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Sequence Alignment

Armstrong, 2008

Why?

• Genome sequencing gives us new gene
sequences

• Network biology gives us functional
information on genes/proteins

• Analysis of mutants links unknown genes to
diseases

• Can we learn anything from other known
sequences about our new gene/protein?

Armstrong, 2008

What is it?

ACCGGTATCCTAGGAC

ACCTATCTTAGGAC

Are these two sequences related?
How similar (or dissimilar) are they?

Armstrong, 2008
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What is it?

ACCGGTATCCTAGGAC

|||  |||| ||||||
ACC--TATCTTAGGAC

• Match the two sequences as closely as possible =
aligned

• Therefore, alignments need a score

Armstrong, 2008

Why do we care?

• DNA and Proteins are based on linear sequences
• Information is encoded in these sequences
• All bioinformatics at some level comes back to

matching sequences that might have some noise or
variability



2

Armstrong, 2008

Alignment Types

• Global: used to compare to similar sized
sequences.
– Compare closely related genes
– Search for mutations or polymorphisms

in a sequence compared to a reference.
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Alignment Types

• Local: used to find shared subsequences.
– Search for protein domains
– Find gene regulatory elements
– Locate a similar gene in a genome

sequence.
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Alignment Types

• Ends Free: used to find joins/overlaps.
– Align the sequences from adjacent

sequencing primers.
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How do we score alignments?

ACCGGTATCCTAGGAC
|||  |||| ||||||
ACC--TATCTTAGGAC

• Assign a score for each match along the
sequence.

Armstrong, 2008

How do we score alignments?

ACCGGTATCCTAGGAC
|||  |||| ||||||
ACC--TATCTTAGGAC

• Assign a score (or penalty) for each
substitution.

Armstrong, 2008

How do we score alignments?

ACCGGTATCCTAGGAC
|||  |||| ||||||
ACC--TATCTTAGGAC

• Assign a score (or penalty) for each
insertion or deletion.

• insertions/deletions otherwise known as
indels
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How do we score alignments?

ACCGGTATCCTAGGAC
|||  |||| ||||||

ACC--TATCTTAGGAC

• Matches and substitutions are ‘easy’ to deal
with.
– We’ll look at substitution matrices later.

• How do we score indels: gaps?

Armstrong, 2008

How do we score gaps?

ACCGGTATCC---GAC
|||  ||||    |||

ACC--TATCTTAGGAC

• A gap is a consecutive run of indels
• The gap length is the number of indels.
• The simple example here has two gaps of

length 2 and 3
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How do we score gaps?

ACCGGTATCC---GAC
|||  ||||    |||

ACC--TATCTTAGGAC

• Constant: Length independent weight
• Affine: Open and Extend weights.
• Convex: Each additional gap contributes less
• Arbitrary: Some arbitrary function on length

Armstrong, 2008

Choosing Gap Penalties

• The choice of Gap Scoring Penalty is very
sensitive to the context in which it is
applied:
– introns vs exons
– protein coding regions
– mis-matches in PCR primers

Armstrong, 2008

Substitution Matrices

• Substitution matrices are used to score
substitution events in alignments.

• Particularly important in Protein sequence
alignments but relevant to DNA sequences
as well.

• Each scoring matrix represents a particular
theory of evolution

Armstrong, 2008

Similarity/Distance

• Distance is a measure of the cost or
replacing one residue with another.

• Similarity is a measure of how similar a
replacement is.

e.g. replacing a hydrophobic residue with a hydrophilic one.

• The logic behind both are the same and the
scoring matrices are interchangeable.
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DNA Matrices
Identity matrix BLAST
     A C G T A  C  G  T
A 1 0 0 0    A  5 –4 –4 -4
C 0 1 0 0    C –4  5 –4 -4
G 0 0 1 0    G –4 –4  5 -4
T 0 0 0 1    T -4 –4 –4 5

However, some changes are more likely to occur than others (even in
DNA). When looking at distance, the ease of mutation is a factor. a.g.
A-T and A-C replacements are rarer than A-G or C-T.

