

Outline						
	O	п	1	1	n	е

Structure of the Lecture

Heuristics

- Introduction to heuristics
- Heuristics and Computational Biology
- FASTA (fast all) the original heuristic
- Summary

Structure of the Lecture

1 Heuristics

- Introduction to
- Introduction to heuristics
- Heuristics and Computational Biology
- FASTA (fast all) the original heuristic
- Summary

2

Clustering

- Introduction to clustering in Biology
- Clustering example Drosophila PNS development
- Summary

Structure of the Lecture

Heuristics

- Introduction to heuristics
- Heuristics and Computational Biology
- FASTA (fast all) the original heuristic
- Summary

Clustering

- Introduction to clustering in Biology
- Clustering example Drosophila PNS development
- Summary

Gene feature finding

- Primer on gene regulation
- DNA sequence searching
- Transcription factor binding site prediction
- Summary

Outline	heur	clus	gene
	●00000000000	00000	00000
Introduction to heuristics			

What is a Heuristic?

a heuristic is

"..a method for problem solving...often involving experimentation and trial and error.."

and a heuristic algorithm is

"a heuristic, is an algorithm that is able to produce an acceptable solution to a problem in many practical scenarios, but for which there is no formal proof of its correctness"

	XX/1 TT *		
Introduction to heuristics			
Outline	heur ••••	clus 00000	gene 00000

Why use Heuristics?

• Heuristics are typically used when there is no known method to find an optimal solution, under the given constraints or at all

Outline	heur ○●○○○○○○○○○○	clus 00000	gene 00000
Introduction to heuristics			

Why use Heuristics ?

- Heuristics are typically used when there is no known method to find an optimal solution, under the given constraints or at all
- They are nearly always used for problems that are or are thought to be NP-hard (roughly, not computable in polynomial time)

Outline	heur	clus	gene
	○●○○○○○○○○○○	00000	00000
Introduction to heuristics			

Why use Heuristics ?

- Heuristics are typically used when there is no known method to find an optimal solution, under the given constraints or at all
- They are nearly always used for problems that are or are thought to be NP-hard (roughly, not computable in polynomial time)
- Allow us to incorporate knowledge about a problem or system to reduce the overall complexity of the task

Outline	heur	clus	gene
	○●○○○○○○○○○	00000	00000
Introduction to heuristics			

Why use Heuristics ?

- Heuristics are typically used when there is no known method to find an optimal solution, under the given constraints or at all
- They are nearly always used for problems that are or are thought to be NP-hard (roughly, not computable in polynomial time)
- Allow us to incorporate knowledge about a problem or system to reduce the overall complexity of the task
- Can help to constrain search space and/or possible solution space to avoid erroneous solutions

Outline	heur	clus	gene
	000000000000	00000	00000
Introduction to heuristics			

• what comes next in the sequence : 1 2 4 ?

Outline	heur	clus	gene
	00000000000	00000	00000
Introduction to heuristics			

- what comes next in the sequence : 1 2 4 ? is it...
 - $1\ 2\ 4\ 7\ 11\ 16\ 22$

Outline	heur	clus	gene
	000000000000	00000	00000
Introduction to heuristics			

what comes next in the sequence : 1 2 4 ? is it...
1 2 4 7 11 16 22

or is it...

 $1\ 2\ 4\ 8\ 16\ 32\ 64$

Outline	heur	clus	gene
	000000000000	00000	00000
Introduction to heuristics			

what comes next in the sequence : 1 2 4 ? is it...
1 2 4 7 11 16 22 or is it...
1 2 4 8 16 32 64 or is it...
something completely different !?

Outline	heur	clus	gene
	00000000000	00000	00000
Introduction to heuristics			

• when working with heuristic algorithms you want speed and accuracy (optimal solutions), in reality you often lose one or both

Outline	heur	clus	gene
	00000000000	00000	00000
Introduction to heuristics			

- when working with heuristic algorithms you want speed and accuracy (optimal solutions), in reality you often lose one or both
- you cannot formally prove the solution is optimal and you cannot know that the algorithm will always be fast

Outline	heur	clus	gene
	00000000000	00000	00000
Introduction to heuristics			

- when working with heuristic algorithms you want speed and accuracy (optimal solutions), in reality you often lose one or both
- you cannot formally prove the solution is optimal and you cannot know that the algorithm will always be fast
- do not perform well when the underlying sample is small or the problem is ill defined

Outline	heur	clus	gene
	00000000000	00000	00000
Introduction to heuristics			

- when working with heuristic algorithms you want speed and accuracy (optimal solutions), in reality you often lose one or both
- you cannot formally prove the solution is optimal and you cannot know that the algorithm will always be fast
- do not perform well when the underlying sample is small or the problem is ill defined
- need to develop customised statistical models to go alongside the analysis to have confidence, normally randomisation based with it's associated sampling problems

