

Aims

- To give a biologist's view of microarray experiments
- To explain the technologies involved
- To describe typical microarray experiments
- To show how to get the most from and experiment
- To show where the field is going

February 4th 2009

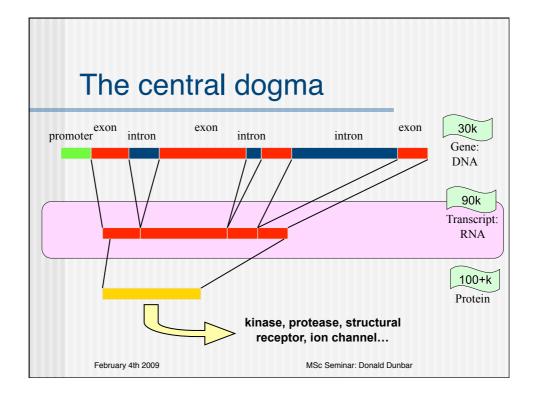
Introduction

- Part 1
 - Microarrays in biological research
 - A typical microarray experiment
 - Experiment design, data pre-processing
- Part 2
 - Data analysis and mining
 - Microarray standards and resources
 - Recent advances

February 4th 2009

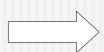
MSc Seminar: Donald Dunbar

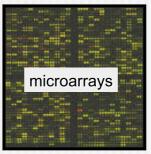
Microarray Informatics


Part 1

February 4th 2009

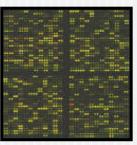
Biological research


- Using a wide range of experimental and computational methods to answer biological questions
- Genetics, physiology, molecular biology...
- Biology and informatics → bioinformatics
- Genomic revolution
- What can we measure?


February 4th 2009

Measuring transcripts

- Genome level sequencing
- New miniaturisation technologies
- Better bioinformatics



February 4th 2009

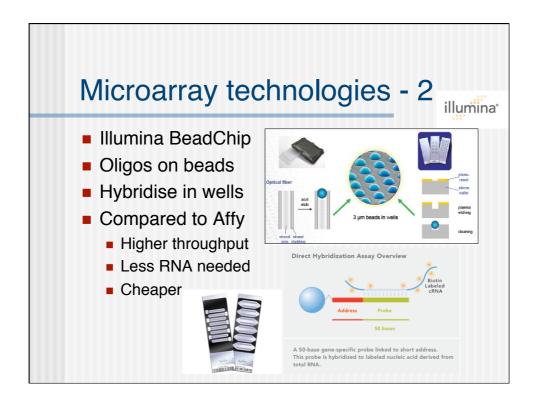
MSc Seminar: Donald Dunbar

Microarrays: wish list

- Include all genes in the genome
- Include all splice variants
- Give reliable estimates of expression
- Easy to analyse
 - bioinformatics tools available
- Cost effective

February 4th 2009

Microarray technologies - 1

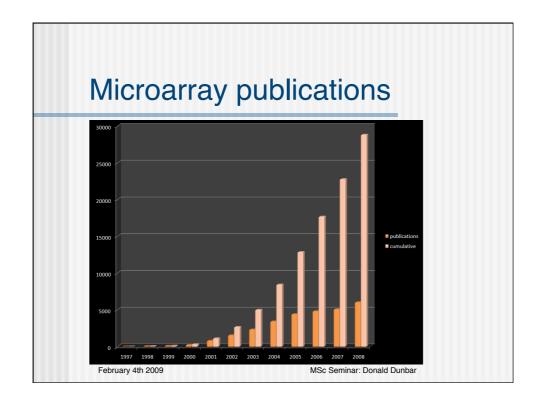


- Oligonucleotides Affymetrix
- One chip all genes
- AFFYMETRIX
- Chips for many species
- Several oligos per transcript
- Use of control, mismatch sequences
- One sample per chip
 - 'absolute quantification'
- Well established in research
- Expensive

