Bio2

Heuristics, Databases; Multiple Sequence Alignment; Gene Finding

Armstrong, 2007 Bioinformatics

Biological Databases (sequences)

Armstrong 2007 Bioinformatics

Biological Databases

- Introduction to Sequence Databases
- Overview of primary query tools and the databases they use (e.g. databases used by BLAST and FASTA)
- Demonstration of common queries
- · Interpreting the results
- Overview of annotated 'meta' or 'curated' databases

Armstrong, 2007 Bioinformatics 2

DNA Sequence Databases

- Raw DNA (and RNA) sequence
- · Submitted by Authors
- Patent, EST, Gemomic sequences
- Large degree of redundancy
- · Little annotation
- Annotation and Sequence errors!

Armstrong, 2007 Bioinformatics

Main DNA DBs

Genbank US EMBL EU DDBJ Japan

• Celera genomics Commercial DB

Armstrong, 2007 Bioinformatics

EMBL

- Sources for sequence include:
 - Direct submission on-line submission tools
 - Genome sequencing projects
 - Scientific Literature DB curators and editorial imposed submission
 - Patent applications
 - Other Genomic Databases, esp Genbank

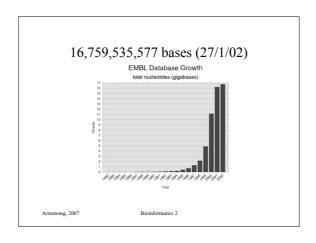
Armstrong, 2007 Bioinformatics 2

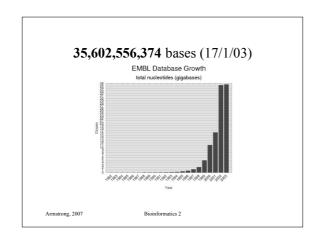
International Nucleotide Sequence Database Collaboration

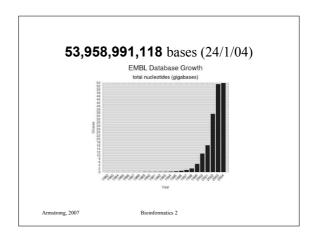
- · Partners are EMBL, Genbank & DDBJ
- Each collects sequence from a variety of sources
- New additions to any of the three databases are shared to the others on a daily basis.

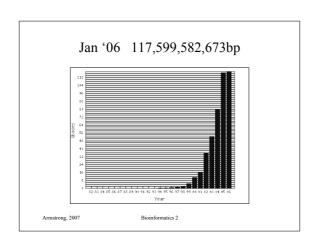
Armstrong, 2007

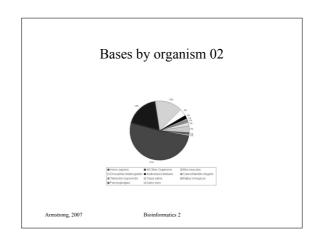
Rioinformatics

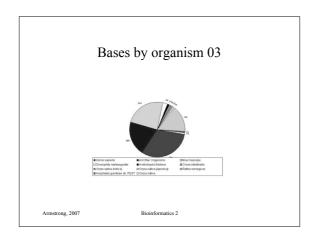

Limited annotation

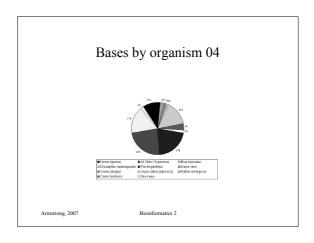

- Unique accession number
- Submitting author(s)
- Brief annotation if available
- Source (cDNA, EST, genomic etc)
- Species
- · Reference or Patent details

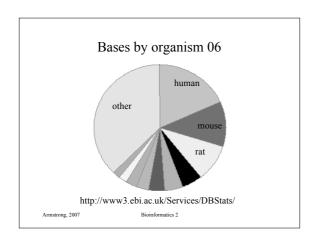

Armstrong, 2007

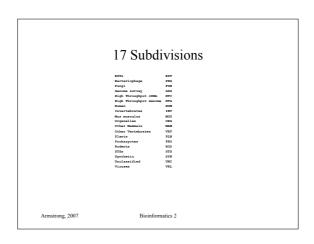

Bioinformatics 2


EMBL file tags ID - identification AC - accession number SV - new sequence identifier DE - description CC - organization (color per entry) CC - organization (color per entry) CC - organization (color per entry) CC - organization number CC - reference comment CC - reference reference CC - reference refere









ESTs

- · Expressed Sequence Tags
 - short mRNA samples from tissues
 - cloned and sequenced
 - single read
 - approx 1/3 of the database