Outline	heur	gene
	00000000000	
Heuristics and Computational Biology		

The introduction of heuristics to the biology domain

• Dynamic programming was first used for accurate alignment of two sequences

globally - Needleman Wunsch (1970) locally - Smith Waterman (1981)

Outline	heur	gene
	000000000000	
Heuristics and Computational Biology		

The introduction of heuristics to the biology domain

• Dynamic programming was first used for accurate alignment of two sequences

globally - Needleman Wunsch (1970) locally - Smith Waterman (1981)

• First heuristic algorithms developed in sequence analysis used both heuristics and dynamic programming

FASTA - Lipman and Pearson 1985,1988 Clustal - Higgins et al. 1988 BLAST - Altschul et al. 1990

Outline	heur	gene
	000000000000	
Houristics and Computational Piology		

The introduction of heuristics to the biology domain

• Dynamic programming was first used for accurate alignment of two sequences

globally - Needleman Wunsch (1970) locally - Smith Waterman (1981)

• First heuristic algorithms developed in sequence analysis used both heuristics and dynamic programming

FASTA - Lipman and Pearson 1985,1988 Clustal - Higgins et al. 1988 BLAST - Altschul et al. 1990

• Heuristics are now epidemic in Bioinformatics applied to

classic alignment and sequence search problems cluster editing, partitioning problem solving phylogenetic parsimony motif detection protein docking protein structure resolution

Outline	heur	gene
	000000000000	
$F\Delta ST\Delta$ (fast all) - the original heuristic		

- used to query large sequence databases with sequences DNA/Protein
 - for example searching for a 20mer oligo in a genome of 150Mb

Outline	heur	gene
	000000000000000000000000000000000000000	
$F\Delta ST\Delta$ (fast all) - the original heuristic		

- used to query large sequence databases with sequences DNA/Protein
 - for example searching for a 20mer oligo in a genome of 150Mb
- can perform gapped local alignments

Outline	heur	gene
	000000000000	
EASTA (fact all) the original houristic		

- used to query large sequence databases with sequences DNA/Protein
 - for example searching for a 20mer oligo in a genome of 150Mb
- can perform gapped local alignments
- performs optimized searches for local alignment using substitution matrices (identity for DNA, BLOSUM/PAM for protein)

Outline	heur	gene
	00000000000	
EASTA (fact all) the original houristic		

- used to query large sequence databases with sequences DNA/Protein
 - for example searching for a 20mer oligo in a genome of 150Mb
- can perform gapped local alignments
- performs optimized searches for local alignment using substitution matrices (identity for DNA, BLOSUM/PAM for protein)
- slower than BLAST, but more sensitive for nucleotides and particularly good for repetitive sequence

Outline	heur	gene
	000000000000	
EASTA (fact all) - the original heuristic		

- Variables
 - ktup: word-length (similar to BLAST)
 - 1-2 for proteins, 4-6 for nucleotides
 - gap opening penalties : -12 (protein) and -16 (DNA)
 - gap extension penalties : -2 (protein) and -4 (DNA)

Outline	heur	gene
	00000000000	
EASTA (fact all) the original houristic		

- Variables
 - ktup: word-length (similar to BLAST)
 - 1-2 for proteins, 4-6 for nucleotides
 - gap opening penalties : -12 (protein) and -16 (DNA)
 - gap extension penalties : -2 (protein) and -4 (DNA)
- Statistics
 - Z-scores : calculated normalised by sequence length
 - E (expectation) scores : number of sequences expect with same score by chance

Outline	heur	gene
	000000000000	
FASTA (fast all) - the original heuristic		

• Step One

- Find exact matches of word size between query and target, record in a hash/lookup table
- hash/lookup can be pre-computed for different searches k=1 (oligo 20nt), k=6 (normal 100-500nt)

Outline	heur	gene
	000000000000	
EASTA (fact all) - the original heuristic		

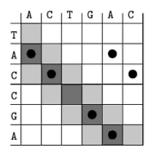
• Step One

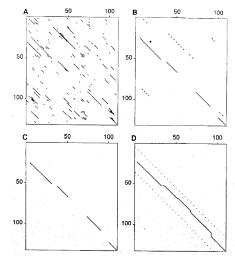
- Find exact matches of word size between query and target, record in a hash/lookup table
- hash/lookup can be pre-computed for different searches k=1 (oligo 20nt), k=6 (normal 100-500nt)
- Step Two
 - cluster the 'hot-spots' into diagonals by making a matrix of 1s and 0s by position
 - score all of the diagonals with each region + and each gap -
 - find the 10 best diagonals and then perform a local alignment with no indels
 - the best partial alignment is called init1 and is used in Step Four

Outline	heur	clus	gene 00000
EASTA (fact all) - the original heuristic		00000	00000

- Step Three
 - going back to the 10 partial alignments, the algorithm now takes any that exceed a certain score cut-off and tries to make them into longer alignment runs
 - if a longer partial can be made (and this is a graph theoretic problem) it is optimally aligned and returned as one result from the algorithm

