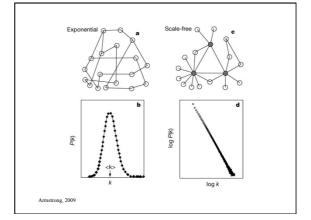
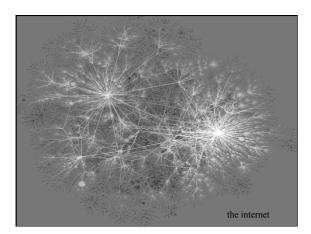
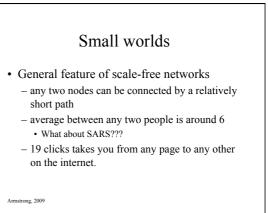


Large scale organisation

- First networks in biology generally modeled using classic random network theory.
- Each pair of nodes is connected with
- probability pResults in model where most nodes have
- The probability of any number of links per node is P(k)≈e-k

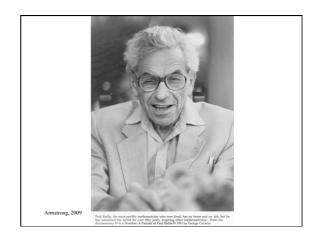


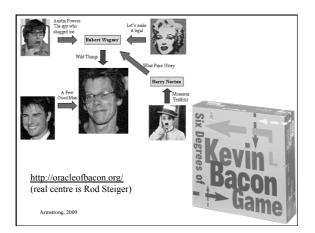


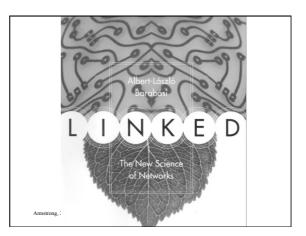

Non-biological networks

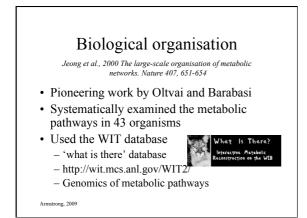
- Research into WWW, internet and human social networks observed different network properties
 - 'Scale-free' networks
 - P(k) follows a power law: P(k) $\approx k^{\gamma}$
 - Network is dominated by a small number of highly connected nodes - hubs
 - These connect the other more sparsely connected nodes

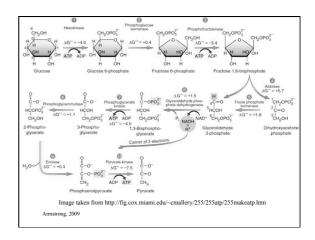
Armstrong, 2009



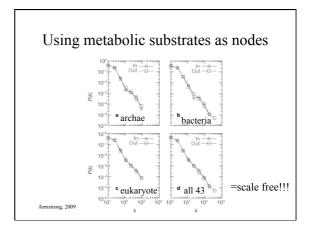


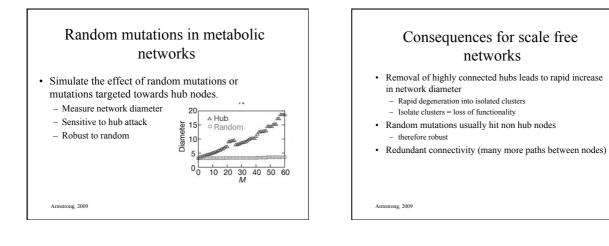

6 degrees of separation..?

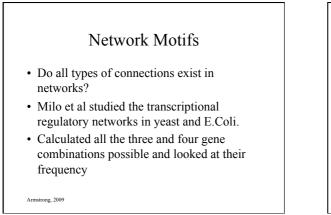

- Stanley Milgram's work in late 1960's
- · Sent letters to people in Nebraska
- Target unknown person in Massachusetts
- Average 6 'jumps' to reach target

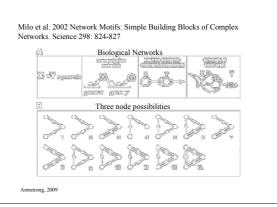

(only 5% got there)

