

Biological Databases

- Introduction to Sequence Databases
- Overview of primary query tools and the databases they use (e.g. databases used by BLAST and FASTA)

Bioinformatics 2

- Demonstration of common queries
- Interpreting the results

Armstrong, 2007

• Overview of annotated 'meta' or 'curated' databases

International Nucleotide Sequence Database Collaboration Partners are EMBL, Genbank & DDBJ Each collects sequence from a variety of sources New additions to any of the three databases are shared to the others on a daily basis.

Bioinformatics 2

Armstrong, 2007

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

EMBL file tags

ID - identification	(begins each entry; 1 per entry)
AC - accession number	(>=1 per entry)
SV - new sequence identifier	(>=1 per entry)
DT - date	(2 per entry)
DE - description	(>=1 per entry)
KW - keyword	(>=1 per entry)
OS - organism species	(>=1 per entry)
OC - organism classification	(>=1 per entry)
OG - orĝanelle	(0 or 1 per entry)
RN - reference number	(>=1 per entry)
RC - reference comment	(>=0 per entry)
RP - reference positions	(>=1 per entry)
RX - reference cross-reference	(>=0 per entry)
RA - reference author(s)	(>=1 per entry)
RT - reference title	(>=1 per entry)
RL - reference location	(>=1 per entry)
DR - database cross-reference	(>=0 per entry)
FH - feature table header	(0 or 2 per entry)
FT - feature table data	(>=0 per entry)
CC - comments or notes	(>=0 per entry)
XX - spacer line	(many per entry)
SQ - sequence header	(1 per entry)
bb - (blanks) sequence data	(>=1 per entry)
<pre>// - termination line</pre>	(ends each entry; 1 per entry)

```
Armstrong, 2007
```


Bacteriophage PHG Fungi FUN Genome survey GSS Bigh Throughput cDNA <u>HTC</u>
Fungi FUN Genome survey GSS High Throughput cDNA <u>HTC</u>
Genome survey GSS High Throughput cDNA <u>HTC</u>
High Throughput cDNA HTC
High Throughput Genome HTG
Human HUM
Invertebrates INV
Mus musculus MUS
Organelles ORG
Other Mammals MAM
Other Vertebrates VRT
Plants PLN
Prokaryotes PRO
Rodents ROD
STS: STS
Synthetic SYN
Unclassified UNC
Viruses VRL

Specialist DNA Databases

- Usually focus on a single organism or small related group
- Much higher degree of annotation
- Linked more extensively to accessory data
 - Species specific:
 - Drosophila: FlyBase,
 - C. elegans: AceDB
 - Other examples include Mitochondrial DNA, Parasite Genome DB

Armstrong, 2007

Swis-Prot by Species ('03)

Number	Frequency	Species
1	8950	Homo sapiens (Human)
2	200,6028	Mus musculus (Mouse)
3	4891	Saccharomyces cerevisiae (Baker's yeast)
4	4835	Escherichia coli
5	3403	Rattus norvegicus (Rat)
6	2385	Bacillus subtilis
7	2286	Caenorhabditis elegans
8	2106	Schizosaccharomyces pombe (Fission yeast)
9	1836	Arabidopsis thaliana (Mouse-ear cress)
10	1773	Haemophilus influenzae
11	(1730)	Drosophila melanogaster (Fruit fly)
12_	130/1528	Methanococcus jannaschii
13	1471	Escherichia coli 0157:H7
14	1378	Bos taurus (Bovine)
15	1370	Mycobacterium tuberculosis

Swis-Prot by Species (Oct '05)

1	12860	Homo sapiens (Human)
2	9933	Mus musculus (Mouse)
3	5139	Saccharomyces cerevisiae (Baker's yeast)
4	4846	Escherichia coli
5	4570	Rattus norvegicus (Rat)
6	3609	Arabidopsis thaliana (Mouse-ear cress)
7	2840	Schizosaccharomyces pombe (Fission yeast)
8	2814	Bacillus subtilis
9	2667	Caenorhabditis elegans
10	2273	Drosophila melanogaster (Fruit fly)
11	1782	Methanococcus jannaschii
12	1772	Haemophilus influenzae
13	1758	Escherichia coli O157:H7
14	1653	Bos taurus (Bovine)
15	1512	Salmonella typhimurium