Armstrong, 2007

Riginformatics

HTG

- · High throughput genomic sequences
 - Partial sequences obtained during genome sequencing.
 - Around 1/3 of the database

Armstrong, 2007

Bioinformatics 2

Specialist DNA Databases

- Usually focus on a single organism or small related group
- Much higher degree of annotation
- · Linked more extensively to accessory data
 - Species specific:
 - · Drosophila: FlyBase,
 - C. elegans: AceDB
 - Other examples include Mitochondrial DNA, Parasite Genome DB

Armstrong, 2007

Bioinformatics 2

FlyBase

flybase.bio.indiana.edu

- Includes the entire annotated genome searchable by BLAST or by text queries
- Also includes a detailed ontology or standard nomenclature for *Drosophila*
- Also provides information on all literature, researchers, mutations, genetic stocks and technical resources.
- · Full mirror at EBI

Armstrong, 20

ioinformatics 2

Protein DBs

- Primary Sequence DBs
 - Swiss-Prot, TrEMBL, GenPept
- Protein Structure DBs
 - PDB, MSD
- Protein Domain Homology DBs
 - InterPro, CluSTr

Armstrong, 2007

Bioinformatics 2

UniProtKB/Swiss-Prot

- Consists of protein sequence entries
- · Contains high-quality annotation
- · Is non-redundant
- · Cross-referenced to many other databases
- 104,559 sequences in Jan 02
- 120,960 sequences in Jan 03
- 194,317 sequences in Sep 05 (latest)

Armstrong, 2007

Swis-Prot by Species ('03)

Swis-Prot by Species (Oct '05)

Number	Frequency	Species
1	12860	Homo sapiens (Human)
2	9933	Mus musculus (Mouse)
3	5139	Saccharomyces cerevisiae (Baker's yeast)
4	4846	Escherichia coli
5	4570	Rattus norvegicus (Rat)
6	3609	Arabidopsis thaliana (Mouse-ear cress)
7	2840	Schizosaccharomyces pombe (Fission yeast)
8	2814	Bacillus subtilis
9	2667	Caenorhabditis elegans
10	2273	Drosophila melanogaster (Fruit fly)
11	1782	Methanococcus jannaschii
12	1772	Haemophilus influenzae
13	1758	Escherichia coli 0157:H7
14	1653	Bos taurus (Bovine)
15	1512	Salmonella typhimurium
Armstrong, 2007		Bioinformatics 2

UniProtKB/TrEMBL

- Computer annotated Protein DB
- Translations of all coding sequences in EMBL DNA Database
- · Remove all sequences already in Swiss-Prot
- November 01: 636,825 peptides
- Jan 17th 2003: 728713 peptides
- TrEMBL new is a weekly update
- GenPept is the Genbank equivalent

Armstrong, 2007 Bioinformatics 2

SNPs

- Biggest growth area right now is in mutation databases
- www.ncbi.nlm.nih.gov/About/primer/snps.html
- Polymorphisms estimates at between 1:100 1:300 base pairs (normal human variation)
- Databases include true SNPs (single bases) and larger variations (microsatellites, small indels)

Armstrong, 2007 Bioinformatic

dbSNP

- "The database grows at 90 SNPs per month"
- 125 versions since start in 1998
- Currently 47 million SNPs in latest release
- 15 million added between version 124 and 125

Armstrong, 2007 Bioinformatics 2

Database Search Methods

- Text based searching of annotations and related data: SRS, Entrez
- Sequence based searching: BLAST, FASTA, MPSearch

Armstrong, 2007 Bioinformatics 2

SRS

- · Sequence Retrieval System
 - Powerful search of EMBL annotation
 - Linked to over 80 other data sources
 - Also includes results from automated searches

Armstrong, 2007

SRS data sources

- Primary Sequence: EMBL, SwissProt
- · References/Literature: Medline
- Protein Homology: Prosite, Prints
- Sequence Related: Blocks, UTR, Taxonomy
- Transcription Factor: TFACTOR, TFSITE
- Search Results: BLAST, FASTA, CLUSTALW
- · Protein Structure: PDB
- · Also, Mutations, Pathways, other specialist DBs

Entrez

- · Text based searching at NCBI's Genbank
- Very simple and easy to use
- Not as flexible or extendable as SRS
- · No user customisation

Armstrong, 2007

Bioinformatics 2

Sequence Based Searching

· Queries:

DNA query against DNA db Translated DNA query against Protein db Translated DNA query against translated DNA db Translated Protein query against DNA db Protein query against Protein db