Outline	heur	clus	gene
EASTA (fast all) - the original heuristic	000000000000	00000	00000


- Step Three
 - going back to the 10 partial alignments, the algorithm now takes any that exceed a certain score cut-off and tries to make them into longer alignment runs
 - if a longer partial can be made (and this is a graph theoretic problem) it is optimally aligned and returned as one result from the algorithm
- Step Four
 - picking up the init1 partial alignment from Step Two the algorithm performs a banded Smith Waterman
 - a window of alignment space either side of the init1 diagonal is identified and optimal local alignments are performed throughout the space
 - the alignments are scored by matrix and statistics are calculated, normalised Z-score and E value



oooo

FASTA (fast all) - the original heuristic

Schematic of the Fasta matrix process

FASTA (fast all) - the original heuristic

Example FASTA result

		USE P13346 P				(338 aa)		
		1: 2268 opt:						
Smith-W	Waterman sco	ore: 2268;	100.000% ide	entity (100	0.000% ung	apped) in	338 aa overlap	(1-338:1-338)
	10	20	30	40	50	60		
FOSB_M		SGSRCSSSPSAE				FVPTVTA		
UNIPRO		SGSRCSSSPSAE						
	10	20	30	40	50	60		
	70	80	90	100	110	120		
F0SB_M		VQPTLISSMAQS						
UNIPRO		VQPTLISSMAQS	QGQPLASQPPA\	/DPYDMPGTSY	STPGLSAYS	TGGASGS		
	70	80	90	100	110	120		
	130	140	150	160	170	180		
FOSB_M	GGPSTSTTTS	GPVSARPARARP	RRPREETLTPEE	EEKRRVRRER	NKLAAAKCR	NRRRELT		
UNIPRO	GGPSTSTTTS	GPVSARPARARP	RRPREETLTPEE	EEKRRVRRER	NKLAAAKCR	NRRRELT		
	130	140	150	160	170	180		
	190	200	210	220	230	240		
F0SB_M	DRLQAETDQLE	EEEKAELESEIA	ELQKEKERLEF\	/LVAHKPGCKI	PYEEGPGPG	PLAE∨RD		
						::::::		
UNIPRO	DRLQAETDQLE	EEEKAELESEIA	ELQKEKERLEF\	/LVAHKPGCKI	PYEEGPGPG	PLAEVRD		
	190	200	210	220	230	240		

heur ○○○○○○○○○○○

clus 00000

FASTA (fast all) - the original heuristic

Example FASTA histogram output

		opt	
<	20	1040	0:=
	22	0	0: one = represents 1534 library sequences
		4	
	26	14	19:*
	28		201:*
	30	227	1223:*
	32	1161	4728:= *
	34	5065	12823:==== *
	36	16019	26336:========= *
	38	33416	43523:============= *
	40	58656	60711:=====*
	42	81562	74211:======*===*====*===
			81862:=========*===*===
	46	92000	83378:==========*====*=====================
	48	83023	79825:========*==*==
	50	83389	72841:======*====*=====
			64039:======*===*====*===
	54	58489	54701:====================================
	56	48841	45692:====================================
			37512:=================*
			30387:============= *
	62	21306	24361:========== *
	64	17453	19374:=========*
			15313:======*
	68	10436	12045:======*
	70	8222	9439:=====*
	72	6047	7376:====*

Outline	heur ○○○○○○○○○○●	clus 00000	gene 00000
Summary			
	Heuristics summary		

• Heuristics are used to reduce the complexity of problems that are not computationally tractable

Outline Summary	heur	clus	gene
	○○○○○○○○○○○○	00000	00000
	Heuristics sum	imary	

- Heuristics are used to reduce the complexity of problems that are not computationally tractable
- Prior knowledge and reasonable assumptions about the system and charcateristics of likely solutions are needed

Summary	00000000000	00000	00000		
Heuristics summary					

- Heuristics are used to reduce the complexity of problems that are not computationally tractable
- Prior knowledge and reasonable assumptions about the system and charcateristics of likely solutions are needed
- Statistical methods need to be developed to test the fidelity of the heuristic results, these are typically randomisation or bootstrap type methods

Summary	Heuristics sum	mary	
Outline	heur	clus	gene
	○○○○○○○○○●	00000	00000

- Heuristics are used to reduce the complexity of problems that are not computationally tractable
- Prior knowledge and reasonable assumptions about the system and charcateristics of likely solutions are needed
- Statistical methods need to be developed to test the fidelity of the heuristic results, these are typically randomisation or bootstrap type methods
- Heuristics are used widely in computational biology especially in studies using genome scale data, proteomics, transcriptomics, phylgenetics etc..