UniProtKB/TrEMBL

- Computer annotated Protein DB
- Translations of all coding sequences in EMBL DNA Database
- Remove all sequences already in Swiss-Prot
- November 01: 636,825 peptides
- Jan 17th 2003: 728713 peptides
- TrEMBL new is a weekly update
- GenPept is the Genbank equivalent

Armstrong, 2007

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

BLAST		
<u>Version</u>	<u>Query</u>	<u>DB</u>
Blastn	DNA	DNA
Blastp	Peptide	Peptide
Blastx	DNA	Peptide
tBlastn	Peptide	DNA
tBlastx	DNA	DNA
A	Division	translated
Armstrong, 2007	Bioinformatic	s 2

	FASTA Key Parameters
Database: Program: Matrix: KTUP Scores: Alignments: Open Gap: Extend Gap:	 Which DNA/Protein db to use. fastx3, tfasty3 etc Substitution score matrix e.g. Blosum50 Word length to use in search How many results to summarise How many full alignments to provide Penalty for opening a new gap Penalty for extending a gap by 1
Armstrong, 2007	Bioinformatics 2

- Use a good server with up to date databases
- Run BLAST as a first choice (its quick)

Armstrong, 2007

• If appropriate, translated DNA or protein searches are better.

Bioinformatics 2

• Refine using FASTA, SW programs or protein prediction packages

Multiple Alignment

- Normally applied to proteins
- Can be used for DNA sequences
- Finds the common alignment of >2 sequences.
- Suggests a common evolutionary source between related sequences based on similarity
 - Can be used to identify sequencing errors

Bioinformatics 2

- variation of ends-free alignment
- Locate cloning or sequencing errors
- Derive a consensus sequence
- Derive a confidence degree per base

Armstrong, 2007

- Look at several aligned sequences and derive the most common base for each position.
 - Several ways of representing consensus sequences
 - Many consensus sequences fail to represent the variability at each base position.
 - Largely replaced by Sequence Logos but the term is often misapplied

- Multiple Alignment of Proteins
- Identify Protein Families
- Find conserved Protein Domains
- Predict evolutionary precursor sequences
- Predict evolutionary trees

Armstrong, 2007

Multiple alignment table

dlg_CG1725-PH Sap97_dlgh1 chapsyn-110_dlgh2 Sap102_dlgh3 PSD-95_dlgh4 ALFDYDPNRDDGLPSRGLPFKH ALFDYDKTKDSGLPSQGLNFRF AMFDYDKSKDSGLPSQGLSFKY ALFDYDRTRDSCLPSQGLSFSY ALFDYDKTKDCGFLSQALSFHF *:**** .:* : *:.* *

A consensus character is the one that minimises the distance between it and all the other characters in the column

Conservatived or Identical residues are colour coded

Armstrong, 2007

- Several strategies exist for calculating the column cost in a multiple alignment
- Simplest is to sum the pairwise **costs** of each base/residue pair in the column using a matrix (e.g. PAM250).

Armstrong, 2007

• Gap scoring rules can be applied to these as well.

Optimal Multiple Alignment

- The best alignment is generally the one with the lowest score (i.e. least difference)
 - depends on the scoring rules used.
- Like pairwise cases, each alignment represents a path through a matrix

Bioinformatics 2

- For multiple alignment, the matrix is *n*-dimensional
 - where *n*=number of sequences

NP-Completeness

- A problem is solvable in polynomial time if an algorithm exists O(*n*^c)
 - c some constant

Armstrong, 2007

- -n size of the input
- Pairwise alignment is solvable in polynomial time O(n²)

Bioinformatics 2

• More difficult problems are *NP-complete*

MA: Dynamic Programming

- We can use dynamic programming in some small cases.
- For *x* sequences, build an *x* dimensional hypercube.

Armstrong, 2007

• Solve as before using gap and substitution penalties but remembering that there are more routes to each cell in the hypercube

Center Star Method

• Given a set of Strings, define the center string *Sc* as the string that minimises the sum of distances from all other sequences.

– Found Sc

Armstrong, 2007

- Consecutively add on the other sequences so that the alignment of each is optimal.
- Add spaces where needed to all prealigned sequences
- The center star method is within 2 fold accuracy of true dynamic solution

Feng-Doolittle

- Feng-Doolittle 1987 Journal of Molecular Evolution 25:351-360
- The key principal is that the two most similar sequences in a multiple alignment are the most recently diverged.
- Therefore the pairwise alignment of these two sequences is the most reliable of the entire group

Bioinformatics 2

• Gaps present in the alignment should therefore be preserved in the multiple alignment.