February 4th 2009

MSc Seminar: Donald Dunbar

Problems with transcriptomics


- The gene might not be on the chip
- Can't differentiate splice variants
- The gene might be below detection limit
- Can't differentiate RNA synthesis and degradation
- Can't tell us about post translational events
- Bioinformatics can be difficult
- Relatively expensive

February 4th 2009

History of Microarrays

- Developed in early 1990s after larger macro-arrays (100-1000 genes)
- Microarrays were spotted on glass slides
- Labs spotted their own (Southern, Brown)
- Then companies started (Affymetrix, Agilent)
- Some early papers:
 - Int J Immunopathol Pharmacol. 1990 19(4):905-914. Raloxifene covalently bonded to titanium implants by interfacing with (3-aminopropyl)-triethoxysilane affects osteoblast-like cell gene expression. Bambini et al
 - Nature 1993 364(6437): 555-6 Multiplexed biochemical assays with biological chips. Fodor SP, et al
 - Science 1995 Oct 20;270(5235):467-70 Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Schena M, et al

February 4th 2009

Types of experiment

Usually control v test(s)

Placebo

ebo Drug treatment

Drug 2...

Wild-type

Healthy

Patient

Knockout

Normal tissue

Cancerous tissue

Time = 0

Time = 1 Time = 2...

February 4th 2009

MSc Seminar: Donald Dunbar

Types of experiment

- Usually control v test(s)
- But also test v test(s)
- Comparison:
 - placebo v drug treatment
 - drug 1 v drug 2
 - tissue 1 v tissue 2 v tissue 3 (pairwise)
 - time 0 v time 1, time 0 v time 2, time 0 v time 3
 - time 0 v time 1, time 1 v time 2, time 2 v time 3

February 4th 2009

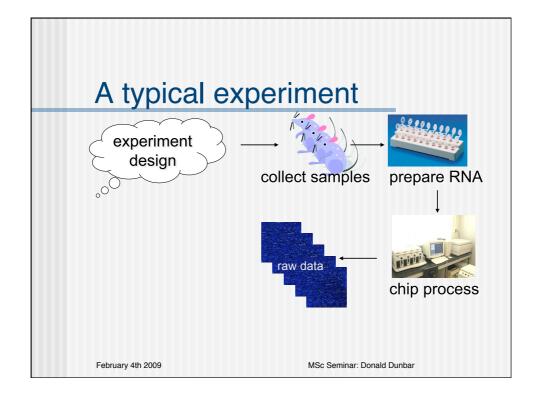
A typical experiment

February 4th 2009

MSc Seminar: Donald Dunbar

Experiment design: system

- What is your model?
 - animal, cell, tissue, drug, time...
- What comparison?


- What platform
 - microarray? oligo, cDNA?
- Record all information: see "standards"

February 4th 2009

Experiment design: replicates

- Microarrays are noisy: need extra confidence in the measurements
- We usually don't want to know about a specific individual
 - eg not an individual mouse, but the strain
 - although sometimes we do (eg people)
- Biological replicates needed
 - independent biological samples
 - number depends on variability and required detection
- Technical replicates (same sample, different chip) usually not needed

February 4th 2009

Raw data

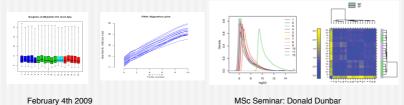
- Affymetrix GeneChip process generates:
 - DAT image file
 - CEL raw data file

- CDF chip definition file
- Processing then involves CEL and CDF
- Will use Bioconductor

February 4th 2009

MSc Seminar: Donald Dunbar

Bioconductor (BioC)

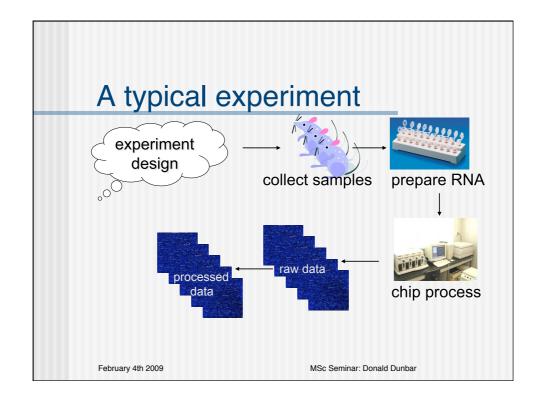


- http://www.bioconductor.org/
- "Bioconductor is an open source software project for the analysis and comprehension of genomic data"
- Started 2001, developed by expert volunteers
- Built on statistical programming environment "R"
- Provides a wide range of powerful statistical and graphical tools
- Use BioC for most microarray processing and analysis
- Most platforms now have BioC packages
- Make experiment design file and import data

