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Structure of the Lecture

1 Heuristics
Introduction to heuristics
Heuristics and Computational Biology
FASTA (fast all) - the original heuristic
Summary

2 Clustering
Introduction to clustering in Biology
Clustering example - Drosophila PNS development
Summary

3 Gene feature finding
Primer on gene regulation
DNA sequence searching
Transcription factor binding site prediction
Summary
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Introduction to heuristics

What is a Heuristic?

a heuristic is
"..a method for problem solving...often involving
experimentation and trial and error.."

and a heuristic algorithm is

"a heuristic, is an algorithm that is able to produce an
acceptable solution to a problem in many practical
scenarios, but for which there is no formal proof of its
correctness"
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Introduction to heuristics

Why use Heuristics ?

Heuristics are typically used when there is no known method to find an
optimal solution, under the given constraints or at all
They are nearly always used for problems that are or are thought to be
NP-hard (roughly, not computable in polynomial time)
Allow us to incorporate knowledge about a problem or system to
reduce the overall complexity of the task
Can help to constrain search space and/or possible solution space to
avoid erroneous solutions
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Introduction to heuristics

What are the problems with Heuristics ?

what comes next in the sequence : 1 2 4 .... ?
is it...

1 2 4 7 11 16 22
or is it...

1 2 4 8 16 32 64
or is it...

something completely different !?
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Introduction to heuristics

What are the problems with Heuristics ?

when working with heuristic algorithms you want speed and accuracy
(optimal solutions), in reality you often lose one or both
you cannot formally prove the solution is optimal and you cannot know
that the algorithm will always be fast
do not perform well when the underlying sample is small or the
problem is ill defined
need to develop customised statistical models to go alongside the
analysis to have confidence, normally randomisation based with it’s
associated sampling problems
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Heuristics and Computational Biology

The introduction of heuristics to the biology domain

Dynamic programming was first used for accurate alignment of
two sequences

globally - Needleman Wunsch (1970)
locally - Smith Waterman (1981)

First heuristic algorithms developed in sequence analysis used
both heuristics and dynamic programming

FASTA - Lipman and Pearson 1985,1988
Clustal - Higgins et al. 1988
BLAST - Altschul et al. 1990

Heuristics are now epidemic in Bioinformatics applied to
classic alignment and sequence search problems
cluster editing, partitioning problem solving
phylogenetic parsimony
motif detection
protein docking
protein structure resolution
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FASTA (fast all) - the original heuristic

FASTA - a heuristic sequence searching algorithm

used to query large sequence databases with sequences DNA/Protein
- for example searching for a 20mer oligo in a genome of 150Mb

can perform gapped local alignments
performs optimized searches for local alignment using substitution
matrices (identity for DNA, BLOSUM/PAM for protein)
slower than BLAST, but more sensitive for nucleotides and particularly
good for repetitive sequence
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FASTA (fast all) - the original heuristic

FASTA - a heuristic sequence searching algorithm

Variables
ktup: word-length (similar to BLAST)
1-2 for proteins, 4-6 for nucleotides
gap opening penalties : -12 (protein) and -16 (DNA)
gap extension penalties : -2 (protein) and -4 (DNA)

Statistics
Z-scores : calculated normalised by sequence length
E (expectation) scores : number of sequences expect with same
score by chance
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FASTA (fast all) - the original heuristic

The main steps of the FASTA algorithm

Step One
Find exact matches of word size between query and target, record
in a hash/lookup table
hash/lookup can be pre-computed for different searches k=1
(oligo 20nt), k=6 (normal 100-500nt)

Step Two
cluster the ’hot-spots’ into diagonals by making a matrix of 1s
and 0s by position
score all of the diagonals with each region + and each gap -
find the 10 best diagonals and then perform a local alignment
with no indels
the best partial alignment is called init1 and is used in Step Four
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FASTA (fast all) - the original heuristic

The main steps of the FASTA algorithm

Step Three
going back to the 10 partial alignments, the algorithm now takes
any that exceed a certain score cut-off and tries to make them into
longer alignment runs
if a longer partial can be made (and this is a graph theoretic
problem) it is optimally aligned and returned as one result from
the algorithm