CAP

- Takes all the sequences and split into short fragments
- Eliminate fragment pairs that could not possibly overlap
- The dynamic programming algorithm is used to find the maximal scoring overlaps
- Scores are weighted so that sequencing errors are low cost and mutations higher

Bioinformatics 2

- Given an optimal alignment between >2 sequences, how do we find the consensus sequence?
- Take a multiple alignment in columns of characters

Multiple alignment table

Bioinformatics 2

dlg_CG1725-PH Sap97_dlgh1 chapsyn-110_dlgh2 Sap102_dlgh3 PSD-95_dlgh4 ALFDYDPNRDDGLPSRGLPFKH ALFDYDKTKDSGLPSQGLNFRF AMFDYDKSKDSGLPSQGLSFKY ALFDYDRTRDSCLPSQGLSFSY ALFDYDKTKDCGFLSQALSFHF *:**** .:* : *:.**

The consensus character is the one that minimises the distance between it and all the other characters in the column

Armstrong, 2007

Armstrong, 2007

Finding ORFs

- One algorithm slides along the sequence looking stop codons.
- Scans back until it finds a start codon.
- Fails to find very short genes since it it looking for long ones

Bioinformatics 2

• Also fails to find overlaping ORFs

Armstrong, 2007

• There are many more ORFs than genes

HMMs for codons

- Model based on examining 6 consecutive bases (i.e. all three reading frames).
- Based on statistical differences between coding and non coding regions
- 5th order Markov Model.

Armstrong, 2007

• Given 5 preceding bases, what is the probability of the 6th?

Bioinformatics 2

• Homogenous model (ignores reading frame)

NetGene2

- Neural network based splice site prediction
- Trained on known genes

Armstrong, 2007

- Claims to be 95% accurate
- Human, C. elegans & Arabidopsis thaliana
- http://www.cbs.dtu.dk/services/NetGene2/

GFF Format

- Exchange format for gene finding packages
- Fields are:
 - <seqname> name, genbank accession number
 - <source> program used
 - <feature> various inc splice sites
 - <start> start of feature

```
Armstrong, 2007
```


	Profiles
 Examples incl known gene/p G coupled re actins globins 	ude assigning a gene/protein to a rotein family, e.g. ceptors
Armstrong, 2007	Bioinformatics 2

- Aligning a sequence to a single member of the family is not optimal
- Create profiles of the family members and test how similar the sequence is to the profile.
- A profile of a multiply aligned protein family gives us letter frequencies per column.

Bioinformatics 2

Protein profiles

• Multiple alignments can be used to give a consensus sequence.

Armstrong, 2007

• The columns of characters above each entry in the consensus sequence can be used to derive a table of probabilities for any amino acid or base at that position.

Protein profiles

- Alternative approaches use statistical techniques to assess the probability that the sequence belongs to a family of related sequences.
- This is calculated by multiplying the probabilities for amino acid *x* occurring at position *y* along the sequence/profile.

Bioinformatics 2

Summary

- Multiple alignment is used to define and find conserved features within DNA and protein sequences
- Profiles of multiply aligned sequences are a better description and can be searched using pairwise sequence alignment.
- Many different programs and databases available.

Bioinformatics 2

Pfam

- Database of protein domains
- Multiple sequence alignments and profile HMMs
- Entries also annotated
- Swiss-Prot DB all pre-searched
- New sequences can be searched as well.
 - 7973 entries in Pfam last update

Armstrong, 2007

DATABASE	VERSION	ENTRIES
SWISS-PROT	48	197228
PRINTS	38	1900
TREMBL	31.1	2342938
PFAM	18	7973
PROSITE	19.10	1882
Currently month.	15 databases	s, plans to add 3 new ones

PredictProtein

Predictions of:

- secondary structure (PHDsec, and PROFsec)
- residue solvent accessibility (PHDacc, and PROFacc)
- transmembrane helix location and topology (PHDhtm, PHDtopology)
- protein globularity (GLOBE)
- coiled-coil regions (COILS)
- cysteine bonds (CYSPRED)
- structural switching regions (ASP)

Armstrong, 2007