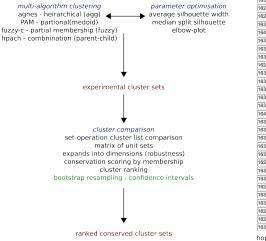
Outline	heur	clus	gene
	000000000000	•••••	00000
Introduction to clustering in Biology			

Finding groups in data

- finding trends and groupings within high order complex datasets is fundamental to many computational biology projects
 - Proteomics protein-protein interaction data
 - Functional annotation clustering grouping genes by function
 - Transcriptomics grouping genes by expression profile by condition
- in large datsets the ditinction between groupings can be obtuse and many parallel methods are often used to try to validate the clustering results
 - protein-protein interactions tend to be multplicitous and single group membership may not be appropriate
 - functional annotation clustering is constrained by ontologies and provides a unique, and unsolved? problem
 - gene expression data expression on a continuous scale with high noise, often need to pre-transform data to reduce dimensionality and/or exacerbate distinctions between groups

Outline	heur	clus	gene
	000000000000	⊙●○○○	00000
Introduction to clustering in Biology			

Classic clustering methodologies


- Slides adapted from to Dr. Dirk Husmeier, BioSS Scotland
- Would take a long time to do this in Beamer.....

clus

Clustering example - Drosophila PNS development

MAGIC - multi algorithmic grouping with integrity checking

1636203_at	B-H1			
1629788_at	CG33182			
1624608_s_at	сро			
1633936_a_at	sca			
1640139_at	B-H2			
1636088_at	-			
1631281_a_at	amd			
1639333_at	al			
1626793_at	CG30427			
1637254_at	spdo			
1637708_a_at	RpS12			
1636835_at	CG16700			
1630237_a_at	DII			
1630494_at	-			
1640513_a_at	CG32150			
1634341_a_at	CG6129			
1639896_at	-			
1639940_at	disco			
1638125_a_at	msi			
1632294_at	sens			
1628469_a_at	CG32529			
1632644_s_at	сро			
1637057_at	nm			
1624393_at	w			
1638079_at	l(2)05510			
1636090_a_at	sv			
1628313_at	-			
1622949_at	peb			
1635083_at	CG32458			

Clustering example - Drosophila PNS development

MAGIC - finishing off the pipeline with a statistical analysis

- Determine the statistical significance of the scores for each cluster bootstrap confidence estimation
 - generate many random cluster sets with the same pool of members and the same structure for each cluster and each clustering experiment
 - score each of the random sets to build up a distribution that estimates the true distribution of scores
 - fit a probability density function to the bootstrap distribution
 - calculate p-values for the scores generated from the clusters of the experimental data sets

Clustering example - Drosophila PNS development

MAGIC - finishing off the pipeline with a statistical analysis

- Determine the statistical significance of the scores for each cluster bootstrap confidence estimation
 - generate many random cluster sets with the same pool of members and the same structure for each cluster and each clustering experiment
 - score each of the random sets to build up a distribution that estimates the true distribution of scores
 - fit a probability density function to the bootstrap distribution
 - calculate p-values for the scores generated from the clusters of the experimental data sets
- rank clusters by score with an associated p-value that is a measure of how far away the cluster membership is than randomly populated clusters of the same structure

Outline	heur 0000000000000	clus ○○○○●	gene 00000
Summary			
	Clustering sum	mary	

- Many methodologically distinct methods have been developed both classical and modelled
 - heirarchical, partitioning, fuzzy, combinatorial

Summary			
Outline	heur 00000000000000	clus ○○○○●	gene 00000

Clustering summary

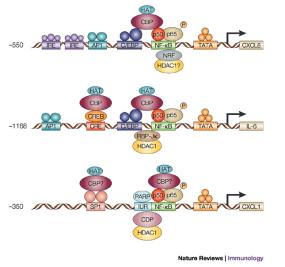
- Many methodologically distinct methods have been developed both classical and modelled
 - heirarchical, partitioning, fuzzy, combinatorial
- Many distance measures can be used depending on the distribution of the data
 - euclidean, mahalanobis, cosine..

Outline	heur 0000000000000	clus ○○○○●	gene 00000
Summary			

Clustering summary

- Many methodologically distinct methods have been developed both classical and modelled
 - heirarchical, partitioning, fuzzy, combinatorial
- Many distance measures can be used depending on the distribution of the data
 - euclidean, mahalanobis, cosine..
- Many parameter optimisation methods have been developed
 - median split-silhouette, elbow plot, GAP statistics...

