Objective of clustering

- Discover structures and patterns in high-dimensional data.
- Group data with similar patterns together.
- This reduces the complexity and facilitates interpretation.

Expression level under heat shock

How shall we cluster the data?

Good clustering

 \bigcirc

Bad clustering

 \bigcirc (

Within-group variance Sum of squared vector-centroid distances

Between-group variance

Sum over squared distances between centroids

Within-group variance small Tight clusters

Within-group variance large Diffuse clusters

Between-group variance large Clusters far apart

Between-group variance small Clusters close together

Minimize the within-group variance
 → Tight clusters

- Minimize the within-group variance
 → Tight clusters
- Maximize the between-group variance
 → Clusters well separated

- Minimize the within-group variance
 → Tight clusters
- Maximize the between-group variance
 → Clusters well separated
- Problem NP-hard

 \rightarrow Heuristic algorithms and approximations are needed.

K-means clustering

K-means clustering

- Objective: Partition the data into a predefined number of clusters, K.
- Method: Alternatingly update
 - the cluster assignment of each data vector;
 - the cluster centroids.

• Decide on the number of clusters, K.

- Decide on the number of clusters, K.
- Start with a set of cluster centroids: $\mathbf{c}_1, \ldots, \mathbf{c}_K$.

- Decide on the number of clusters, K.
- Start with a set of cluster centroids: $\mathbf{c}_1, \ldots, \mathbf{c}_K$.
- Iteration (until cluster assignments remain unchanged):
 - For all data vectors \mathbf{x}_i , i = 1, ..., N, and all centroids \mathbf{c}_k , k = 1, ..., K: Compute the distance d_{ik} between the data vector \mathbf{x}_i and the centroid \mathbf{c}_k .

- Decide on the number of clusters, K.
- Start with a set of cluster centroids: $\mathbf{c}_1, \ldots, \mathbf{c}_K$.
- Iteration (until cluster assignments remain unchanged):
 - For all data vectors \mathbf{x}_i , i = 1, ..., N, and all centroids \mathbf{c}_k , k = 1, ..., K: Compute the distance d_{ik} between the data vector \mathbf{x}_i and the centroid \mathbf{c}_k .
 - Assign each data vector \mathbf{x}_i to the closest centroid \mathbf{c}_k , that is, the one with minimal d_{ik} . Record the cluster membership in an indicator variable λ_{ik} , with $\lambda_{ik} = 1$ if $\mathbf{x}_i \to \mathbf{c}_k$ and $\lambda_{ik} = 0$ otherwise.

- Decide on the number of clusters, K.
- Start with a set of cluster centroids: $\mathbf{c}_1, \ldots, \mathbf{c}_K$.
- Iteration (until cluster assignments remain unchanged):
 - For all data vectors \mathbf{x}_i , i = 1, ..., N, and all centroids \mathbf{c}_k , k = 1, ..., K: Compute the distance d_{ik} between the data vector \mathbf{x}_i and the centroid \mathbf{c}_k .
 - Assign each data vector \mathbf{x}_i to the closest centroid \mathbf{c}_k , that is, the one with minimal d_{ik} . Record the cluster membership in an indicator variable λ_{ik} , with $\lambda_{ik} = 1$ if $\mathbf{x}_i \to \mathbf{c}_k$ and $\lambda_{ik} = 0$ otherwise.
 - Set each cluster centroid to the mean of its assigned cluster: $\mathbf{c}_k = \frac{\sum_i \lambda_{ik} \mathbf{x}_i}{\sum_i \lambda_{ik}}$

A good example of K-means clustering

A bad example of K-means clustering

Shortcoming of K-means clustering

- The algorithm can easily get stuck in suboptimal cluster formations.
- Use fuzzy or soft K-means.

Fuzzy and soft K-means clustering

Fuzzy and soft K-means clustering

- Objective: Soft or fuzzy partition of the data into a predefined number of clusters, K.
 - Each data vector may belong to more than one cluster, according to its degree of membership.
 - This is in contrast to K-means, where a data vector either wholly belongs to a cluster or not.

Fuzzy and soft K-means clustering

- Objective: Soft or fuzzy partition of the data into a predefined number of clusters, K.
 - Each data vector may belong to more than one cluster, according to its degree of membership.
 - This is in contrast to K-means, where a data vector either wholly belongs to a cluster or not.
- Method: Alternatingly update
 - the membership grade for each data vector;
 - the cluster centroids.

- Decide on the number of clusters, K.
- Start with a set of cluster centroids: $\mathbf{c}_1, \ldots, \mathbf{c}_K$.

- Decide on the number of clusters, K.
- Start with a set of cluster centroids: $\mathbf{c}_1, \ldots, \mathbf{c}_K$.
- Iteration (until membership grades remain unchanged):
 - For all data vectors \mathbf{x}_i , i = 1, ..., N, and all centroids \mathbf{c}_k , k = 1, ..., K: Compute the distance d_{ik} between the data vector \mathbf{x}_i and the centroid \mathbf{c}_k .

- Decide on the number of clusters, K.
- Start with a set of cluster centroids: $\mathbf{c}_1, \ldots, \mathbf{c}_K$.
- Iteration (until membership grades remain unchanged):
 - For all data vectors \mathbf{x}_i , i = 1, ..., N, and all centroids \mathbf{c}_k , k = 1, ..., K: Compute the distance d_{ik} between the data vector \mathbf{x}_i and the centroid \mathbf{c}_k .
 - Compute the membership grades λ_{ik} . Note: $\lambda_{ik} \ge 0$ indicates the amount of association of data vector \mathbf{x}_i with centroid \mathbf{c}_k and depends on the distance d_{ik} : if $d_{ik} < d_{ik'}$, then $\lambda_{ik} > \lambda_{ik'}$. The detailed functional form (omitted) differs between soft and fuzzy K-means.