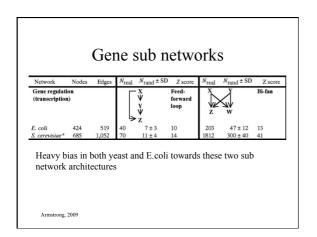


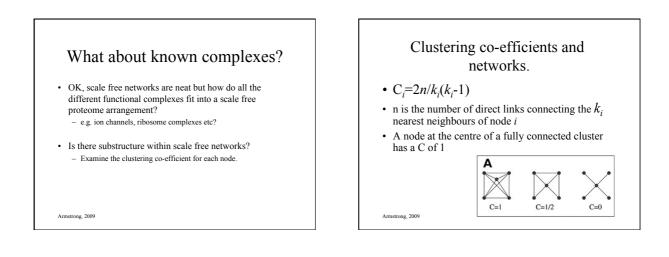


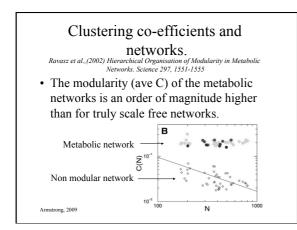


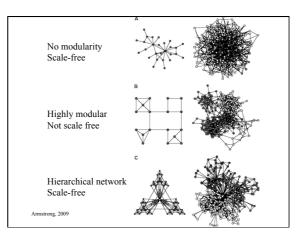


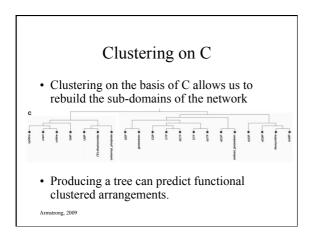


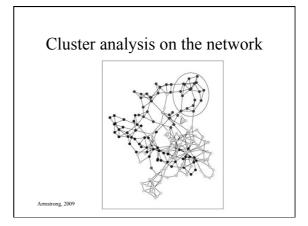


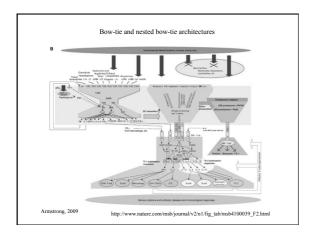


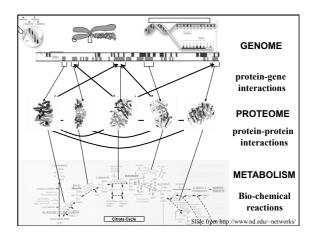


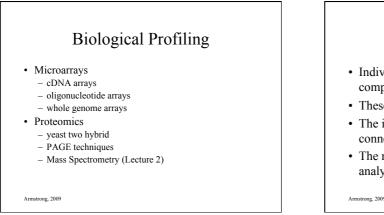


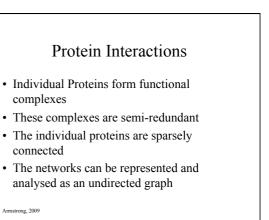


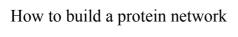

	Network	Nodes	Edges	Nreal	Nrand ± SD	Z score	Nreal	$N_{\rm rand} \pm { m SD}$	Z score	Nreal	N _{rand} ± SD	Z score
	Gene regulat			Г	X W	Feed-	X	X	Bi-fan			
	(transcriptio	B)			÷.	forward loop	1 12	54		1		
					Ŷ	nop	z	w		1		
				>	Z					1		
	E. coli S. cerenisiae*	424 685	519 1.052	40 70	7±3 11±4	10 14	203 1812	47 ± 12 300 ± 40	13 41	1		
	S. ceresoae*	080	1,035	70	11 2 4 X	Feel-	1812 X	300 ± 40	41 Bi-fan	<u> </u>	_	B 5.
					Ŷ	forward	N	<u> </u>	104-1048	4	2	parallel
					X	loop	VK Z	N		YM	UZ.	
				6	z		~			1	r .	
	C. eleganst	252	509	125	90±10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
	Food webs				X	Three		×	Bi-			
					¥	chain	¥	14	parallel	1		
					¥.		14	¥				
					ż		v					
	Little Rock Ythan	92 83	984 391	3219 1182	3120 ± 50 1020 ± 20	2.1 7.2	7295	2220 ± 210 230 ± 50	25 23			
	Ythan St. Martin	83	391 205	1182 460	1020 ± 20 450 ± 10	7.2 NS	1357	230 ± 50 130 ± 20	23	1		
	Chesapeake	31	67	80	82 ± 4	NS	26	5 ± 2	8	1		
	Coachella	29	243	279	235 ± 12	3.6	181	80 ± 20	5	1		
	Skipwith B. Brook	25 25	189	184 181	150 ± 7 130 ± 7	5.5 7.4	397 267	80 ± 25 30 ± 7	13 32	1		
	Electronic cir		104	181	X	Feed-	- 267 X	Y 1	Bi-fan			Bi-
	(forward logis				¥	forward	N	1		1	1	parallel
					¥.	loop	1	24		14	K	
				⊳	z		n n			v	×	
	s15850	10,383	14,240		2 ± 2	285	1040	1 ± 1	1200	480	2 ± 1	335
	s38584 s38417	20,717 23,843	34,204 33,661	413 612	10 ± 3 3 ± 2	120 400	1739 2404	6±2 1±1	800 2550	711 531	9 ± 2 2 ± 2	320 340
	s38417 s9234	23,843	33,661 8,197		3±2 2±1	400	2404	1±1	2550	209	2±2	200
	\$13207	8,651	11,831	403	2 ± 1	225	4445	1 # 1	4950	264	2 = 1	200
	Electronic ci					Three-	X	y .	Bi-fan	x-	$\rightarrow Y$	Four-
	(digital fracti	ional mult	ipliers)	1	7	node feedback	L D	<u>_</u>		L î		node feedback
				v-	- z	loop	1	W		z <		loop
	s208 s420	122 252	189 399	10 20	1 ± 1 1 ± 1	9	4	1±1 1±1	3.8 10	5	1 ± 1 1 ± 1	5
	s838‡	512	819	40	1±1	38	22	1±1	20	23	1±1	25
	World Wide	Web		P	X	Feedback	X		Fully	X		Uplinked
					Ψ.	with two	2	5	connected	12	1	le otom
Armstrong					0	mutual dyads	v.←	> z.	triad	Ý<	≥ z	dyad
					Ż							
	nd.edu§	325,729	1.46e6	1.1e5	2e3 ± 1e2	800	6.8e6	5e4±4e2	15,000	1.2e6	1e4 ± 2e2	5000