Outline	heur 0000000000000	clus ○○○○●	gene 00000
Summary			


Clustering summary

- Many methodologically distinct methods have been developed both classical and modelled
 - heirarchical, partitioning, fuzzy, combinatorial
- Many distance measures can be used depending on the distribution of the data
 - euclidean, mahalanobis, cosine..
- Many parameter optimisation methods have been developed
 - median split-silhouette, elbow plot, GAP statistics...
- Now integrative pipelines are being developed to cross-compare results from clustering using a whole range of algorithms, variables and measures so called consensus clustering

Outline	heur	clus	gene
	000000000000	00000	●0000
Primer on gene regulation			

Anatomy of a promoter/enhancer

Outline	heur	clus	gene
	000000000000	00000	⊙●○○○
Primer on gene regulation			

• promoters and enhancers contain binding sites for transcription (TFBS) and transcription associated factors

Outline	heur	clus	gene
	000000000000	00000	○●○○○
Primer on gene regulation			

- promoters and enhancers contain binding sites for transcription (TFBS) and transcription associated factors
- promoters are close to the transcriptional start of the gene

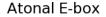
Outline	heur	clus	gene
	000000000000	00000	○●○○○
Primer on gene regulation			

- promoters and enhancers contain binding sites for transcription (TFBS) and transcription associated factors
- promoters are close to the transcriptional start of the gene
- enhancers can be very far away from the gene

Outline	heur	clus	gene
	000000000000	00000	⊙●○○○
Primer on gene regulation			

- promoters and enhancers contain binding sites for transcription (TFBS) and transcription associated factors
- promoters are close to the transcriptional start of the gene
- enhancers can be very far away from the gene
- TFBS sites are used in complex combinations to modulate the time, location and level of expression of genes

Outline	heur	clus	gene
	000000000000	00000	○●○○○
Primer on gene regulation			


- promoters and enhancers contain binding sites for transcription (TFBS) and transcription associated factors
- promoters are close to the transcriptional start of the gene
- enhancers can be very far away from the gene
- TFBS sites are used in complex combinations to modulate the time, location and level of expression of genes
- TFBS sites are generally small 6-8nt and are also degenerate (more than one sequence can perform the same or similar task)

clus 00000 gene 00●00

Primer on gene regulation

Examples of TFBS binding sites

Scute E-box

Outline	heur	clus	gene
	000000000000	00000	000●0
Primer on gene regulation			

• objective is to find TFBS sites according to defined criteria and predict which are functional

Outline	heur	clus	gene
	000000000000	00000	000●0
Primer on gene regulation			

- objective is to find TFBS sites according to defined criteria and predict which are functional
- by chance TFBS sites are found with relatively high frequency in the genome as they are small. This means that finding the true TFBS sites is an inheritantly noisy process

Outline	heur	clus	gene
	000000000000	00000	000●0
Primer on gene regulation			

- objective is to find TFBS sites according to defined criteria and predict which are functional
- by chance TFBS sites are found with relatively high frequency in the genome as they are small. This means that finding the true TFBS sites is an inheritantly noisy process
- sites for a particular transcription factor are most commonly defined as regular expressions or position weight matrices (PWMs)

Outline	heur	clus	gene
	000000000000	00000	000●0
Primer on gene regulation			

- objective is to find TFBS sites according to defined criteria and predict which are functional
- by chance TFBS sites are found with relatively high frequency in the genome as they are small. This means that finding the true TFBS sites is an inheritantly noisy process
- sites for a particular transcription factor are most commonly defined as regular expressions or position weight matrices (PWMs)
- reg exps produce binary results (0,1), but searches with PWMs produce continuous scores and probabilities, i.e. uncertainty

Outline	heur	clus	gene
	000000000000	00000	000●0
Primer on gene regulation			

- objective is to find TFBS sites according to defined criteria and predict which are functional
- by chance TFBS sites are found with relatively high frequency in the genome as they are small. This means that finding the true TFBS sites is an inheritantly noisy process
- sites for a particular transcription factor are most commonly defined as regular expressions or position weight matrices (PWMs)
- reg exps produce binary results (0,1), but searches with PWMs produce continuous scores and probabilities, i.e. uncertainty
- need ways to reduce complexity and or search space

Outline	heur	clus	gene
	000000000000	00000	○○○○●
DNA sequence searching			

Regular expressions

- a simple consensus is essentially a regular expression such as for example CANNTG, the E-box consensus
 - possibilities are CAAATG, CAATTG...etc
 - you could express this as a regular expression CA[ACTG]{2}TG and search for matches
 - the result is a hit sequence and a location, it's binary

Outline	heur	clus	gene
	000000000000	00000	○○○○●
DNA sequence searching			

Regular expressions

- a simple consensus is essentially a regular expression such as for example CANNTG, the E-box consensus
 - possibilities are CAAATG, CAATTG...etc
 - you could express this as a regular expression CA[ACTG]{2}TG and search for matches
 - the result is a hit sequence and a location, it's binary
- Problems with regular expressions
 - assume that all possible permutations are equal
 - in order to be informative you have to exclude what could be informative, but low frequency, sequences from the consensus (so that you don't have an E-box of [ACTG]{6} for example !
 - there are currently two main solutions to this problem, position weight matrices and hidden markov model profiles