February 4th 2009

Quality control (QC)

- Affymetrix gives data on QC
 - the microarray team will record these for you
 - scaling factor, % present, spiked probes, internal controls
- Bioconductor offers:
 - boxplots and histograms of raw and normalised data
 - RNA degradation plots
 - specialised quality control routines (eg arrayQualityMetrics)



Pre-processing: background

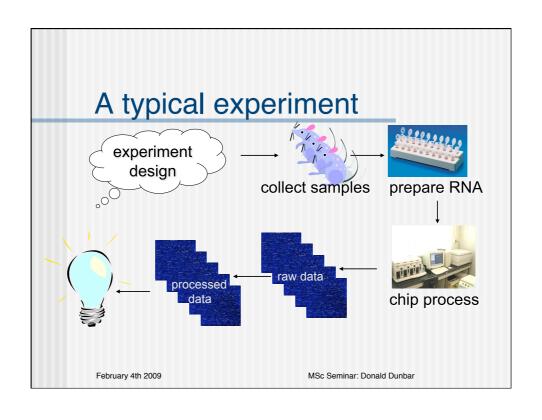
- Signal corresponds to expression...
 - plus a non-specific component (noise)
- Non specific binding of labelled target
- Need to exclude this background
- Several methods exist
 - eg Affy: PM-MM but many complications
 - eg RMA PM=B+S (don't use MM)

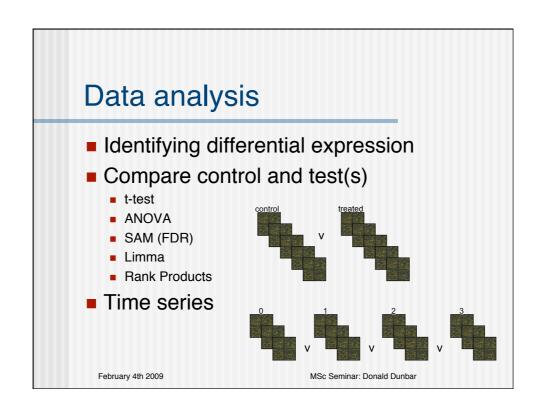
February 4th 2009

Pre-processing: normalisation In addition to background correction: chip, probe, spatial, intra and inter need to remove to get at real e differences Make use of combined with summary: get an expres lue for the gene But seems to be i dependency on intensity additive and r Quantile norm often used Normalisat complicated for 2-colour arrays Try to re ost noise at lab stage (ie control things well statistical February 4th 2009 MSc Seminar: Donald Dunbar

Part 1 Summary

- Microarrays in biological research
- Two types of microarray
- A typical microarray experiment
- Experiment design
- Data pre-processing