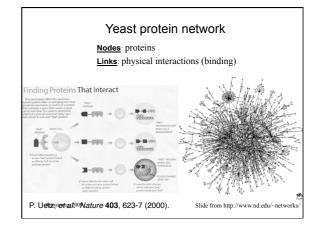




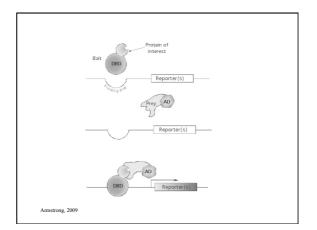




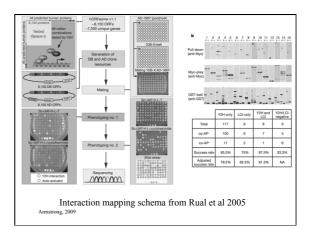


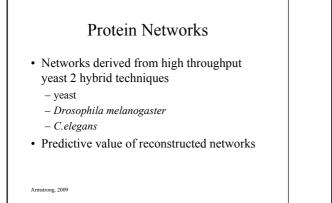


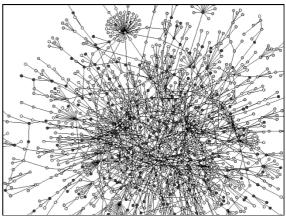
- · Biological sample how to you isolate your complex?
- What is in your complex?
- How is it connected?
 - Databases and Literature Mining
 - Yeast two hybrid screening & other cellular interaction assays
 Mass-spec analysis
- Building and analysing the network
- An example

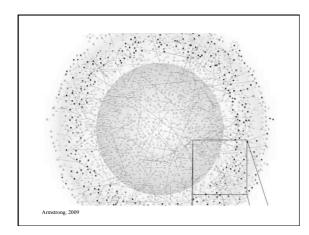

Armstrong, 2009

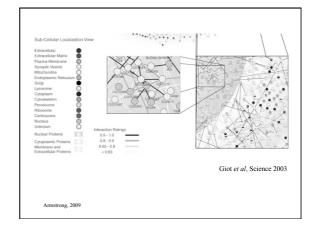
Yeast two hybrid

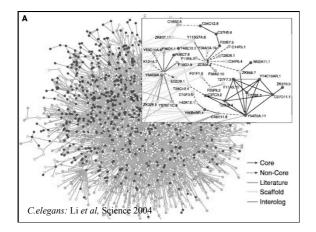

- · Use two mating strains of yeast
- In one strain fuse one set of genes to a transcription factor DNA binding site
- In the other strain fuse the other set of genes to a transcriptional activating domain
- Where the two proteins bind, you get a functional transcription factor.

