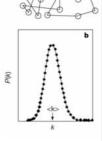
Bioinformatics 2

Protein Interaction Networks

Armstrong, 2008

- Biological Networks in general
- · Metabolic networks
- Briefly review proteomics methods
- Protein-Protein interactions
- Protein Networks
- Protein-Protein interaction databases

Armstrong, 2008

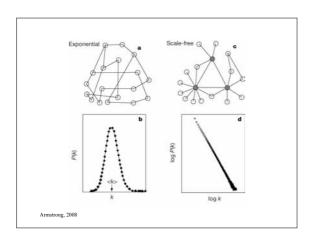

Biological Networks

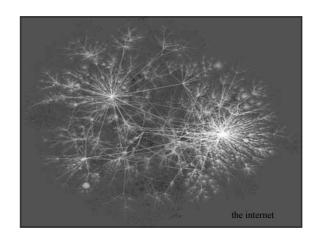
- · Genes act in cascades
- · Proteins form functional complexes
- · Metabolism formed from enzymes and substrates
- The CNS neurons act in functional networks
- Epidemiology mechanics of disease spread
- Social networks interactions between individuals in a population
- Food Chains

Armstrong, 2008

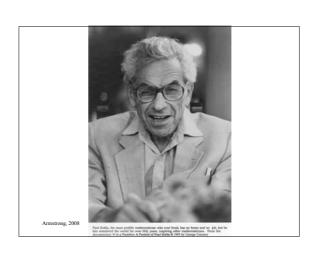
Large scale organisation

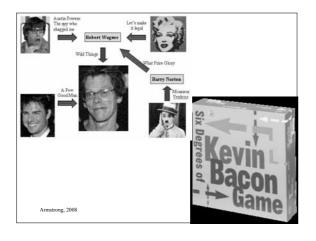
- First networks in biology generally modeled using classic random network theory.
- Each pair of nodes is connected with probability p
- Results in model where most nodes have the same number of links <k>
- The probability of any number of links per node is P(k)≈e^{-k}

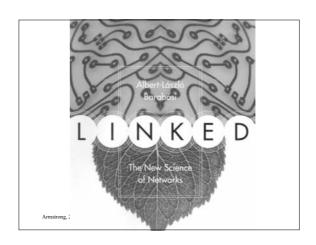



Armstrong, 2008

Non-biological networks

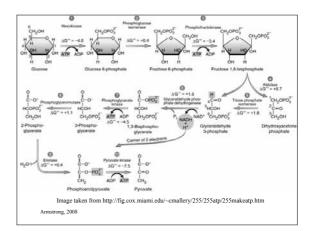

- Research into WWW, internet and human social networks observed different network properties
 - 'Scale-free' networks
 - P(k) follows a power law: P(k)≈ k^{γ}
 - Network is dominated by a small number of highly connected nodes - hubs
 - These connect the other more sparsely connected nodes



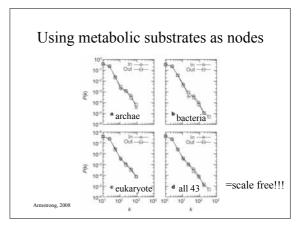


Small worlds

- General feature of scale-free networks
 - any two nodes can be connected by a relatively short path
 - $-\ average\ between any two people is around <math display="inline">6$
 - What about SARS???
 - 19 clicks takes you from any page to any other on the internet.

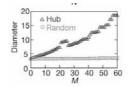


Biological organisation


Jeong et al., 2000 The large-scale organisation of metabolic networks. Nature 407, 651-654

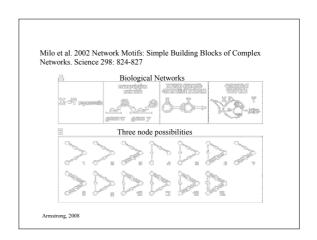
- Pioneering work by Oltvai and Barabasi
- Systematically examined the metabolic pathways in 43 organisms
- Used the WIT database
 - 'what is there' database
 - http://wit.mcs.anl.gov/WI7

 - Genomics of metabolic pathways



Random mutations in metabolic networks

- Simulate the effect of random mutations or mutations targeted towards hub nodes.
 - Measure network diameter
 - Sensitive to hub attack
 - Robust to random


Consequences for scale free networks

- Removal of highly connected hubs leads to rapid increase in network diameter
 - Rapid degeneration into isolated clusters
 - Isolate clusters = loss of functionality
- · Random mutations usually hit non hub nodes
- Redundant connectivity (many more paths between nodes)