• BLAST & FASTA

Armstrong, 2007 Bioinformatics 2

BLAST

Version	Query	<u>DB</u>
Blastn	DNA	DNA
Blastp	Peptide	Peptide
Blastx	DNA	Peptide
tBlastn	Peptide	DNA
tBlastx	DNA	DNA

Armstrong, 2007

☐ translated

FASTA Key Parameters

Which DNA/Protein db to use.

fastx3, tfasty3 etc Program:

Matrix: Substitution score matrix e.g. Blosum50 KTUP Word length to use in search Scores: How many results to summarise How many full alignments to provide Alignments: Open Gap: Penalty for opening a new gap Extend Gap: Penalty for extending a gap by 1

Initial Strategies

- Use a good server with up to date databases
- Run BLAST as a first choice (its quick)
- If appropriate, translated DNA or protein searches are better
- Refine using FASTA, SW programs or protein prediction packages

Armstrong, 2007

Bioinformatics

Scores

- The raw scores returned by Blast and FASTA are not in themselves all that useful.
- The E-Value (expect) is the number of false positives you would expect to find in that query. A low E-value indicates a higher confidence level

Armstrong, 200

Bioinformatics 2

P value

• The Probability of the observed score (probability that it happened by chance) can be calculated:

$$P = 1 - e^{-E}$$

Armstrong, 2007

Bioinformatics 2

Secondary Databases

- PDB
- Pfam
- PRINTS
- PROSITE
- ProDom
- SMART
- TIGRFAMs

Armstrong, 200

Bioinformatics 2

PDB

- Molecular Structure Database (EBI)
- Contains the 3D structure coordinates of 'solved' protein sequences
 - X-ray crystallography
 - NMR spectra
- 19749 protein structures

Armstrong, 2007

Bioinformatics 2

Multiple Sequence Alignment

- · What and Why?
- Dynamic Programming Methods
- Heuristic Methods
- A further look at Protein Domains

Armstrong, 2007

Multiple Alignment

- · Normally applied to proteins
- Can be used for DNA sequences
- Finds the common alignment of >2 sequences.
- Suggests a common evolutionary source between related sequences based on similarity
 - Can be used to identify sequencing errors

Armstrong, 2007

Bioinformatics

Multiple Alignment of DNA

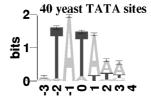
- · Take multiple sequencing runs
- · Find overlaps
 - variation of ends-free alignment
- · Locate cloning or sequencing errors
- · Derive a consensus sequence
- Derive a confidence degree per base

Armstrong, 2007

ioinformatics 2

Consensus Sequences

- Look at several aligned sequences and derive the most common base for each position.
 - Several ways of representing consensus sequences
 - Many consensus sequences fail to represent the variability at each base position.
 - Largely replaced by Sequence Logos but the term is often misapplied


Armstrong, 2007

Bioinformatics 2

Sequence Logos

• Example, from an alignment of the TATA box in yeast genes:

We now have a confidence level for each base at each position

Armstrong, 2007

Bioinformatics

Multiple Alignment of Proteins

- Multiple Alignment of Proteins
- · Identify Protein Families
- Find conserved Protein Domains
- Predict evolutionary precursor sequences
- · Predict evolutionary trees

Armstrong, 200

Bioinformatics 2

Protein Families

- Proteins are complex structures built from functional and structural sub-units
 - When studying protein families it is evident that some regions are more heavily conserved than others.
 - These regions are generally important for the structure or function of the protein
 - Multiple alignment can be used to find these regions
 - These regions can form a signature to be used in identifying the protein family or functional domain.

Armstrong, 2007

Protein Domains

- Evolution conserves sequence patterns due to functional and structural constraints.
- Different methods have been applied to the analysis of these regions.
- Domains also known by a range of other names:

motifs patterns prints blocks

Armstrong, 2007 Bioinformatics

Multiple Alignment

- OK we now have an idea WHY we want to try and do this
- What does a multiple alignment look like?
- · How could we do multiple alignments
- · What are the practical implications

Armstrong 2007 Bioinformatics

Multiple alignment table

dlg_CG1725-PH Sap97_dlgh1 chapsyn-110_dlgh2 Sap102_dlgh3 PSD-95_dlgh4

A consensus character is the one that minimises the distance between it and all the other characters in the column

Conservatived or Identical residues are colour coded

Armstrong, 2007 Bioinformatics 2

Scoring Multiple Alignments

 We need to score on columns with more than 2 bases or residues:

Multiple alignments are usually scored on cost/difference rather than similarity

2007 Bioinformatics

Column Costs

- Several strategies exist for calculating the column cost in a multiple alignment
- Simplest is to sum the pairwise costs of each base/residue pair in the column using a matrix (e.g. PAM250).
- Gap scoring rules can be applied to these as well.