Armstrong, 2008

Protein Substitution Matrices

How can we score a substitution in an aligned
sequence?

• Identity matrix like the simple DNA one.
• Genetic Code Matrix:

For this, the score is based upon the minimum number of
DNA base changes required to convert one amino acid into
the other.

Armstrong, 2008 Armstrong, 2008

Protein Substitution Matrices

How can we score a substitution in an aligned
sequence?

• Amino acid property matrix
Assign arbitrary values to the relatedness of different
amino acids:
e.g. hydrophobicity , charge, pH, shape, size

Armstrong, 2008

Matrices based on Probability

Sij = log (qij/pipj)

Sij is the log odds ratio of two probabilities: amino
acids i and j are aligned by evolutionary descent
and the probability that they aligned at random.

This is the basis for commonly used substitution
matrices.

Armstrong, 2008

PAM matrices

Dayhoff, Schwarz and Orcutt 1978 took these into
consideration when constructing the PAM
matrices:
Took 71 protein families - where the sequences
differed by no more than 15% of residues (i.e.
85% identical)

Aligned these proteins
Build a theoretical phylogenetic tree
Predicted the most likely residues in the 
ancestral sequence
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PAM Matrices

• Ignore evolutionary direction
• Obtained frequencies for residue X  being

substituted by residue Y over time period Z

• Based on 1572 residue changes

• They defined a substitution matrix as 1 PAM
(point accepted mutation) if the expected number
of substitutions was 1% of the sequence length.

Armstrong, 2008

PAM Matrices

To increase the distance, they multiplied the
the PAM1 matrix.

PAM250 is one of the most commonly
used.

Armstrong, 2008

PAM - notes

The PAM matrices are rooted in the original
datasets used to create the theoretical trees

They work well with closely related sequences

Based on data where substitutions are most likely
to occur from single base changes in codons.
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PAM - notes

Biased towards conservative mutations in the DNA
sequence (rather than amino acid substitutions) that
have little effect on function/structure.

Replacement at any site in the sequence depends
only on the amino acid at that site and the
probability given by the table.This does not
represent evolutionary processes correctly. Distantly
related sequences usually have regions of high
conservation (blocks).

Armstrong, 2008

PAM - notes

36 residue pairs were not observed in the dataset
used to create the original PAM matrix

A new version of PAM was created in 1992 using
59190 substitutions: Jones, Taylor and Thornton
1992 CAMBIOS 8 pp 275

Armstrong, 2008

BLOSUM matrices

 Henikoff and Henikoff 1991

Took sets of aligned ungapped regions from protein
families from the BLOCKS database.

The BLOCKS database contain short protein
sequences of high similarity clustered together.
These are found by applying the MOTIF algorithm
to the SWISS-PROT and other databases. The
current release has 8656 Blocks.
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BLOSUM matrices

 Sequences were clustered whenever the %identify
exceeded some percentage level.

Calculated the frequency of any two residues being
aligned in one cluster also being aligned in another

 
Correcting for the size of each cluster.

Armstrong, 2008

BLOSUM matrices

Resulted in the fraction of observed substitutions
between any two residues over all observed
substitutions.

The resulting matrices are numbered inversely from
the PAM matrices so the BLOSUM50 matrix was
based on clusters of sequence over 50% identity,
and BLOSUM62 where the clusters were at least
62% identical.

Armstrong, 2008

BLOSUM 62 Matrix

Armstrong, 2008

Summary so far…

• Gaps
– Indel operations
– Gap scoring methods

• Substitution matrices
– DNA largely simple matrices
– Protein matrices are based on probability
– PAM and BLOSUM

Armstrong, 2008

How do we do it?

