
Objective of clustering

• Discover structures and patterns in high-dimensional

data.

• Group data with similar patterns together.

• This reduces the complexity and facilitates

interpretation.
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Genes involved in pathway B

Genes involved in pathway A

E
xp

re
ss

io
n 

le
ve

l u
nd

er
 s

ta
rv

at
io

n

Expression level under heat shock

?



How shall we cluster the data? 



Good clustering



Bad clustering



Sum of squared vector-centroid distances

Within-group variance



Between-group variance 
Sum over squared distances between centroids



Tight clusters

Within-group variance small



Diffuse clusters

Within-group variance large



Between-group variance large
Clusters far apart



Between-group variance small
Clusters close together
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How to cluster the data

• Minimize the within-group variance

→ Tight clusters

• Maximize the between-group variance

→ Clusters well separated

• Problem NP-hard

→ Heuristic algorithms and approximations are needed.
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K-means clustering

• Objective: Partition the data into a predefined number

of clusters, K.

• Method: Alternatingly update

– the cluster assignment of each data vector;

– the cluster centroids.
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• Decide on the number of clusters, K.

• Start with a set of cluster centroids: c1, . . . , cK.

• Iteration (until cluster assignments remain unchanged):

– For all data vectors xi, i = 1, . . . , N , and all centroids ck,

k = 1, . . . ,K: Compute the distance dik between the data

vector xi and the centroid ck.

– Assign each data vector xi to the closest centroid ck, that is,

the one with minimal dik. Record the cluster membership in

an indicator variable λik, with λik = 1 if xi → ck and λik = 0
otherwise.

– Set each cluster centroid to the mean of its assigned cluster:

ck =
∑
i λikxi∑
i λik



A good example of K-means clustering
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A bad example of K-means clustering
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Shortcoming of K-means clustering

• The algorithm can easily get stuck in
suboptimal cluster formations.

• Use fuzzy or soft K-means.
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• Objective: Soft or fuzzy partition of the data into a

predefined number of clusters, K.

– Each data vector may belong to more than one cluster,

according to its degree of membership.

– This is in contrast to K-means, where a data vector

either wholly belongs to a cluster or not.



Fuzzy and soft K-means clustering

• Objective: Soft or fuzzy partition of the data into a

predefined number of clusters, K.

– Each data vector may belong to more than one cluster,

according to its degree of membership.

– This is in contrast to K-means, where a data vector

either wholly belongs to a cluster or not.

• Method: Alternatingly update

– the membership grade for each data vector;

– the cluster centroids.
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• Decide on the number of clusters, K.

• Start with a set of cluster centroids: c1, . . . , cK.

• Iteration (until membership grades remain unchanged):

– For all data vectors xi, i = 1, . . . , N , and all centroids ck,

k = 1, . . . ,K: Compute the distance dik between the data

vector xi and the centroid ck.

– Compute the membership grades λik. Note: λik ≥ 0 indicates

the amount of association of data vector xi with centroid ck and

depends on the distance dik: if dik < dik′, then λik > λik′. The

detailed functional form (omitted) differs between soft and fuzzy

K-means.

– Recompute the cluster centroids: ck =
∑
i λikxi∑
i λik



Two examples of soft K-means clustering

The posterior probability for a given data point is indicated by a colour

scale ranging from pure red (corresponding to a posterior probability

of 1.0 for the red component and 0.0 for the blue component) through

to pure blue.
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Initialization for which K-means failed
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Agglomerative hierarchical clustering:
UPGMA

(hierarchical average linkage clustering)
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Distance between clusters

Average of individual distances.
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From Spellman et al., http://cellcycle-www.stanford.edu/



• Hierarchical clustering methods produce a tree or

dendrogram → Allows the biologist to visualize and

interpret the data.

• No need to specify how many clusters are appropriate

−→ partition of the data for each number of clusters

K.

• Partitions are obtained from cutting the tree at different

levels.
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Principal clustering paradigms

• Non-hierarchical

Cluster N vectors into K groups in an iterative process.

• Hierarchical

Hierarchie of nested clusters; each cluster typically

consists of the union of two smaller sub-clusters.
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Hierarchical methods can be further subdivided

• Bottom-up or agglomerative clustering:

Start with a single-object cluster and recursively merge

them into larger clusters.

• Top down or divisive clustering:

Start with a cluster containing all data and recursively

divide it into smaller clusters.



Overview of clustering methods

Hierarchical Non-hierarchical

Top-down or divisive K-means

Fuzzy/soft K-means

Bottom-up or agglomerative UPGMA



Shortcoming of bottom-up agglomerative clustering

• Focus on local structures → loses some of the information

present in global patterns.

• Once a data vector has been assigned to a node,

it cannot be reassigned to another node later

when global patterns emerge.



Shortcoming of bottom-up agglomerative clustering

• Focus on local structures → loses some of the information

present in global patterns.

• Once a data vector has been assigned to a node,

it cannot be reassigned to another node later

when global patterns emerge.

How can we devise a hierarchical top-down approach?

Hierarchical Non-hierarchical

Top-down or divisive ? K-means

Fuzzy/soft K-means

Bottom-up or agglomerative UPGMA



Divisive (top-down) hierarchical clustering:
Binary tree-structured vector quantization

(BTSVQ)
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Compute the ratio
between variance/within variance.
Is this ratio larger than a (dynamically
updated) threshold?

Yes

Yes

No

Initially, all data belong to the same cluster

No
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Fetch one cluster from the stack.
Split this cluster into two clusters
using the fuzzy/soft Kmeans algorithm

Merge the two clusters and remove the
resulting cluster from the stack.

Any remaining clusters on the stack ?

Place both
clusters on
the stack

End



Compute the ratio
between variance/within variance.
Is this ratio larger than a (dynamically
updated) threshold?

Yes

Yes

No

Initially, all data belong to the same cluster

No
Adapted in simplified form from
Szeto et al.
Journal of Visual Languages
and Computing 14, 341-362

(2003)

. .

..

Fetch one cluster from the stack.
Split this cluster into two clusters
using the fuzzy/soft Kmeans algorithm

Merge the two clusters and remove the
resulting cluster from the stack.

Any remaining clusters on the stack ?

Place both
clusters on
the stack

End



Overview of clustering methods

Hierarchical Non-hierarchical

Top-down or divisive BTSVQ K-means

Fuzzy/soft K-means

Bottom-up or agglomerative UPGMA
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Pitfalls of clustering

• Clustering algorithms always produce clusters even for

uniformaly distrubuted data.

• Difficult to test the null hypothesis of no clusters

(current research).

• Difficult to estimate the true number of clusters (current

research).

• Risk of artifacts.

• Use clustering only for hypothesis generation.

• Independent experimental verification required.



Deciding on the number of clusters:
Gap statistic

Tibshirani, Walther, Hastie (2001), J. Royal Statistical Society B

Idea:

• Compute EK for randomized data.

• Compare this with EK from real data.
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And so on . . .
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Number of clusters K

random data 
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764321 85 5

.

..

.

Gap= | |(randomized data)(true dat) - 

true data

random data 

Number of clusters K Number of clusters K
764321 8

KE KEKE



85764321 85 1

.

..

.

Adapted from Hastie, Tibshiranie, Friedman: The Elements of Statistical Learning, Springer 2001

over random data
Maximal improvement

Gap= | |(randomized data)(true dat) - 

true data

random data 

Number of clusters K Number of clusters K
76432

KE KEKE