February 4th 2009


MSc Seminar: Donald Dunbar

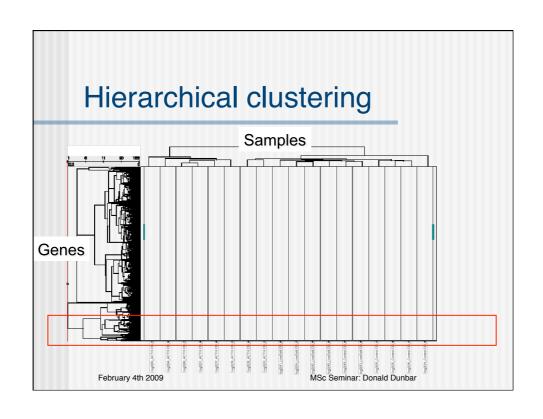
Microarray Informatics

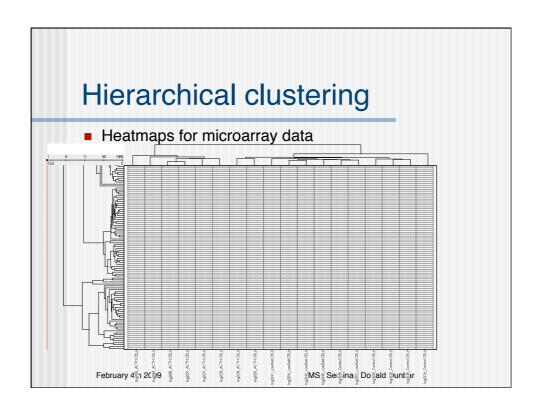
Part 2

February 4th 2009

Multiple testing

- Problem:
 - statistical testing of 30,000 genes
 - at $\alpha = 0.05 \rightarrow 1500$ genes
- Need to correct this
 - Multiply p-value by number of observations
 - · Bonferroni, too conservative
 - False discovery
 - · defines a q value: expected false positive rate
 - · Less conservative, but higher chance of type I error
 - · Benjamini and Hochberg
- Then regard genes as differentially expressed
- Depends on follow-up procedure!


February 4th 2009


MSc Seminar: Donald Dunbar

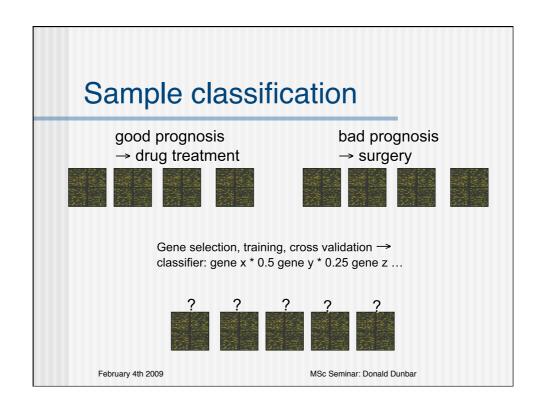
Hierarchical clustering

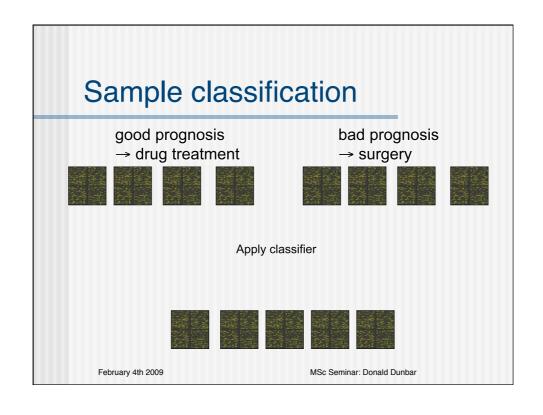
- Look for structure within dataset
 - similarities between genes
- Compare gene expression profiles
 - Euclidian distance
 - Correlation
 - Cosine correlation
- Calculate with distance matrix
- Combine closest, recalculate, combine closest... (or split!)
- Draw dendrogram and heatmap

February 4th 2009

Hierarchical clustering

- Predicting association of known and novel genes
- Class discovery in samples: new subtypes
- Visualising structure in data (sample outliers)
- Classifying groups of genes
- Identifying trends and rhythms in gene expression
- Caveat: you will always see clusters, even when they are not particularly meaningful


February 4th 2009


MSc Seminar: Donald Dunbar

Sample classification

- Supervised or non-supervised
- Non-supervised
 - like hierarchical clustering of samples
- Supervised
 - have training (known) and test (unknown) datasets
 - use training sets to define robust classifier
 - apply to test set to classify new samples

February 4th 2009

Sample classification

- Class prediction for new samples
 - cancer prognosis
 - pharmacogenomics (predict drug efficacy)
- Need to watch for overfitting
 - using too much of the data to classify
 - classifier loses specificity

February 4th 2009

MSc Seminar: Donald Dunbar

Annotation

- Big problem for microarrays
- Genome-wide chips need genome-wide annotation
- Good bioinformatics essential
 - use several resources (Affymetrix, Ensembl)
 - keep up to date (as annotation changes)
 - genes have many attributes
 - name, symbol, gene ontology, pathway...