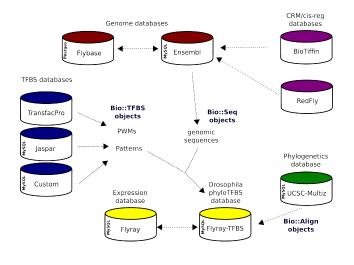
heur 0000000000000 clus 00000

DNA sequence searching

Weight matrices, PWMs

_				
	A	С	т	G
1	101	- 1081	- 182	13
2	87	- 1081	- 82	13
3	- 45	- 23	18	35
4	-1081	- 82	- 1081	155
5	- 1081	- 182	227	- 1081
6	- 145	- 1081	- 1081	155
7	- 245	- 1081	218	- 245
я	1/15	- 82	. 197	.1081

Inform 1 <u>Rela</u> 1 <u>Dow</u> Without	JENCE LOGO ation Conter 4.7 (bits) tive Entropy 4.4 (bits) nload LOGO : SSC:[EPS][PNG] C:[EPS][PNG]	± 2	<u>A</u>	
NAME	STRAND	START	P-VALUE	SITES
ara	-	58	2.51e-07	TGGCATAGCA AAGTGTGACGCCGTGCAA ATAATCAATG
lac	+	8	5.35e-07	AACGCAAT TAATGTGAGTTAGCTCAC TCATTAGGCA
malt	+	40	8.61e-07	AAAGATTTGG AATTGTGACACAGTGCAA ATTCAGACAC
ilv	-	42	1.69e-06	GCAAAGGGAA AATTGAGGGGTTGATCAC GTTTTGTACT
pbr322		56	2.85e-06	CTECTTACGE ATCTGTGCGGTATTTCAC ACCGCATATG
deop2	+	59	2.85e-06	AGATTTCCTT AATTGTGATGTGTATCGA AGTGTGTTGC
uxu1	+	16	5.17e-06	AGAGTGAAAT TGTTGTGATGTGGTTAAC CCAATTAGAA
trn9cat	+	83	5.69e-06	CTTTTGGCGA AAATGAGACGTTGATCGG CACG
celcq	-	64	7.54e-06	GGACTTCCAT TTTTGTGAAAACGATCAA AAAAACAGTC
ompa	+	47	9.04e-06	TTTTTTTCAT ATGCCTGACGGAGTTCAC ACTTGTAAGT



Ournne			
	()	tΙ	ıe

clus 00000

Transcription factor binding site prediction

Apply a PWMSearch but with databases

Outline	heur 00000000000000	clus 00000	gene
Transcription factor binding site prediction	000000000000000000000000000000000000000	00000	00000

- Genomic sequence selection
 - pre-screened genome to determine size range for 1kbp upstream end of intron 1

Outline	heur	gene
Transcription factor binding site prediction		

- Genomic sequence selection
 - pre-screened genome to determine size range for 1kbp upstream end of intron 1
 - TESS uses proximal 300bp upstream

Outline	heur	gene
Transposition footon hinding site modiation		

- Genomic sequence selection
 - pre-screened genome to determine size range for 1kbp upstream end of intron 1
 - TESS uses proximal 300bp upstream
 - Pre-computes from Flybase and AAA less than 1kbp upstream

Outline	heur	gene
Transcription factor binding site prediction		

- Genomic sequence selection
 - pre-screened genome to determine size range for 1kbp upstream end of intron 1
 - TESS uses proximal 300bp upstream
 - Pre-computes from Flybase and AAA less than 1kbp upstream
 - Settled on primary screen of 1kbp upstream to 1kbp downstream

Outline	heur	gene
Transcription factor binding site prediction		

- Genomic sequence selection
 - pre-screened genome to determine size range for 1kbp upstream end of intron 1
 - TESS uses proximal 300bp upstream
 - Pre-computes from Flybase and AAA less than 1kbp upstream
 - Settled on primary screen of 1kbp upstream to 1kbp downstream
 - Avoided CRM data as it assumes levels of conservation to define ranges, not objective

Outline	heur	gene
Transcription factor binding site prediction		

- Genomic sequence selection
 - pre-screened genome to determine size range for 1kbp upstream end of intron 1
 - TESS uses proximal 300bp upstream
 - Pre-computes from Flybase and AAA less than 1kbp upstream
 - Settled on primary screen of 1kbp upstream to 1kbp downstream
 - Avoided CRM data as it assumes levels of conservation to define ranges, not objective

Outline				
	U	П		

00000

Transcription factor binding site prediction

TFBS screening - searching for sites

• Genomic sequence selection

- pre-screened genome to determine size range for 1kbp upstream end of intron 1
- TESS uses proximal 300bp upstream
- Pre-computes from Flybase and AAA less than 1kbp upstream
- Settled on primary screen of 1kbp upstream to 1kbp downstream
- Avoided CRM data as it assumes levels of conservation to define ranges, not objective
- TFBS PWM and pattern screen
 - Screened >20,000 sites/patterns and >800 PWMs from TransfacPro

neur 00000000000000 00000

Transcription factor binding site prediction

TFBS screening - searching for sites

• Genomic sequence selection

- pre-screened genome to determine size range for 1kbp upstream end of intron 1
- TESS uses proximal 300bp upstream
- Pre-computes from Flybase and AAA less than 1kbp upstream
- Settled on primary screen of 1kbp upstream to 1kbp downstream
- Avoided CRM data as it assumes levels of conservation to define ranges, not objective
- TFBS PWM and pattern screen
 - Screened >20,000 sites/patterns and >800 PWMs from TransfacPro
 - Screened 123 PWMs from Jaspar and our in-house patterns