• Like everything else there are several
methods and choices of parameters

• The choice depends on the question being
asked
– What kind of alignment?
– Which substitution matrix is appropriate?
– What gap-penalty rules are appropriate?
– Is a heuristic method good enough?

Armstrong, 2008

Working Parameters
• For proteins, using the affine gap penalty

rule and a substitution matrix:
Query Length  Matrix Gap (open/extend)

<35 PAM-30 9,1
35-50 PAM-70 10,1
50-85 BLOSUM-80 10,1
>85 BLOSUM-62 11,1
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Alignment Types

• Global: used to compare to similar sized
sequences.

• Local: used to find similar subsequences.

• Ends Free: used to find joins/overlaps.

Armstrong, 2008

Global Alignment

• Two sequences of similar length
• Finds the best alignment of the two

sequences
• Finds the score of that alignment
• Includes ALL bases from both sequences in

the alignment and the score.

• Needleman-Wunsch algorithm

Armstrong, 2008

Needleman-Wunsch algorithm

• Gaps are inserted into, or at the ends of each
sequence.

• The sequence length (bases+gaps) are
identical for each sequence

• Every base or gap in each sequence is
aligned with a base or a gap in the other
sequence

Armstrong, 2008

Needleman-Wunsch algorithm

• Consider 2 sequences S and T
• Sequence S has n elements
• Sequence T has m elements
• Gap penalty ?

Armstrong, 2008

How do we score gaps?

ACCGGTATCC---GAC
|||  ||||    |||

ACC--TATCTTAGGAC

• Constant: Length independent weight
• Affine: Open and Extend weights.
• Convex: Each additional gap contributes less
• Arbitrary: Some arbitrary function on length

– Lets score each gap as –1 times length

Armstrong, 2008

Needleman-Wunsch algorithm

• Consider 2 sequences S and T
• Sequence S has n elements
• Sequence T has m elements
• Gap penalty –1 per base (arbitrary gap penalty)
• An alignment between base i in S and a gap in T is

represented:   (Si,-)
• The score for this is represented :  σ(Si,-) = -1
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Needleman-Wunsch algorithm

• Substitution/Match matrix for a simple alignment
• Several models based on probability….

2-1-1-1T
-12-1-1G
-1-12-1C
-1-1-12A
TGCA

Armstrong, 2008

Needleman-Wunsch algorithm

• Substitution/Match matrix for a simple alignment
• Simple identify matrix (2 for match, -1 for

mismatch)
• An alignment between base i in S and base j in T

is represented: (Si,Tj)
• The score for this occurring is represented: σ(Si,Tj)

Armstrong, 2008

Needleman-Wunsch algorithm

• Set up a array V of size n+1 by m+1
• Row 0 and Column 0 represent the cost of adding

gaps to either sequence at the start of the
alignment

• Calculate the rest of the cells row by row by
finding the optimal route from the surrounding
cells that represent a gap or match/mismatch
– This is easier to demonstrate than to explain

Armstrong, 2008

Needleman-Wunsch algorithm

– lets start by trying out a simple example
alignment:

S = ACCGGTAT
T =  ACCTATC

Armstrong, 2008

Needleman-Wunsch algorithm

– Get lengths

S = ACCGGTAT
T =  ACCTATC

Length of S = m = 8
Length of T = n = 7

(lengths approx equal so OK for Global Alignment)

Armstrong, 2008

Create array m+1 by n+1
(i.e. 9 by 8)
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Add on bases from each sequence
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

Armstrong, 2008

Represent scores for gaps in
row/col 0

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-2

Armstrong, 2008

Represent scores for gaps in
row/col 0

-7
-6
-5
-4
-3
-2
-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2

Armstrong, 2008

For each cell consider the ‘best’
path

-7
-6
-5
-4
-3
-2
-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2

Armstrong, 2008

For each cell consider the ‘best’
path

-1
-10

          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-3-2

(S1,T0) &  σ(-,T1) = -1
Running total (-1+-1)=-2

Armstrong, 2008

For each cell consider the ‘best’
path

-1
-10

          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-3-2

(S1,T0) &  σ(-,T1) = -1
Running total (-1+-1)=-2

(S0, T1) &  σ(S1,-) = -1
Running total (-1+-1)=-2
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For each cell consider the ‘best’
path