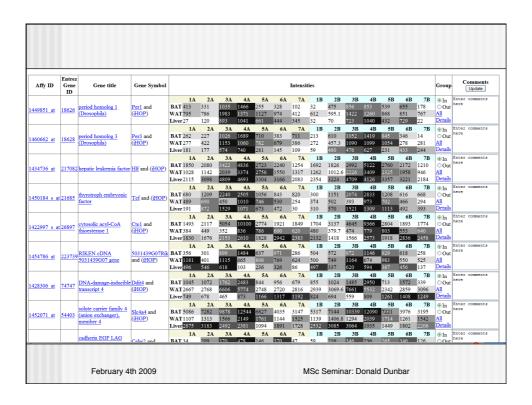
February 4th 2009

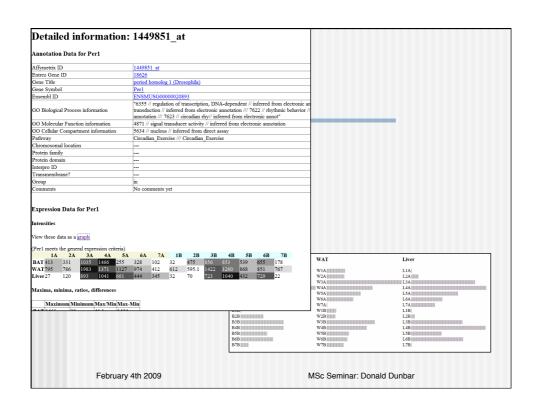
Data-mining

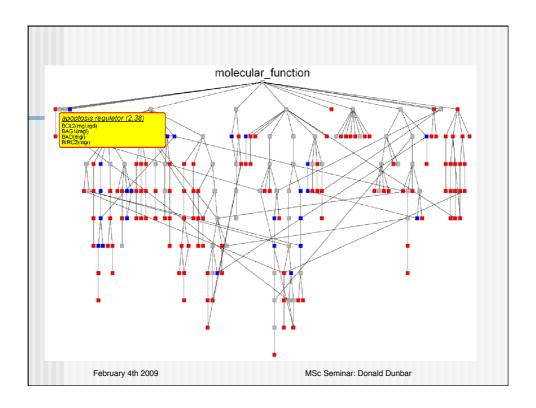
Microarrays are a waste of time

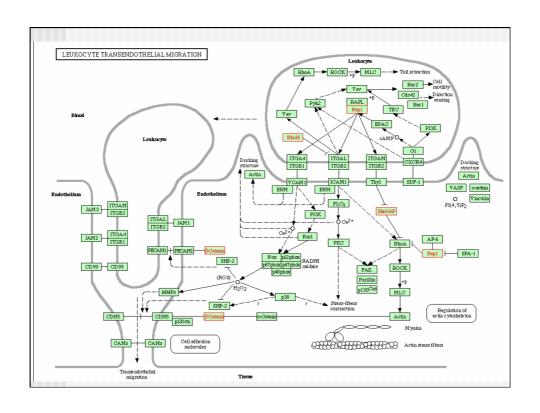
...unless you do something with the data