Armstrong, 2007 Bioinformatics

Scoring Multiple Alignments

• Score = (S,C)+(S,A)+(S,A)+(S,P)+(S,P)+(C,A)+ (C,P)+(C,P)+(A,P)+(A,P)+(P,P)

Known as the sum-of-pairs scoring method

Armstrong, 2007 Bioinformat

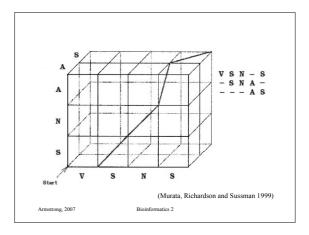
Sum-of-pairs cost method (SP)

• Score = (S,C)+(S,-)+(S,A)+(S,P)+(S,P)+(S,P)+(-,A)+(-,P)+(-,P)+(A,P)+(A,P)+(A,P)+(P,P)

ColumnCost
$$\begin{pmatrix} S \\ A \\ P \\ D \end{pmatrix} = 24$$

Still works with gaps using whatever gap penalty you want

Multiple Alignment Cost

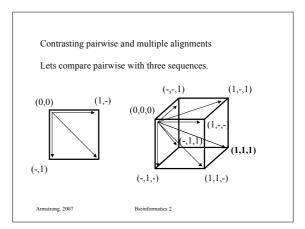

- Sum of pairs is a simple method to get a score for each column in a multiple alignment
- Based on matrices and gap penalties used for pairwise sequence alignment
- The score of the alignment is the sum of each column

Armstrong, 2007 Bioinformatics

Optimal Multiple Alignment

- The best alignment is generally the one with the lowest score (i.e. least difference)
 - depends on the scoring rules used.
- Like pairwise cases, each alignment represents a path through a matrix
- For multiple alignment, the matrix is *n*-dimensional
 - where *n*=number of sequences

Armstrong, 2007 Bioinformatics 2



Contrasting pairwise and multiple alignments

Lets compare pairwise with three sequences.

Armstrong, 2007

NP-Completeness

- A problem is solvable in polynomial time if an algorithm exists O(n^c)
 - c some constant
 - -n size of the input
- Pairwise alignment is solvable in polynomial time O(n²)
- More difficult problems are NP-complete

Armstrong, 2007

Bioinformatics

Multiple alignment complexity

- For k sequences of average length n
- k dimension matrix has $(n+1)^k$ cells to compute.
- Each entry can be computer in 2^k time
- Running time of the overall algorithm is: $O((2n)^k)$
- The real problem hits when considering protein sequences average ${\sim}400~\text{residues}$

Armstrong, 200

Bioinformatics 2

MA: Dynamic Programming

- We can use dynamic programming in some small cases.
- For *x* sequences, build an *x* dimensional hypercube.
- Solve as before using gap and substitution penalties but remembering that there are more routes to each cell in the hypercube

Armstrong, 2007

Bioinformatics 2

MA: Dynamic Programming

- Space complexity is huge:
 - O(sum sequences x ave length)
- · Computational complexity is huge
- In practice the DP method is only feasible for small numbers of short strings

Armstrong, 200

Bioinformatics 2

Center Star Method

- Given a set of Strings, define the center string Sc as the string that minimises the sum of distances from all other sequences.
 - Found Sc
 - Consecutively add on the other sequences so that the alignment of each is optimal.
 - Add spaces where needed to all prealigned sequences
- The center star method is within 2 fold accuracy of true dynamic solution

Armstrong, 2007

Bioinformatics 2

Iterative pairwise alignment

- In CSA we try to align the chosen center string with all the others in no particular order.
- Often some of the other sequences will be closer to each other and form *clusters*
- Tricky part is deciding how to define close and how to cluster them

Armstrong, 2007

Iterative Pairwise Alignment

- Can be used as a strategy for growing groups of profiles from multiple sequences
- This approach uses pairwise alignment scores to add one additional sequence at a time to a growing multiple alignment.

Armstrong, 2007

Bioinformatics

Iterative Pairwise Alignment

- First align all pairs of strings where one is already in a multiple alignment and one is aligned.
- · Find the closest matches.
- Align the unassigned sequence with the family profile of the closest group
- Realign the group and get a new profile.