Step Four
picking up the init1 partial alignment from Step Two the
algorithm performs a banded Smith Waterman
a window of alignment space either side of the init1 diagonal is
identified and optimal local alignments are performed throughout
the space
the alignments are scored by matrix and statistics are calculated,
normalised Z-score and E value

ian.simpson@ed.ac.uk Bio2(7) 04/03/09



Outline heur clus gene

FASTA (fast all) - the original heuristic

The main steps of the FASTA algorithm

Step Three
going back to the 10 partial alignments, the algorithm now takes
any that exceed a certain score cut-off and tries to make them into
longer alignment runs
if a longer partial can be made (and this is a graph theoretic
problem) it is optimally aligned and returned as one result from
the algorithm

Step Four
picking up the init1 partial alignment from Step Two the
algorithm performs a banded Smith Waterman
a window of alignment space either side of the init1 diagonal is
identified and optimal local alignments are performed throughout
the space
the alignments are scored by matrix and statistics are calculated,
normalised Z-score and E value

ian.simpson@ed.ac.uk Bio2(7) 04/03/09



Outline heur clus gene

FASTA (fast all) - the original heuristic

Schematic of the Fasta matrix process
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FASTA (fast all) - the original heuristic

Example FASTA result
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FASTA (fast all) - the original heuristic

Example FASTA histogram output
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Summary

Heuristics summary

Heuristics are used to reduce the complexity of problems that are not
computationally tractable
Prior knowledge and reasonable assumptions about the system and
charcateristics of likely solutions are needed
Statistical methods need to be developed to test the fidelity of the
heuristic results, these are typically randomisation or bootstrap type
methods
Heuristics are used widely in computational biology especially in
studies using genome scale data, proteomics, transcriptomics,
phylgenetics etc..
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Introduction to clustering in Biology

Finding groups in data

finding trends and groupings within high order complex datasets is
fundamental to many computational biology projects

- Proteomics - protein-protein interaction data
- Functional annotation clustering - grouping genes by function
- Transcriptomics - grouping genes by expression profile by

condition
in large datsets the ditinction between groupings can be obtuse and
many parallel methods are often used to try to validate the clustering
results

- protein-protein interactions tend to be multplicitous and single
group membership may not be appropriate

- functional annotation clustering is constrained by ontologies and
provides a unique, and unsolved? problem

- gene expression data - expression on a continuous scale with high
noise, often need to pre-transform data to reduce dimensionality
and/or exacerbate distinctions between groups
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Introduction to clustering in Biology

Classic clustering methodologies

Slides adapted from to Dr. Dirk Husmeier, BioSS Scotland
Would take a long time to do this in Beamer......
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Clustering example - Drosophila PNS development

MAGIC - multi algorithmic grouping with integrity checking
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Clustering example - Drosophila PNS development

MAGIC - finishing off the pipeline with a statistical analysis

Determine the statistical significance of the scores for each cluster -
bootstrap confidence estimation

- generate many random cluster sets with the same pool of members and the same
structure for each cluster and each clustering experiment

- score each of the random sets to build up a distribution that estimates the true
distribution of scores

- fit a probability density function to the bootstrap distribution
- calculate p-values for the scores generated from the clusters of the experimental

data sets

rank clusters by score with an associated p-value that is a measure of
how far away the cluster membership is than randomly populated
clusters of the same structure
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Summary

Clustering summary

Many methodologically distinct methods have been developed both
classical and modelled

- heirarchical, partitioning, fuzzy, combinatorial
Many distance measures can be used depending on the distribution of
the data

- euclidean, mahalanobis, cosine..
Many parameter optimisation methods have been developed

- median split-silhouette, elbow plot, GAP statistics...
Now integrative pipelines are being developed to cross-compare results
from clustering using a whole range of algorithms, variables and
measures - so called consensus clustering
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Primer on gene regulation

Anatomy of a promoter/enhancer
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Primer on gene regulation

Promoter/enhancer features

promoters and enhancers contain binding sites for transcription (TFBS)
and transcription associated factors
promoters are close to the transcriptional start of the gene
enhancers can be very far away from the gene
TFBS sites are used in complex combinations to modulate the time,
location and level of expression of genes
TFBS sites are generally small 6-8nt and are also degenerate (more
than one sequence can perform the same or similar task)
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Primer on gene regulation

Examples of TFBS binding sites
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Primer on gene regulation

Problems finding TFBS sites in promoters and enhancers

objective is to find TFBS sites according to defined criteria and predict
which are functional
by chance TFBS sites are found with relatively high frequency in the
genome as they are small. This means that finding the true TFBS sites
is an inheritantly noisy process
sites for a particular transcription factor are most commonly defined as
regular expressions or position weight matrices (PWMs)
reg exps produce binary results (0,1), but searches with PWMs produce
continuous scores and probabilities, i.e. uncertainty
need ways to reduce complexity and or search space
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DNA sequence searching

Regular expressions

a simple consensus is essentially a regular expression such as for
example CANNTG, the E-box consensus

- possibilities are CAAATG, CAATTG...etc
- you could express this as a regular expression CA[ACTG]{2}TG

and search for matches
- the result is a hit sequence and a location, it’s binary

Problems with regular expressions
- assume that all possible permutations are equal
- in order to be informative you have to exclude what could be

informative, but low frequency, sequences from the consensus (so
that you don’t have an E-box of [ACTG]{6} for example !