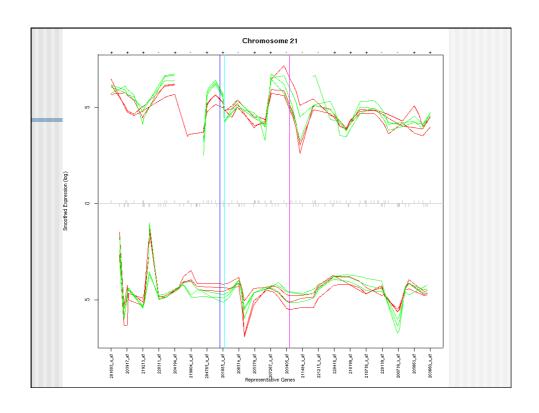
February 4th 2009

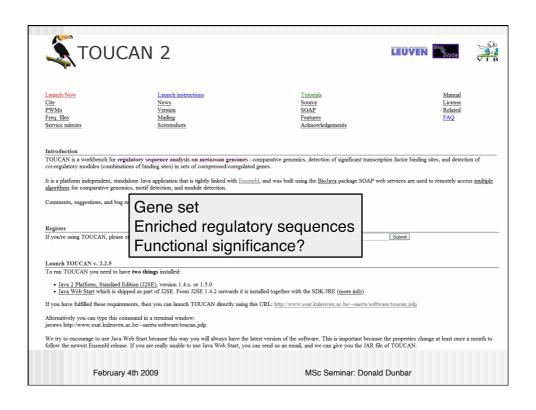

MSc Seminar: Donald Dunbar

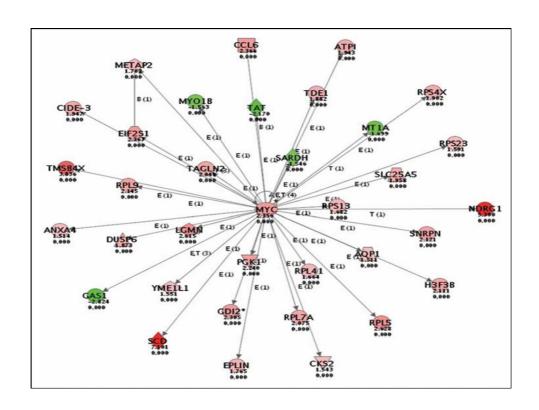

Data-mining


- Once data are statistically analysed:
 - pull out genes of interest
 - pull out pathways of interest
 - mine data based on annotation
 - what are the expression patterns of these genes
 - what are the expression patterns in this pathway
 - mine genes based on expression pattern
 - what types of genes are up-regulated ...
 - · fold change, p-value, expression level, correlation
- Should be driven by the biological question


February 4th 2009


Input a query o	or leave blan	k (had idea:	lots of data!)	for all data	then suhm	nit	ш	
Annotation Q		ik (oud idea.	lots of data.)	ioi un dutu	, then such			
Affymetrix ID	ueries							
Entrez Gene II	n							Expression maxima and minima
Gene Title								
Gene Symbol								< >
Gene Ontology	7 Term							BAT max/min
Pathway	101111							BAT max - min
Chromosome								WAT max/min
								WAT max - min
Groups								Liver max/min
In or Out		Any 💌						Liver max - min
Comments								Correlation with circadian gene profiles
Comments								
Submit Query	or Reset							Which gene? perl V Tissue BAT V Rank limit
Expression Qu	ıeries							Order
Genes that are	"not expres	sed at all" ar	re hidden. If the	nat's fine, le	ave • yes	if not, click	Ono.	Order output by Gene symbol and Ascending
1	2	3	4	5	6	7	Filter	
BAT <	<	<	<	<	<	<		Submit Query or Reset
>	>	>	>	>	>	>		Home
WAT S	<	< >	< >	>	< >	>	_ 🗆	
		<	<	<	<	<		
Liver >	<							