Armstrong, 200

Bioinformatics 2

Feng-Doolittle

- Feng-Doolittle 1987 Journal of Molecular Evolution 25:351-360
- The key principal is that the two most similar sequences in a multiple alignment are the most recently diverged.
- Therefore the pairwise alignment of these two sequences is the most reliable of the entire group
- Gaps present in the alignment should therefore be preserved in the multiple alignment.

Armstrong, 2007

Bioinformatics 2

Feng-Doolittle

- · Calculate the pairwise alignment scores for each sequence
- · Construct a tree using these distances
- Traverse the nodes of the tree in order of addition (most similar first)
- Progressively align the sequences starting with the most similar:
- Once a gap is established in the multiple alignment it stays.

Armstrong, 200

Bioinformatics 2

ClustalW

- Uses a modification of the Feng-Doolittle algorithm
- Very common software package for multiple alignment

Armstrong, 2007

Bioinformatics 2

ClustalW

- Starts by calculating pairwise alignments and converting scores to distances
- Uses a neighbour joining algorithm to build a tree from the distances
- · Aligns sequences to each other
- · Aligns sequences to profiles
- · Aligns profiles to profiles
- Can output multiple alignment as well a predicted evolutionary tree

Armstrong, 2007

MSA

- Exploits the fact that closely aligned sequence paths will be close to the main diagonal on a DP table.
- Estimates a good solution, removes cells from the hypercube where the score could not feasibly pass through them.

Armstrong, 2007

Bioinformatics :

CAP

- · Contig Assembly Program
- Designed to optimise alignments between multiple DNA sequences that are suspected to overlap.
- Uses a fast heuristic prescreen then finishes using a dynamic programming approach.

Armstrong, 200

Bioinformatics 2

CAP

- Takes all the sequences and split into short fragments
- Eliminate fragment pairs that could not possibly overlap
- The dynamic programming algorithm is used to find the maximal scoring overlaps
- Scores are weighted so that sequencing errors are low cost and mutations higher

Armstrong, 2007

Bioinformatics 2

Consensus Sequences

- The consensus sequence is the concatenation of the consensus characters
- The alignment error of the multiple alignment is the sum of the distance costs of each consensus character in the consensus sequence.

Armstrong, 200

Bioinformatics 2

Scoring Multiple Alignments

- · Distance from Consensus
 - In each column, count the number of characters that are different from the consensus sequence.
- Sum of Pairs (covered already)
 - Sum the pairwise distances between all sequence pairs

Armstrong, 2007

Bioinformatics 2

Scoring Multiple Alignments

- · Evolutionary Tree alignment
 - The weight of the lightest tree that can be constructed from the sequences
 - The weight is defined as the the number of changes that correspond to two adjacent nodes in the tree summed over all pairs.

Armstrong, 2007

Consensus Sequences

- Given an optimal alignment between >2 sequences, how do we find the consensus sequence?
- Take a multiple alignment in columns of characters

Armstrong, 2007

Riginformatics

Multiple alignment table

dlg_CG1725-PH Sap97_dlgh1 chapsyn-110_dlgh2 Sap102_dlgh3 PSD-95_dlgh4

ALFDYDPNRDDGLPSRGLPFKH ALFDYDKTKDSGLPSQGLNFRF AMFDYDKSKDSGLPSQGLSFKY ALFDYDRTRDSCLPSQGLSFSY ALFDYDKTKDCGFLSQALSFHF *:*** .:* : :::: :::

The consensus character is the one that minimises the distance between it and all the other characters in the column

mstrong, 2007 Bioinfo

Bio2

Gene and Protein Prediction

Armstrong, 2007

Bioinformatics 2

Gene prediction

- What is a gene?
 - Simple definition: A stretch of DNA that encodes a protein and includes the regulatory sequences required for temporal and spatial control of gene transcription.
- · Characteristics of genes.
 - What genetic features can we use to recognise a gene?

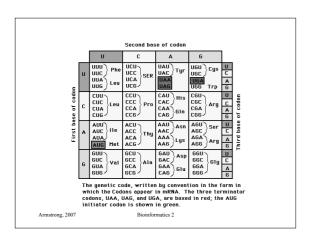
Armstrong, 2007 Bioinformatics 2

DNA structure

Bases: A,C,G and T

Chemically, A can only pair with T and G with C

Two strands, 5' and 3' Genes are encoded along one side of the DNA molecule. The 5' end being at the left hand side of the gene.