-1
-10

          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-3-2

(S1,T0) &  σ(-,T1) = -1
Running total (-1+-1)=-2

(S0, T1) &  σ(S1,-) = -1
Running total (-1+-1)=-2

(S0,T0) &  σ(S1,T1) = 2
Running total (0+2)=2

Armstrong, 2008

Choose and record ‘best’ path

2-1
-10

          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-3-2

Armstrong, 2008

Choose and record ‘best’ path

2-1
-10

          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-3-2

(S2,T0) &  σ(-,T1)
Running total (-2+-1)=-3

(S1,T1) &  σ(S2,-)
Running total (2+-1)=1

(S1,T0) &  σ(S2,T1) 
Running total (-1+-1)=-2

1

Armstrong, 2008

Continue….

-7
-6
-5
-4
-3
-2

12-1
-10

          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

Armstrong, 2008

Continue….

-7
-6
-5
-4
-3

-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2

Armstrong, 2008

Continue….

-7
-6
-5
-4

1234563-3
-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0
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Continue….

-7
-6
-5

4564452-1-4
1234563-3
-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

Continue….

-7
-6

7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

Continue….

-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

Finally.

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

= Score

Armstrong, 2008

Finally.

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

We recreate the alignment using by following the
pointers back through the array to the origin

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0
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964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

                     - (S)

                     C (T)

Armstrong, 2008

                    T- (S)
                    |
                    TC (T)

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

                   AT- (S)
                   ||
                   ATC (T)

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

                  TAT- (S)
                  |||
                  TATC (T)

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

                 GTAT- (S)
                  |||
                 -TATC (T)

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

                GGTAT- (S)
                  |||
                --TATC (T)

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0
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               CGGTAT- (S)
               |  |||
               C--TATC (T)

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

              CCGGTAT- (S)
              ||  |||
              CC--TATC (T)

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

             ACCGGTAT- (S)
             |||  |||
             ACC--TATC (T)

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
          A  C  C   G  G  T  A  T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

Checking the result

• Our alignment considers ALL bases in each
sequence

• 6 matches = 12 points, 3 gaps = -3 points
• Score = 9 confirmed.

             ACCGGTAT- (S)
             |||  |||    
             ACC--TATC (T)

Armstrong, 2008

A bit more formally..
Base conditions: V(i,0) =     σ(Sk,-)

V(0,j) =     σ(-,Tk)∑

∑
i

j

k=0

k=0

Recurrence relation:    for 1<=i <= n, 1<=j<=m:

V(i,j) = max {V(i-1,j-1) + σ(Si,Tj)
V(i-1,j) + σ(Si,-)
V(i,j-1) + σ(-,Tj)

Armstrong, 2008

Time Complexity

• Each cell is dependant on three others and
the two relevant characters in each sequence

• Hence each cell takes a constant time
• (n+1) x (m+1) cells

• Complexity is therefore    O(nm)



14

Armstrong, 2008

Space Complexity

• To calculate each row we need the current row
and the row above only.

• Therefore to get the score, we need O(n+m) space

• However, if we need the pointers as well, this
increases to O(nm) space

• This is a problem for very long sequences
– think about the size of whole genomes

Armstrong, 2008

Global alignment in linear space

• Hirschberg 1977 applied a ‘divide and
conquer’ algorithm to Global Alignment to
solve the problem in linear space.