			ressed) x Terms							
PubMatrix		l hypertension	blood pressure	ACTH	low salt	low sodium	hyperplasia	hypoplasia	steroid	retention
(a disintegrin and metalloprotease domain 8 OR Adam8)	<u>0</u>	0	0	0	0	0	1	0	3	0
(abhydrolase domain containing 2 OR Abhd2)	0	0	-	- In	0	<u>0</u>	1	0	-	0
(activating transcription factor 3 OR Atf3)	0	0	-	- I	0		0		anda .	0
(acyl-CoA synthetase long-chain OR Acsl4)	<u>13</u>	4	1	-	0	-	1		20	1
(advillin OR Avil)	22	34	116	5	1		2			28
(alcohol dehydrogenase 7 OR Adh7)	3	3	7	1	1	<u>6</u>	1	8		<u>6</u>
(aldehyde dehydrogenase 1 family, member L2 OR Aldh112)	0	0	-		0		0	0	-	0
(aldehyde dehydrogenase 18 family, member A1 OR Aldh18a1)	<u>0</u>	<u>0</u>	<u>0</u>	0	0	<u>0</u>	<u>0</u>	<u>0</u>	0	<u>0</u>
(aldo-keto reductase family 1, member C18 OR Akr1c18)	<u>0</u>	<u>0</u>	<u>0</u>		0		<u>0</u>	<u>0</u>	1	<u>0</u>
(alkaline phosphatase 2, liver OR Akp2)	<u>62</u>	53			<u>6</u>		<u>72</u>	<u>50</u>		<u>43</u>
(arginine vasopressin-induced 1 OR Avpi1)	<u>5</u>	10	24	7	0	<u>3</u>	1	1	<u>14</u>	7
(bactericidal/permeability-increasing protein-like 2 OR Bpil2)	<u>0</u>	<u>0</u>		0	0	<u>0</u>	<u>0</u>	<u>0</u>	0	<u>0</u>
(basic leucine zipper and W2 domains 1 OR Bzw1)	<u>0</u>	<u>0</u>	0	0	0	<u>0</u>	<u>0</u>	<u>0</u>	0	<u>0</u>
(BMP-binding endothelial regulator OR MGI:1920480)	<u>0</u>	<u>0</u>	<u>0</u>	0	0	0	<u>0</u>	<u>0</u>	0	0
(branched chain aminotransferase 1, cytosolic OR Bcat1)	1	<u>0</u>	<u>0</u>	0	0	0	<u>0</u>	<u>0</u>	<u>1</u>	0
(CD5 antigen-like OR Cd5l)	<u>0</u>	0	0	0	0	<u>0</u>	0	0	0	0
(CDC28 protein kinase regulatory subunit 2 OR Cks2)	<u>0</u>	0	0	0	0	<u>0</u>	0	0	0	0
(CEA-related cell adhesion molecule 2 OR Ceacam2)	1	0	0	0	0	1	0	1	4	1
(cell division cycle 2 homolog OR Cdc2a)	0	0	0	0	0	0	0	1	1	1
(centaurin, gamma 2 OR Centg2)	<u>0</u>	0	0	0	0	<u>0</u>	0	0	0	0
(chitinase 3-like 3 OR Chi3l3)	<u>0</u>	0	0	0	0	<u>0</u>	0	0	0	0
(cyclin-dependent kinase inhibitor 1C OR Cdkn1c)	<u>11</u>	2	0	2	0	<u>0</u>	<u>11</u>	48	8	3
(cystatin 8 OR Cst8)	2	4	<u>5</u>	0	2	3	3	3	6	1
(cytochrome c oxidase OR Cox6a2)	104	<u>41</u>	106	14	17	<u>78</u>	24	<u>76</u>	409	<u>49</u>
(cytokine receptor-like factor 1 OR Crlf1)	<u>0</u>	1	0	0	0	<u>0</u>	0	<u>0</u>	0	0
(DNA (cytosine-5-)-methyltransferase 3-like OR Dnmt3l)	<u>0</u>	0	0	0	0	<u>0</u>	0	1	0	0
(down-regulated by Ctnnb1, a OR MGI:2149839)	<u>0</u>	0	0	0	0	<u>0</u>	0	<u>0</u>	0	0
(dystrobrevin alpha OR Dtna)	<u>0</u>	0	0	0	<u>0</u>	<u>0</u>	0	4	0	1
(embigin OR Emb)	1	<u>5</u>	<u>3</u>	1	<u>0</u>	1	<u>3</u>	<u>5</u>	23	0
(fatty acid desaturase 2 OR Fads2)	<u>0</u>	3	<u>0</u>	1	2	<u>0</u>	1	2	<u>36</u>	1
(frizzled-related protein OR Frzb)	1	0	<u>o</u>	0	0	<u>0</u>	1	1	12	0
(galactosidase, alpha OR Gla)	48	144	108	15	12	<u>31</u>	35	84	449	58