Armstrong, 2007

Bioinformatics 2

Codons and ORFs

- Three bases that encode an amino acid or stop site.
- A run of valid codons is an Open Reading Frame.
- An ORF usually starts with a Met
- Ends with a nonsense or stop codon.

Armstrong, 2007 Bioinformatics 2

Predicting ORFs

- 64 total codons
- 3 stop codons, 61 codons for amino acids
- Random sequence 1:21 ratio for stop:coding.
- = 1 stop codon every 63 base pairs
- Gene lengths average around 1000 base pairs.

rmstrong 2007 Bioinformatic

Finding ORFs

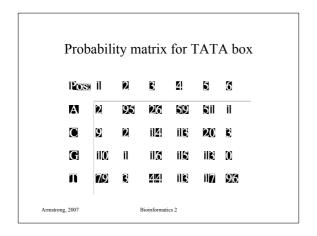
- One algorithm slides along the sequence looking stop codons.
- · Scans back until it finds a start codon.
- Fails to find very short genes since it it looking for long ones
- Also fails to find overlaping ORFs
- There are many more ORFs than genes

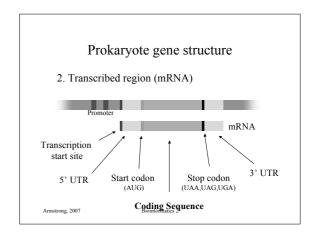
Armstrong, 2007

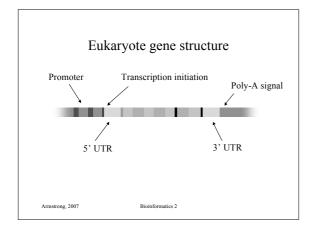
Bioinformatics 2

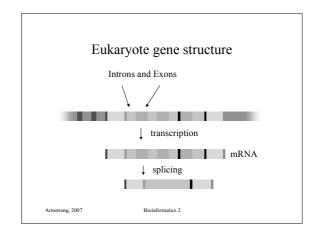
Amino Acid Bias

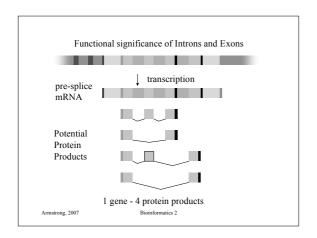
- The amino acids in proteins are not random
 - leucine has 6 codons
 - alanine has 4 codons
 - tryptophan has 1 codon
- The random the ratio would be 6:4:1
- In proteins it is 6.9:6.5:1
 - i.e. it is not random

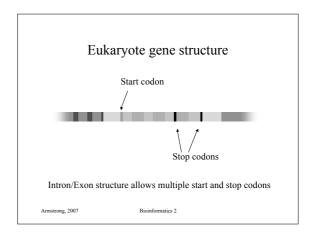

rmstrong, 2007 Bioinformatic


Gene Prediction


- · Take all factors into consideration
- · Prokaryotes
 - No Nucleus
 - 70% of the genome encodes protein
 - No introns


A martine 2007 Pininformation


Prokaryote gene structure 1. Promoter region nnnTTGACAnnnnnnnnnnnnnnnnnnnTATAATnnnnnnS (consensus sequence for *E.coli.*) Armstrong, 2007 Bioinformatics 2



HMMs for codons

- Model based on examining 6 consecutive bases (i.e. all three reading frames).
- Based on statistical differences between coding and non coding regions
- 5th order Markov Model.
- Given 5 preceding bases, what is the probability of the 6^{th} ?
- Homogenous model (ignores reading frame)

Armstrong, 2007

Bioinformatics

HMMs for codons

- Homogenous models have two tables, one for coding, one non coding.
- Each table is has 4096 entries for the potential 6 base pair sequences
- Non-homogenous models have three tables for possible reading frames
- · Short exons cause these models problems
- Hard to detect splice sites

Armstrong, 2007

ioinformatics 2

Glimmer

- Uses non-homogenous HMMs to predict prokaryote gene sequences
- · Identifies ORFs
- Trains itself on a prokaryote genome using ORFs over 500 bp
- http://www.cs.jhu.edu/labs/compbio/glimmer.html

Armstrong, 2007

Bioinformatics 2

Predicting Splice Sites

- There are some DNA features that allow splice sites to be predicted
- · These are often species specific
- They are not very accurate.