• Divide the problem into small manageable
chunks

• The clever bit is finding the chunks

Armstrong, 2008

dividing...
Compute matrix V(A,B) saving the values for n/2

th row
- call this matrix F

Compute matrix V(Ar,Br) saving the values for n/2
th row

- call this matrix B
Find column k so that the crossing point (n/2,k) satisfies:

F(n/2,k) + B(n/2,m-k) = F(n,m)

Now we have two much smaller problems:
(0,0) -> (n/2,k)  and (n,m) -> (n/2,m-k)

Armstrong, 2008

Hirschberg’s divide and conquer
approach(0,0)

(m,n)

n/2

Armstrong, 2008

Complexity

• After applying Hirschberg’s divide and conquer approach
we get the following:

– Complexity O(mn)

– Space O(min(m,n))

• For the proofs, see D.S. Hirschberg. (1977) Algorithms for
the longest common subsequence problem. J. A.C.M 24:
664-667

Armstrong, 2008

OK where are we?

• The Needleman-Wunsch algorithm finds the
optimum alignment and the best score.
– NW is a dynamic programming algorithm

• Space complexity is a problem with NW
• Addressed by a divide and conquer

algorithm
• What about local and ends-free alignments?
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Smith-Waterman algorithm

• Between two sequences, find the best two
subsequences and their score.

• We want to ignore badly matched sequence
• Use the same types of substitution matrix

and gap penalties
• Use a modification of the previous dynamic

programming approach.

Armstrong, 2008

Smith-Waterman algorithm

• If Si matches Tj then σ(Si,Tj) >=0
• If they do not match or represent a gap then <=0

• Lowest allowable value of any cell is 0
• Find the cell with the highest value (i,j) and

extend the alignment back to the first zero value
• The score of the alignment is the value in that cell
• A quick example if best...

Armstrong, 2008

min value of any cell is 0

0
0
0
0
0
0
0

000000000
          A  C  C   G  G  T  A  T (S)

T

T

G

T

A

T

C

(T)

Armstrong, 2008

min value of any cell is 0

0
0
0
0
0

312000000
212000000
000000000

          A  C  C   G  G  T  A  T (S)

T

T

G

T

A

T

C

(T)

Armstrong, 2008

min value of any cell is 0

741234300
852000110
563000120
334110000
211220000
312000000
212000000
000000000

          A  C  C   G  G  T  A  T (S)

T

T

G

T

A

T

C

(T)

Armstrong, 2008

Find biggest cell and map alignment
from there

741234300
852000110
563000120
334110000
211220000
312000000
212000000
000000000

          A  C  C   G  G  T  A  T (S)

T

T

G

T

A

T

C

(T)
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GTAT(S)
||||
GTAT(T)

741234300
852000110
563000120
334110000
211220000
312000000
212000000
000000000

          A  C  C   G  G  T  A  T (S)

T

T

G

T

A

T

C

(T)
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Smith-Waterman cont’d

• Complexity
– Time is O(nm) as in global alignments
– Space is O(nm) as in global alignments

– A mod of Hirschbergs algorithm allows O(n+m)
(n+m) as two rows need to be stored at a time instead of
one as in the global alignment.

Armstrong, 2008

A bit more formally..
Base conditions: ∀i,j. V(i,0) = 0, V(0,j) = 0

Recurrence relation:    for 1<=i <= n, 1<=j<=m:

V(i,j) = max { 0
V(i-1,j-1) + σ(Si,Tj)
V(i-1,j) + σ(Si,-)
V(i,j-1) + σ(-,Tj)

Compute i* and j* V(i *,j *) = max 1<=i<=n,1<=j<=m V(i,j) 

Armstrong, 2008

Ends-free alignment

• Find the overlap between two sequences such start
the start of one overlaps is in the alignment and
the end of the other is in the alignment.

• Essential to DNA sequencing strategies.
– Building genome fragments out of shorter sequencing

data.