- there are currently two main solutions to this problem, position
weight matrices and hidden markov model profiles
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DNA sequence searching

Weight matrices, PWMs
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Transcription factor binding site prediction

Apply a PWMSearch but with databases
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Transcription factor binding site prediction

TFBS screening - searching for sites

Genomic sequence selection
- pre-screened genome to determine size range for 1kbp upstream - end of intron 1
- TESS uses proximal 300bp upstream
- Pre-computes from Flybase and AAA less than 1kbp upstream
- Settled on primary screen of 1kbp upstream to 1kbp downstream
- Avoided CRM data as it assumes levels of conservation to define ranges, not

objective

TFBS PWM and pattern screen
- Screened >20,000 sites/patterns and >800 PWMs from TransfacPro
- Screened 123 PWMs from Jaspar and our in-house patterns
- Total of 20 percent of the Drosophila melanogaster genome screened producing

3.5x106 hits
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Transcription factor binding site prediction

Calculating TFBS site conservation, phylogenetics

UCSC 15-way Multiz alignments - phylogenetic analysis
- comprises approximately 2 million alignment blocks (MSAs) indexed by Dmel

scaffold
- converted Multiz files into Bio::Align objects indexed in a MySQL database by

Dmel chr:start:end
- for each sequence range to be analysed pulled all of the alignment blocks, stripped

out clean sequences and re-aligned, pairwise between Dmel and the other 11
species sequences

- retrieved all TFBS site hit data from screen and scored every site to every pairwise
alignment
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Transcription factor binding site prediction

Sequence conservation as a proxy for sequence function

Assessing the relationship between conservation and function
- In order to meaningfully use any sequence conservation as a proxy for function

we need to determine as best we can the relationship between conservation and
function

- TransfacPro Site data - a positive training set
- Map TFPro DMel sites onto the genome and calculate pairwise conservation

scores - Multiz - positive training set
- Randomise sequence sets from the whole genome (non-coding) and score from

Multiz - background estimation

Calculating the best measure of conservation
- Optimise the way in which conservation score is calculated to maximise true

positives and minimise false negatives
- Use summation, average, weighted summation and weighted average where the

weighting is a function of species divergence
- Consider using micro-sequence evolution in windows around sites
- Calculate on a per site basis (i.e. randomise per site not for all sites) some sites

will be more informative than others, drop the uninformative ones
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Transcription factor binding site prediction

Rfx, the X-box and ciliated sensory neuron development

Ciliated sensory neurons
- Most sensory neurons have cilia at their dendritic tips
- Cilia play crucial and highly conserved roles in motility, molecular transport and

developmental processes such as left-right symmetry and sense organ
development

- Mutations in Rfx proteins are associated with defects in ciliogenesis in many
organisms including Drosophila

The X-box, comparative genetics and the ciliome
- Rfx proteins bind to the X-box RYYNYYN[1-3]RRNRAC is bound by Rfx

proteins
- Genome screens for conserved X-boxes have recently been used to identify novel

targets of Rfx proteins in Drosophila (Laurencon et al. Genome
Biology(2007)8,R195)

- Compared D.mel and D.pse common ancestor 40-60 mya
- intron sequences 40% identical, known binding sites from the literature mapped

on are 63% identical
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Transcription factor binding site prediction

cis-regulatory modules (CRMs) an entry point for network assembly

based on 75% conservation there are 7823 X-boxes in the fly genome (0.5/gene) so we
expect 13 in list of 27
sensory cluster has 50 conserved X-boxes an enrichment of x3.8
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Summary

Gene feature finding summary

heuristics, Gibbs samplers, dynamic programming, Markov chains and
randomisation/bootstrap methods are commonly integrated into
pipelines to study a series of connected processes from beginnning of
analysis to the end
here we have looked at a specific (and unsolved) instance of TFBS
searching (and prediction)
these methods are rapidly evolving in all areas, most are useable on a
standard workstation and most have programmatic access through
BioJava, BioPerl and of course C
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