Armstrong, 200

Bioinformatics 2

NetGene2

- · Neural network based splice site prediction
- · Trained on known genes
- Claims to be 95% accurate
- Human, C. elegans & Arabidopsis thaliana
- http://www.cbs.dtu.dk/services/NetGene2/

Armstrong, 2007

Bioinformatics 2

HMMgene

- · Based on an HMM model of gene structure
- · Predicts intron/exon boundries
- Predicts start and stop codons
- Known information can be added (e.g. from ESTS etc.)
- Outputs in GFF format

Armstrong, 2007

GFF Format

- · Exchange format for gene finding packages
- · Fields are:
 - <seqname> name, genbank accession number
 - <source> program used
 - <feature> various inc splice sites
 - <start> start of feature

Armstrong, 2007

Bioinformatics

GFF Format

- <end> end of feature
- <score> floating point value
- <strand> +, (or .. for n/a)
- <frame> 0,1 or 2

Armstrong, 2007

Bioinformatics

GenScan

- Probabilistic model for gene structure based on a general HMM
- Can model intron/exon boundries, UTRs, Promoters, polyA tails etc
- http://genes.mit.edu/GENSCAN.html

Armstrong, 2007

Bioinformatics 2

Given a new protein sequence...

- What is the function?
- Where is the protein localised?
- What is the structure?
- What might it interact with?

Armstrong, 200

Bioinformatics 2

Given a new protein sequence...

- What is the function?
- Have we seen this protein or a very similar one before?
 - If yes then we can infer function, structure, localisation and interactions from homologous sequence.
- Are there features of this protein similar to others?

Armstrong, 2007

Bioinformatics 2

Protein Families

- Proteins are complex structures built from functional and structural sub-units
 - When studying protein families it is evident that some regions are more heavily conserved than others.
 - These regions are generally important for the structure or function of the protein
 - Multiple alignment can be used to find these regions
 - These regions can form a signature to be used in identifying the protein family or functional domain.

Armstrong, 2007

Protein Domains

- Evolution conserves sequence patterns due to functional and structural constraints.
- Different methods have been applied to the analysis of these regions.
- Domains also known by a range of other names:

motifs patterns prints blocks

Armstrong, 2007 Bioinformatic

Profiles

- Given a sequence, we often want to assign the sequence to a family of known sequences
- We often also want to assign a subsequence to a family of subsequences.

Armstrong, 2007 Bioinformatics

Profiles

- Examples include assigning a gene/protein to a known gene/protein family, e.g.
 - G coupled receptors
 - actins
 - globins

Armstrong, 2007 Bioinformatics 2

Profiles

- Also we may wish to find known protein domains or motifs that give us clues about structure and function
 - Phosphorylation sites (regulated site)
 - Leucine zipper (dna binding)
 - EGF hand (calcium binding)

rmstrong, 2007 Bioinformatics 2

Creating Profiles

- Aligning a sequence to a single member of the family is not optimal
- Create profiles of the family members and test how similar the sequence is to the profile.
- A profile of a multiply aligned protein family gives us letter frequencies per column.

Armstrong, 2007 Bioinfor

Matching sequences to profiles

- We can define a distance/similarity cost for a base in each sequence being present at any location based on the probabilities in the profile.
- We define define costs for opening and extending gaps in the sequence or profile.
- Therefore we can essentially treat the alignment of a sequence to a profile as a pairwise alignment and use dynamic programming algorithms to find and score the optimal alignments.

Armstrong, 2007

Protein profiles

- Multiple alignments can be used to give a consensus sequence.
- The columns of characters above each entry in the consensus sequence can be used to derive a table of probabilities for any amino acid or base at that position.

Armstrong, 2007

Bioinformatics

Protein profiles

- The table of percentages forms a profile of the protein or protein subsequence.
- With a gap scoring approach sequence similarity to a profile can be calculated.
- The alignment and similarity of a sequence / profile pair can be calculated using a dynamic programming algorithm.

Armstrong, 200

Bioinformatics 2

Protein profiles

- Alternative approaches use statistical techniques to assess the probability that the sequence belongs to a family of related sequences.
- This is calculated by multiplying the probabilities for amino acid *x* occurring at position *y* along the sequence/profile.

Armstrong, 2007

Bioinformatics 2

Tools for HMM profile searches

- Meme and Mast at UCSD (SDSC)
- http://meme.sdsc.edu/
- MEME
 - input: a group of sequences
 - output: profiles found in those sequences
- MAST
 - input: a profile and sequence database
 - output: locations of the profile in the database

Armstrong, 2007

Bioinformatics 2

Summary

- Multiple alignment is used to define and find conserved features within DNA and protein sequences
- Profiles of multiply aligned sequences are a better description and can be searched using pairwise sequence alignment.
- Many different programs and databases available.