• Another variant of the Global Alignment Problem

Armstrong, 2008

Ends-free alignment

• Set the initial conditions to zero weight
– allow indels/gaps at the ends without penalty

• Fill the array/table using the same recursion
model used in global/local alignment

• Find the best alignment that ends in one row
or column
– trace this back

Armstrong, 2008

min value row0 & col0 is 0

555644100
6564452-10
743453300
852123410
563000120
2341011-10
-1012-1-1-1-10
000000000

          G  T  T   A  C  T  G  T (S)

C

T

G

T

A

T

C

(T)
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Find the best ‘end’ point in an end col or
row

555644100
6564452-10
743453300
852123410
563000120
2341011-10
-1012-1-1-1-10
000000000

          G  T  T   A  C  T  G  T (S)

C

T

G

T

A

T

C

(T)

Armstrong, 2008

Trace the best route from there to the
origin and end

555644100
6564452-10
743453300
852123410
563000120
2341011-10
-1012-1-1-1-10
000000000

          G  T  T   A  C  T  G  T (S)

C

T

G

T

A

T

C

(T)

Armstrong, 2008

GTTACTGT---(S)
    ||||
----CTGTATC(T)

555644100
6564452-10
743453300
852123410
563000120
2341011-10
-1012-1-1-1-10
000000000

          G  T  T   A  C  T  G  T (S)

C

T

G

T

A

T

C

(T)

Armstrong, 2008

A bit more formally..
Base conditions: ∀i,j. V(i,0) = 0, V(0,j) = 0

Recurrence relation:    for 1<=i <= n, 1<=j<=m:

V(i,j) = max {V(i-1,j-1) + σ(Si,Tj)
V(i-1,j) + σ(Si,-)
V(i,j-1) + σ(-,Tj)

Search for i* such that: V(i*,m)=max1<=i<=n,m V(i,j)
Search for j* such that: V(n,j*)=max1<=j<=n,m V(i,j)

Define alignment score V(S,T) = max{V(n,j*)
V(i*,m)

Armstrong, 2008

Summary so far...

• Dynamic programming algorithms can
solve global, local and ends-free alignment

• They give the optimum score and alignment
using the parameters given

• Divide and conquer approaches make the
space complexity manageable for small-
medium sized sequences

Armstrong, 2008

Dynamic Programming Issues

• For huge sequences, even linear space constraints
are a problem.

• We used a very simple gap penalty
• The Affine Gap penalty is most commonly used.

– Cost to open a gap
– Cost to extend an open gap

• Need to track and evaluate the ‘gap’ state in the
array
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Tracking the gap state

• We can model the matches and gap
insertions as a finite state machine:

Taken from Durbin, chapter 2.4

Armstrong, 2008

Tracking the gap state

• Working along the alignment process...

Taken from Durbin, chapter 2.4

Armstrong, 2008

• When searching multiple genomes, the sizes still
get too big!

• Several approaches have been tried:
• Use huge parallel hardware:

– Distribute the problem over many CPUs
– Very expensive

• Implement in Hardware
– Cost of specialist boards is high
– Has been done for Smith-Waterman on SUN

Real Life Sequence Alignment

Armstrong, 2008

• Use a Heuristic Method
– Faster than ‘exact’ algorithms
– Give an approximate solution
– Software based therefore cheap

• Based on a number of assumptions:

Real Life Sequence Alignment

Armstrong, 2008

Assumptions for Heuristic
Approaches

• Even linear time complexity is a problem
for large genomes

• Databases can often be pre-processed to a
degree

• Substitutions more likely than gaps
• Homologous sequences contain a lot of

substitutions without gaps which can be
used to help find start points in alignments

Armstrong, 2008

Conclusions

• Dynamic programming algorithms are
expensive but they give you the optimum
alignment and exact score

• Choice of GAP penalty and substitution
matrix are critically important

• Heuristic approaches are generally required
for high throughput or very large alignments



19

Armstrong, 2008

Heuristic Methods

• FASTA
• BLAST
• Gapped BLAST
• PSI-BLAST

Armstrong, 2008

Assumptions for Heuristic
Approaches

• Even linear time complexity is a problem
for large genomes

• Databases can often be pre-processed to a
degree

• Substitutions more likely than gaps
• Homologous sequences contain a lot of

substitutions without gaps which can be
used to help find start points in alignments