00000

Transcription factor binding site prediction

TFBS screening - searching for sites

• Genomic sequence selection

- pre-screened genome to determine size range for 1kbp upstream end of intron 1
- TESS uses proximal 300bp upstream
- Pre-computes from Flybase and AAA less than 1kbp upstream
- Settled on primary screen of 1kbp upstream to 1kbp downstream
- Avoided CRM data as it assumes levels of conservation to define ranges, not objective
- TFBS PWM and pattern screen
 - Screened >20,000 sites/patterns and >800 PWMs from TransfacPro
 - Screened 123 PWMs from Jaspar and our in-house patterns
 - Total of 20 percent of the Drosophila melanogaster genome screened producing 3.5×10^6 hits

Duffine				
	()	111		e

heur 0000000000000 clus 00000

Transcription factor binding site prediction

Calculating TFBS site conservation, phylogenetics

- UCSC 15-way Multiz alignments phylogenetic analysis
 - comprises approximately 2 million alignment blocks (MSAs) indexed by Dmel scaffold

Calculating TFBS site conservation, phylogenetics

- UCSC 15-way Multiz alignments phylogenetic analysis
 - comprises approximately 2 million alignment blocks (MSAs) indexed by Dmel scaffold
 - converted Multiz files into Bio::Align objects indexed in a MySQL database by Dmel chr:start:end

Calculating TFBS site conservation, phylogenetics

- UCSC 15-way Multiz alignments phylogenetic analysis
 - comprises approximately 2 million alignment blocks (MSAs) indexed by Dmel scaffold
 - converted Multiz files into Bio::Align objects indexed in a MySQL database by Dmel chr:start:end
 - for each sequence range to be analysed pulled all of the alignment blocks, stripped out clean sequences and re-aligned, pairwise between Dmel and the other 11 species sequences

Calculating TFBS site conservation, phylogenetics

- UCSC 15-way Multiz alignments phylogenetic analysis
 - comprises approximately 2 million alignment blocks (MSAs) indexed by Dmel scaffold
 - converted Multiz files into Bio::Align objects indexed in a MySQL database by Dmel chr:start:end
 - for each sequence range to be analysed pulled all of the alignment blocks, stripped out clean sequences and re-aligned, pairwise between Dmel and the other 11 species sequences
 - retrieved all TFBS site hit data from screen and scored every site to every pairwise alignment

neur 000000000000000 clus 00000

Transcription factor binding site prediction

- Assessing the relationship between conservation and function
 - In order to meaningfully use any sequence conservation as a proxy for function we need to determine as best we can the relationship between conservation and function

heur 000000000000000 clus 00000

Transcription factor binding site prediction

- Assessing the relationship between conservation and function
 - In order to meaningfully use any sequence conservation as a proxy for function we need to determine as best we can the relationship between conservation and function
 - TransfacPro Site data a positive training set

- Assessing the relationship between conservation and function
 - In order to meaningfully use any sequence conservation as a proxy for function we need to determine as best we can the relationship between conservation and function
 - TransfacPro Site data a positive training set
 - Map TFPro DMel sites onto the genome and calculate pairwise conservation scores Multiz positive training set

- Assessing the relationship between conservation and function
 - In order to meaningfully use any sequence conservation as a proxy for function we need to determine as best we can the relationship between conservation and function
 - TransfacPro Site data a positive training set
 - Map TFPro DMel sites onto the genome and calculate pairwise conservation scores Multiz positive training set
 - Randomise sequence sets from the whole genome (non-coding) and score from Multiz background estimation

- Assessing the relationship between conservation and function
 - In order to meaningfully use any sequence conservation as a proxy for function we need to determine as best we can the relationship between conservation and function
 - TransfacPro Site data a positive training set
 - Map TFPro DMel sites onto the genome and calculate pairwise conservation scores Multiz positive training set
 - Randomise sequence sets from the whole genome (non-coding) and score from Multiz background estimation

- Assessing the relationship between conservation and function
 - In order to meaningfully use any sequence conservation as a proxy for function we need to determine as best we can the relationship between conservation and function
 - TransfacPro Site data a positive training set
 - Map TFPro DMel sites onto the genome and calculate pairwise conservation scores Multiz positive training set
 - Randomise sequence sets from the whole genome (non-coding) and score from Multiz background estimation
- Calculating the best measure of conservation
 - Optimise the way in which conservation score is calculated to maximise true positives and minimise false negatives