Armstrong, 2007

Bioinformatics 2

Secondary Databases

- PDB
- Pfam
- PRINTS
- PROSITE
- ProDom
- SMART
- TIGRFAMs

Armstrong, 2007

PDB

- · Molecular Structure Database
- Contains the 3D structure coordinates of 'solved' protein sequences
 - X-ray crystallography
 - NMR spectra
- 29429 protein structures

Armstrong, 2007

Riginformatics

SUPERFAMILY is a library of profile hidden Markov models that represent all proteins of known structure, based on SCOP.

The SCOP database aims to provide a detailed and comprehensive description of the structural and evolutionary relationships between all proteins whose structure is known (based on PDB)

Armstrong 2007

Bioinformatics 2

Pfam

- · Database of protein domains
- Multiple sequence alignments and profile HMMs
- · Entries also annotated
- · Swiss-Prot DB all pre-searched
- · New sequences can be searched as well.
 - 7973 entries in Pfam last update

Armstrong, 2007

Bioinformatics 2

- · Database of 'protein fingerprints'
- Group of motifs that combined can be used to characterise a protein family
- ~11,000 motifs in PRINTS DB
- Provide more info than motifs alone

Armstrong, 200

Bioinformatics 2

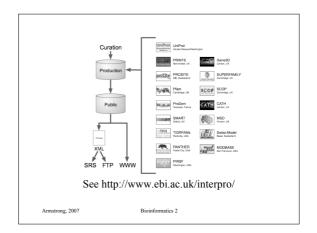
'linear' motifs

- · Not all protein motifs are easy to find
- Linear motifs involved in protein-protein interactions
 - Very degenerate
 - Found in specific regions of proteins
 - Require special treatment
 - Neduva et al, PLOS 2005

Armstrong, 2007

Bioinformatics 2

Linking it all together...


- · Database Searches
 - Multiple Alignments
 - Find known motifs and domains
 - Find possible similar folds
- · Prediction algorithms
 - Properties of amino acids
 - Predicting folding
 - Finding cysteine bonds

Armstrong, 2007

InterPro

- · EBI managed DB
- Incorporates most protein structure DBs
- Unified query interface and a single results output.

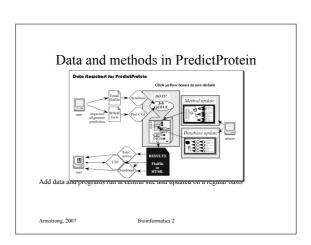
Armstrong, 2007 Bioinformatics

InterPro

VERSION ENTRIES DATABASE 197228 SWISS-PROT 48 1900 TREMBL 31.1 2342938 PFAM 18 7973 PROSITE 19.10 1882

Currently 15 databases, plans to add 3 new ones this month.

Armstrong, 2007 Bioinformatics 2


PredictProtein HEYEPRT http://www.embl-heidelberg.de/predictprotein/ Database searches: - generation of multiple sequence alignments (MaxHom) - detection of functional motifs (PROSITE) - detection of composition-bias (SEG) - detection of protein domains (PRODOM) - fold recognition by prediction-based threading (TOPITS)

PredictProtein

Predictions of

- secondary structure (PHDsec, and PROFsec)
- residue solvent accessibility (PHDacc, and PROFacc)
- transmembrane helix location and topology (PHDhtm, PHDtopology)
- protein globularity (GLOBE)
- coiled-coil regions (COILS)
- cysteine bonds (CYSPRED)
- structural switching regions (ASP)

Armstrong, 2007 Bioinformatics 2

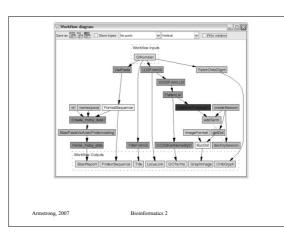
Too many programs/databases

- How do we keep track of our own queries?
 - Repeat an old query
 - Run the same tests on a new sequence
 - Run 100s of sequences..
 - Document the process for a paper or client or for quality assurance

Armstrong 2007

Bioinformatics

Workflow managers


- Locate and manage connections to software and databases
- · Record actions
- Replay a workflow at a later date or against multiple sequences
- Manages redundant external sources (e.g. multiple blast servers)
- · Can connect to specialist local sources

mstrong, 2007 Bioinform

- http://taverna.sourceforge.net/
- · Open source and free to download
- Runs on PC/linux/mac
- Drag-n-Drop interface to bioinformatics analysis

Armstrong, 2007