Armstrong, 2008

BLAST

Altschul, Gish, Miller, Myers and Lipman (1990)
Basic local alignment search tool. J Mol Biol

215:403-410

• Developed on the ideas of FASTA
• Integrates the substitution matrix in the first

stage of finding the hot spots
• Faster hot spot finding

Armstrong, 2008

BLAST definitions

• Given two strings S1 and S2
• A segment pair is a pair of equal lengths

substrings of S1 and S2 aligned without gaps
• A locally maximal segment is a segment whose

alignment score (without gaps) cannot be
improved by extending or shortening it.

• A maximum segment pair (MSP) in S1 and S2 is a
segment pair with the maximum score over all
segment pairs.

Armstrong, 2008

BLAST Process

• Parameters:
– w: word length (substrings)
– t: threshold for selecting interesting alignment

scores

Armstrong, 2008

BLAST Process

• 1. Find all the w-length substrings from the
database with an alignment score >t
– Each of these (similar to a hot spot in FASTA) is called

a hit
– Does not have to be identical
– Scored using substitution matrix and score compared to

the threshold t (which determines number found)
– Words size can therefore be longer without losing

sensitivity: AA - 3-7 and DNA ~12
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BLAST Process

• 2. Extend hits:
– extend each hit to a local maximal segment
– extension of initial w size hit may increase or decrease

the score
– terminate extension when a threshold is exceeded
– find the best ones (HSP)

• This first version of Blast did not allow gaps….

Armstrong, 2008

(Improved) BLAST

Altshul, Madden, Schaffer, Zhang, Zhang, Miller &
Lipman  (1997) Gapped BLAST and PSI-BLAST:a

new generation of protein database search
programs. Nucleic Acids Research 25:3389-3402

• Improved algorithms allowing gaps
– these have superceded the older version of

BLAST
– two versions: Gapped and PSI BLAST

Armstrong, 2008

(Improved) BLAST Process

• Find words or hot-spots
– search each diagonal for two w length words

such that score >=t
– future expansion is restricted to just these initial

words
– we reduce the threshold t to allow more initial

words to progress to the next stage

Armstrong, 2008

(Improved) BLAST Process

• Allow local alignments with gaps
– allow the words to merge by introducing gaps
– each new alignment comprises two words with

a number of gaps
– unlike FASTA does not restrict the search to a

narrow band
– as only two word hits are expanded this makes

the new blast about 3x faster

Armstrong, 2008

PSI-BLAST

• Iterative version of BLAST for searching for
protein domains
– Uses a dynamic substitution matrix
– Start with a normal blast
– Take the results and use these to ‘tweak’ the matrix
– Re-run the blast search until no new matches occur

• Good for finding distantly related sequences but
high frequency of false-positive hits

Armstrong, 2008

BLAST Programs
• blastp compares an amino acid query sequence against a 

protein sequence database.
• blastn compares a nucleotide query sequence against a 

nucleotide sequence database.
• blastx compares a nucleotide query sequence translated in all

reading frames against a protein sequence database.
• tblastn compares a protein query sequence against a nucleotide

sequence database dynamically translated in all reading
frames.

• tblastx compares the six-frame translations of a nucleotide query
sequence against the six-frame translations of a nucleotide
sequence database. (SLOW)
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Go try them out!

• Links to NCBI and EBI are on the course
web site

• Some test sequences will be posted on the
course web site

Armstrong, 2008

Alignment Heuristics

• Dynamic Programming is better but too slow
• BLAST (and FASTA) based on several

assumptions about good alignments
– substitutions more likely than gaps
– good alignments have runs of identical matches

• FASTA good for DNA sequences but slower
• BLAST better for amino acid sequences, pretty

good for DNA, fastest, now dominant.