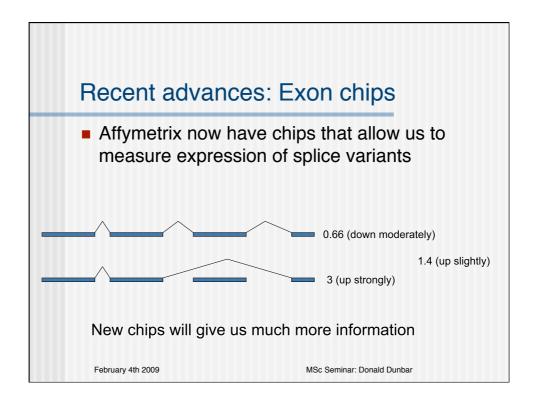
Further data-mining

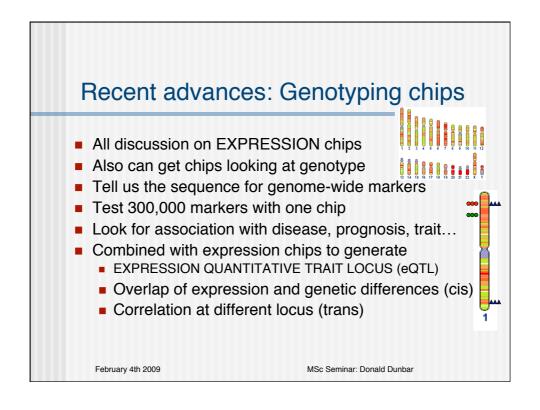
- Other tools available using
 - gene ontology (GO)
 - biological pathways (eg KEGG)
 - genomic localisation (Ensembl)
 - regulatory sequence data (Toucan, BioProspector)
 - literature (eg Pubmatrix, Ingenuity...)
- ... to make sense of the data

February 4th 2009

Microarray Resources

- Microarray data repositories
 - Array express (EBI, UK)
- GEO Gene Expression Omnibus
- Gene Expression Omnibus (NCBI, USA)
- CIBEX (Japan)
- Annotation
 - NetAffx, Ensembl, TIGR, Stanford...


February 4th 2009


MSc Seminar: Donald Dunbar

Microarray Standards

- MIAME
 - Minimum annotation about a microarray experiment
 - Comprehensive description of experiment
 - Models experiments well, and allows replication
 chips, samples, treatments, settings, comparisons
 - Required for most publications now
- MAGE-ML
 - Microarray gene expression markup language
 - Describes experiment (MIAME) and data
 - Tools available for processing

February 4th 2009

Next Generation Sequencing

- Sequence rather than hybridisation
- Gene expression, genotyping, epigenetics
- New technologies: much cheaper than before
- Gene expression, genotyping, epigenetics
- Open ended (no previous knowledge required)
- Will take over in 5 years: the end of microarrays?

February 4th 2009

MSc Seminar: Donald Dunbar

Part 2 Summary

- Data analysis
- Data Mining
- Microarray Resources
- Microarray Standards
- Recent advances

February 4th 2009

Seminar Summary

- Part 1
 - Microarrays in biological research
 - A typical microarray experiment
- Part 2
 - Data analysis and mining
 - Recent advances

February 4th 2009

MSc Seminar: Donald Dunbar

Contact

- Donald Dunbar
- CVS and CIR Bioinformatics
- donald.dunbar@ed.ac.uk
- **0131 242 6700**
- Room W3.01, QMRI, Little France
- www.bioinf.mvm.ed.ac.uk

February 4th 2009

PhD opportunity

- Centre for Cardiovascular Science (Edinburgh)
- The Cellular and Molecular Basis of Cardiovascular Disease
- BHF funded PhDs
 - biologists (x4)
 - physical scientists (informatics, physics, maths....)
- Details on web:
 - http://www.cvs.med.ed.ac.uk/Training/content.asp?SubCatID=44

February 4th 2009