS-PROT	48	197228	
PRINTS	38	1900	
TREMBL	31.1	2342938	
PFAM	18	7973	
PROSITE	19.10	1882	
Currently month.	15 databases,	plans to	add 3 new ones this
Armstrong, 2010			Bioinformatics 2

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Workflow managers

- Locate and manage connections to software and databases
- Record actions
- Replay a workflow at a later date or against multiple sequences
- Manages redundant external sources (e.g. multiple blast servers)
- Can connect to specialist local sources Armstrong, 2010 Bioinformatics 2