- Decide on the number of clusters, K.
- Start with a set of cluster centroids: $\mathbf{c}_1, \ldots, \mathbf{c}_K$.
- Iteration (until membership grades remain unchanged):
 - For all data vectors \mathbf{x}_i , i = 1, ..., N, and all centroids \mathbf{c}_k , k = 1, ..., K: Compute the distance d_{ik} between the data vector \mathbf{x}_i and the centroid \mathbf{c}_k .
 - Compute the membership grades λ_{ik} . Note: $\lambda_{ik} \ge 0$ indicates the amount of association of data vector \mathbf{x}_i with centroid \mathbf{c}_k and depends on the distance d_{ik} : if $d_{ik} < d_{ik'}$, then $\lambda_{ik} > \lambda_{ik'}$. The detailed functional form (omitted) differs between soft and fuzzy K-means.
 - Recompute the cluster centroids: $\mathbf{c}_k = \frac{\sum_i \lambda_{ik} \mathbf{x}_i}{\sum_i \lambda_{ik}}$

Two examples of soft K-means clustering

The posterior probability for a given data point is indicated by a colour scale ranging from pure red (corresponding to a posterior probability of 1.0 for the red component and 0.0 for the blue component) through to pure blue.

Initialization for which K-means failed

Agglomerative hierarchical clustering: UPGMA (hierarchical average linkage clustering)

.

.

•

•

.

•

Distance between clusters

Average of individual distances.

.

•

•

•

-----> Experiments

-----> Experiments

•

-----> Experiments

•

----> Experiments

•

-----> Experiments

----> Experiments

From Spellman et al., http://cellcycle-www.stanford.edu/

- Hierarchical clustering methods produce a tree or dendrogram \rightarrow Allows the biologist to visualize and interpret the data.
- No need to specify how many clusters are appropriate \longrightarrow partition of the data for each number of clusters K.
- Partitions are obtained from cutting the tree at different levels.

Principal clustering paradigms

• Non-hierarchical

Cluster N vectors into K groups in an iterative process.

• Hierarchical

Hierarchie of nested clusters; each cluster typically consists of the union of two smaller sub-clusters.

Hierarchical methods can be further subdivided

Hierarchical methods can be further subdivided

 Bottom-up or agglomerative clustering: Start with a single-object cluster and recursively merge them into larger clusters.

Hierarchical methods can be further subdivided

- Bottom-up or agglomerative clustering: Start with a single-object cluster and recursively merge them into larger clusters.
- Top down or divisive clustering:
 - Start with a cluster containing all data and recursively divide it into smaller clusters.

Overview of clustering methods

	Hierarchical	Non-hierarchical
Top-down or divisive		K-means
		Fuzzy/soft K-means
Bottom-up or agglomerative	UPGMA	

Shortcoming of bottom-up agglomerative clustering

- Focus on local structures → loses some of the information present in global patterns.
- Once a data vector has been assigned to a node, it cannot be reassigned to another node later when global patterns emerge.

Shortcoming of bottom-up agglomerative clustering

- Focus on local structures → loses some of the information present in global patterns.
- Once a data vector has been assigned to a node, it cannot be reassigned to another node later when global patterns emerge.

How can we devise a hierarchical top-down approach?

	Hierarchical	Non-hierarchical
Top-down or divisive	?	K-means
		Fuzzy/soft K-means
Bottom-up or agglomerative	UPGMA	

Divisive (top-down) hierarchical clustering: Binary tree-structured vector quantization (BTSVQ) Initially, all data belong to the same cluster

.

.

•

.

Overview of clustering methods

	Hierarchical	Non-hierarchical
Top-down or divisive	BTSVQ	K-means
		Fuzzy/soft K-means
Bottom-up or agglomerative	UPGMA	

• Clustering algorithms always produce clusters even for uniformaly distrubuted data.

- Clustering algorithms always produce clusters even for uniformaly distrubuted data.
- Difficult to test the null hypothesis of no clusters (current research).

- Clustering algorithms always produce clusters even for uniformaly distrubuted data.
- Difficult to test the null hypothesis of no clusters (current research).
- Difficult to estimate the true number of clusters (current research).

- Clustering algorithms always produce clusters even for uniformaly distrubuted data.
- Difficult to test the null hypothesis of no clusters (current research).
- Difficult to estimate the true number of clusters (current research).
- Risk of artifacts.
- Use clustering only for hypothesis generation.

- Clustering algorithms always produce clusters even for uniformaly distrubuted data.
- Difficult to test the null hypothesis of no clusters (current research).
- Difficult to estimate the true number of clusters (current research).
- Risk of artifacts.
- Use clustering only for hypothesis generation.
- Independent experimental verification required.

Deciding on the number of clusters: Gap statistic

Tibshirani, Walther, Hastie (2001), J. Royal Statistical Society B

Idea:

- Compute E_K for randomized data.
- Compare this with E_K from real data.

Randomize data

Randomize data

Randomize data

And so on . . .

•

.

Adapted from Hastie, Tibshiranie, Friedman: The Elements of Statistical Learning, Springer 2001