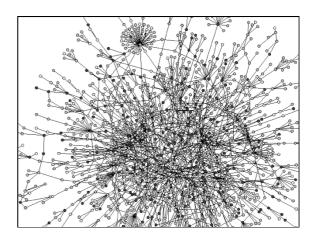

Armstrong, 2009

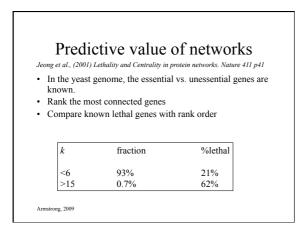


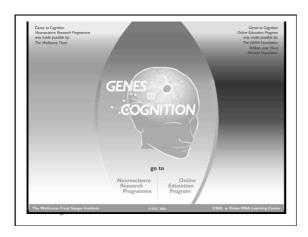

Data obtained

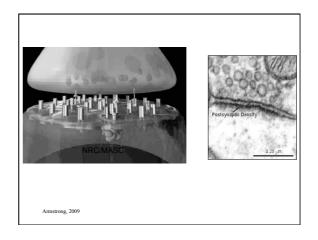

- Depending on sample, you get a profile of potential protein-protein interactions that can be used to predict functional protein complexes.
- False positives are frequent.
- Can be confirmed by affinity purification etc.

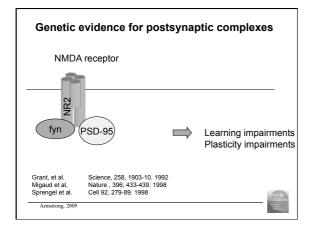


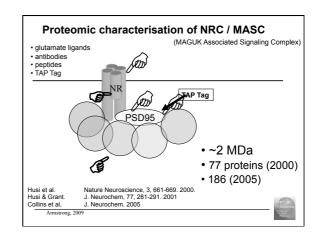




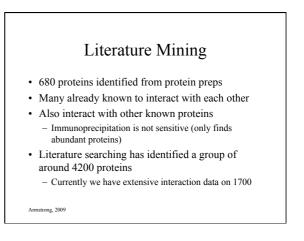








A walk-through example... See linked papers on for further methodological details



	Post Synaptic Density ER:microsomes Splicesome NRC/MASC Nucleolus Peroxisomes Mitochondria Phagosomes	1124 491 311 186 147 181 179 140
Amstrong 2009 Grant. (2006) Biochemical Society Tra	Golgi 81 Choroplasts Lysosomes 27 Exosomes nsactions. 34, 59-63. 2006	81 21

Annotating the DB

- How do we find existing interactions?
 Search PubMed with keyword and synonym combinations
 - Download abstracts
 - Sub-select and rank-order using regex's
 - Fast web interface displays the most 'productive' abstracts for each potential interaction

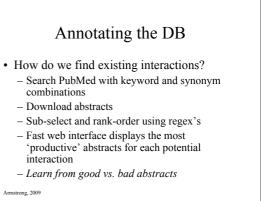
Armstrong, 2009

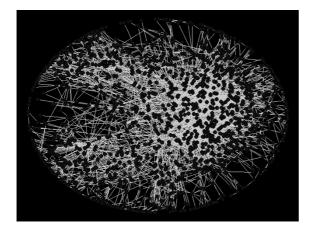
Keyword and synonym problem

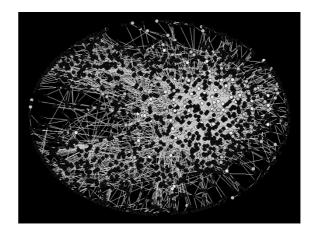
- PSD-95:
 - DLG4,PSD-95,PSD95,Sap90,Tip-15,Tip15, Post Synatpic Density Protein - 95kD, PSD 95, Discs, large homolog 4, Presynaptic density protein 95
- NR2a:
 - Glutamate [NMDA] receptor subunit epsilon I precursor (N-methyl D-aspartate receptor subtype 2A) (NR2A) (NMDAR2A) (hNR2A) NR2a
- Protein interactions:
 _ interacts with, binds to, does not bind to....