- Assessing the relationship between conservation and function
 - In order to meaningfully use any sequence conservation as a proxy for function we need to determine as best we can the relationship between conservation and function
 - TransfacPro Site data a positive training set
 - Map TFPro DMel sites onto the genome and calculate pairwise conservation scores Multiz positive training set
 - Randomise sequence sets from the whole genome (non-coding) and score from Multiz background estimation
- Calculating the best measure of conservation
 - Optimise the way in which conservation score is calculated to maximise true positives and minimise false negatives
 - Use summation, average, weighted summation and weighted average where the weighting is a function of species divergence

- Assessing the relationship between conservation and function
 - In order to meaningfully use any sequence conservation as a proxy for function we need to determine as best we can the relationship between conservation and function
 - TransfacPro Site data a positive training set
 - Map TFPro DMel sites onto the genome and calculate pairwise conservation scores Multiz positive training set
 - Randomise sequence sets from the whole genome (non-coding) and score from Multiz background estimation
- Calculating the best measure of conservation
 - Optimise the way in which conservation score is calculated to maximise true positives and minimise false negatives
 - Use summation, average, weighted summation and weighted average where the weighting is a function of species divergence
 - Consider using micro-sequence evolution in windows around sites

- Assessing the relationship between conservation and function
 - In order to meaningfully use any sequence conservation as a proxy for function we need to determine as best we can the relationship between conservation and function
 - TransfacPro Site data a positive training set
 - Map TFPro DMel sites onto the genome and calculate pairwise conservation scores Multiz positive training set
 - Randomise sequence sets from the whole genome (non-coding) and score from Multiz background estimation
- Calculating the best measure of conservation
 - Optimise the way in which conservation score is calculated to maximise true positives and minimise false negatives
 - Use summation, average, weighted summation and weighted average where the weighting is a function of species divergence
 - Consider using micro-sequence evolution in windows around sites
 - Calculate on a per site basis (i.e. randomise per site not for all sites) some sites will be more informative than others, drop the uninformative ones

Rfx, the X-box and ciliated sensory neuron development

• Ciliated sensory neurons

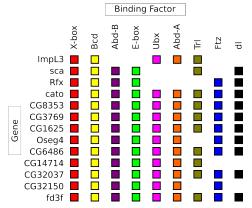
- Most sensory neurons have cilia at their dendritic tips
- Cilia play crucial and highly conserved roles in motility, molecular transport and developmental processes such as left-right symmetry and sense organ development
- Mutations in Rfx proteins are associated with defects in ciliogenesis in many organisms including Drosophila

Rfx, the X-box and ciliated sensory neuron development

• Ciliated sensory neurons

- Most sensory neurons have cilia at their dendritic tips
- Cilia play crucial and highly conserved roles in motility, molecular transport and developmental processes such as left-right symmetry and sense organ development
- Mutations in Rfx proteins are associated with defects in ciliogenesis in many organisms including Drosophila
- The X-box, comparative genetics and the ciliome
 - Rfx proteins bind to the X-box RYYNYYN[1-3]RRNRAC is bound by Rfx proteins
 - Genome screens for conserved X-boxes have recently been used to identify novel targets of Rfx proteins in Drosophila (Laurencon et al. Genome Biology(2007)8,R195)
 - Compared D.mel and D.pse common ancestor 40-60 mya
 - intron sequences 40% identical, known binding sites from the literature mapped on are 63% identical

Ournne			
	()	tΙ	ıe


clus 00000

Transcription factor binding site prediction

cis-regulatory modules (CRMs) an entry point for network assembly

Sites >=75% identical between D.mel and D.Pse that for genes that also contain an X-box (13/27) from the sensory cilium biogenesis cluster.

• based on 75% conservation there are 7823 X-boxes in the fly genome (0.5/gene) so we expect 13 in list of 27

sensory cluster has 50 conserved X-boxes an enrichment of x3.8

Outline	heur	clus	gene
	000000000000	00000	00000
Summary			

Gene feature finding summary

 heuristics, Gibbs samplers, dynamic programming, Markov chains and randomisation/bootstrap methods are commonly integrated into pipelines to study a series of connected processes from beginnning of analysis to the end

Outline	heur	clus	gene
	000000000000	00000	00000
Summary			

Gene feature finding summary

- heuristics, Gibbs samplers, dynamic programming, Markov chains and randomisation/bootstrap methods are commonly integrated into pipelines to study a series of connected processes from beginnning of analysis to the end
- here we have looked at a specific (and unsolved) instance of TFBS searching (and prediction)

Outline	heur 000000000000	clus 00000	gene
Summary			

Gene feature finding summary

- heuristics, Gibbs samplers, dynamic programming, Markov chains and randomisation/bootstrap methods are commonly integrated into pipelines to study a series of connected processes from beginnning of analysis to the end
- here we have looked at a specific (and unsolved) instance of TFBS searching (and prediction)
- these methods are rapidly evolving in all areas, most are useable on a standard workstation and most have programmatic access through BioJava, BioPerl and of course C