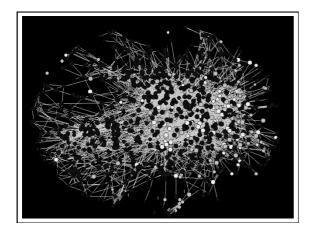
Armstrong, 2009

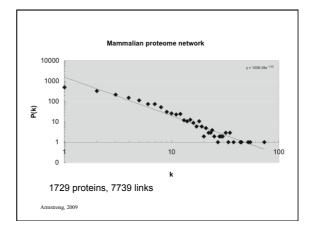
.+\sand\s.+\sinteract

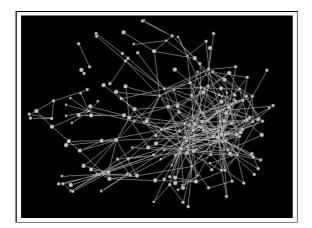

(1..N characters) (space) and (1..N characters) interact

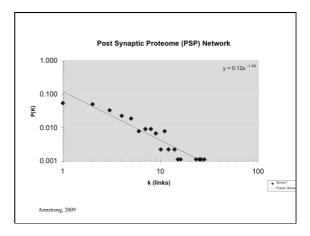

.+\s((is)|(was))\sbound\sto\s.+\s

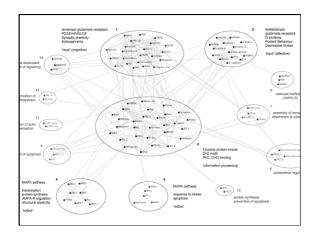

(1..N characters) (space) (is or was) (space) bound (space) to (1..N characters) (space)

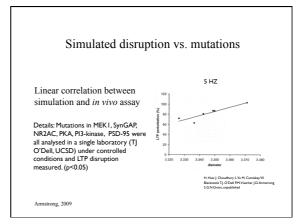

.+\sbinding\sof\s.+\s((and)|(to))\s.+

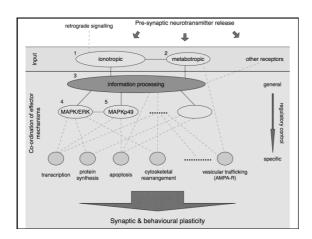

(1..N characters) (space) binding (space) of (and or to) (space) (1..N characters)

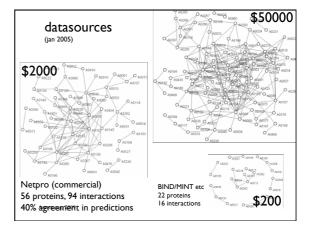


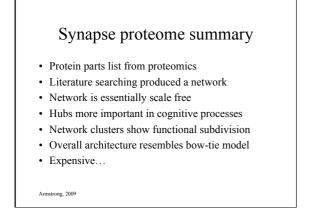


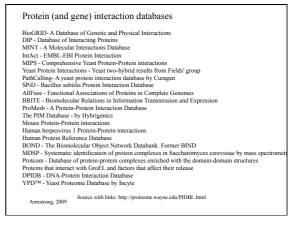


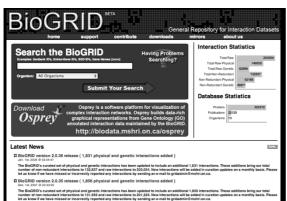


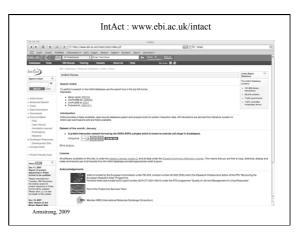


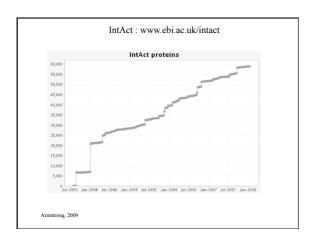


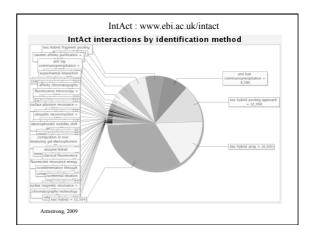


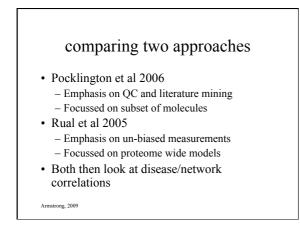


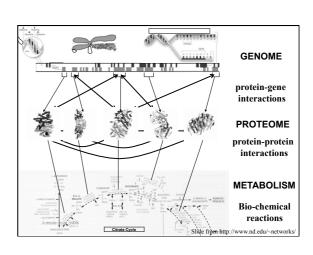











let us know if we have missed or incorrectly reported any interactions by sending an e-mail to gridadmin III BiogRID version 2.0.34 release (576 physical and genetic interactions added) biogram is biogram in the sender is a sender in the sender interaction in the sender is a sender is a sender in the sender in the sender is a sender in the sender is a sender in the sender is a sender in the sender in the sender is a sender in the sender in the sender is a sender in the sender in the sender is a sender in the sende