Network Motifs

- Do all types of connections exist in networks?
- Milo et al studied the transcriptional regulatory networks in yeast and E.Coli.
- Calculated all the three and four gene combinations possible and looked at their frequency

Armstrong, 2008

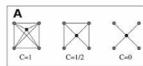
Gene sub networks

Network	Nodes	Edges	$N_{\rm real}$	N _{rand} ± S	D Z score	Nreal	N _{rand} ± SD	Zscore
Gene regulation (transcription				X V Y V	Feed- forward loop	X Z	₩	Bi-fan
E. coli	424	519	40	7±3	10	203	47 ± 12	13
S. cerevisiae*	685	1.052	70	11 ± 4	14	1812	300 ± 40	41

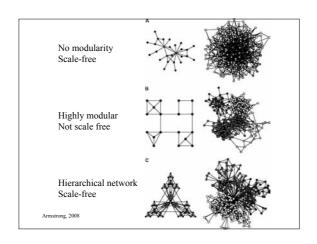
Heavy bias in both yeast and E.coli towards these two sub network architectures

Armstrong, 2008

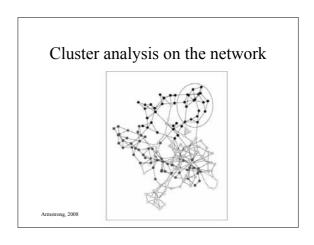
	Newse		High	Ned	Noval e te		Mossi	$N_{\rm hand} \pm 32$		Nucl	$N_{\text{rate}} \pm 3$	D. Zuone
	Gene regular threasuription				ž	Ford- liceard loop	D	₫	Hi-fire			
	E. coli E. constant	424 688	919 1,042	41 70	Z Teb	10	209	47±12 300±40				
	Negross				Ž.	Fred- forward loop	1	₫.	Ni-lat	A.	¥ ¥	produt
	C elegant Food wide	.351	309	125	X 10+10 X	3.7 Three	127	50 ± 11	53	127.	25 + 12	21
					¥	obels	1	Z.	perallel			
	Litta Rock Ythan St. Martin Outspeaks	62 63 42 31	198 291 208 67	3210 1102 465 90	1120 ± 50 1000 ± 20 450 ± 10 52 ± 6	7.1 7.2 NS 50	7298 1367 382 39	220 a 20 200 a 20 180 a 20	25 25 12			
	Conchelle Skipwith B. Brook	29 25 25	243 199 304	276 184 383	236 e 12 150 x 7 130 x 7	3.6 3.5 7.6	181 397 397	10 x 20 10 x 25 20 x 7	5 D 32			
	Electronic cir (forward logic				¥ ¥	Foreign Surge	D	₫	Ni-lan	'A'	K.	parallel
	475850 438584 438427	16,363 26,717 23,843	14,240 34,236 13,601	434 413 613	2 = 2 10 = 3 3 = 2	299 120 400	3040 3739 3306	1±1 5±2 (±)	3200 800 2890	480 711 331	2+1 1+2 1+2	339 320 340
	61234 x13027	5,844	8,317 (1,833	E11 613	211	(4) 225	794 4443	141	2250 4550	218 214	211	200 200
	Electronic co idigital fracti		plient	1	- x	Three- made feedback hoop	D	₫	36-tee	Ì	1	Foor- ande feelback toep
	438 430 4381	132 252 912	189 200 829	10 20 40	141	i	4 10 22	10	3.6 30 20	r H	181	5 31 20
	World Water	Nati		1	ò	Fredback with two	2x	7	Pully	1	1	Epitoked modesi
Armstrong					į.	doub.	v -	> z	triad	·←	× 2	dyad

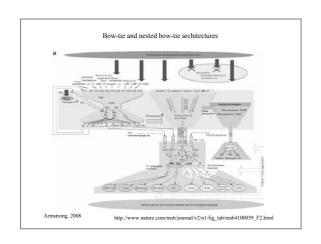

What about known complexes?

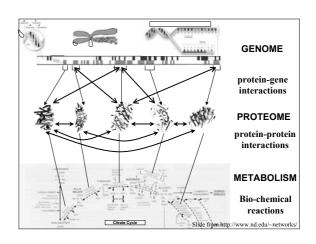
- OK, scale free networks are neat but how do all the different functional complexes fit into a scale free proteome arrangement?
 - e.g. ion channels, ribosome complexes etc?
- Is there substructure within scale free networks?
 - Examine the clustering co-efficient for each node.


Armstrong, 200

Clustering co-efficients and networks.


- $C_i = 2n/k_i(k_i-1)$
- n is the number of direct links connecting the k_i nearest neighbours of node i
- A node at the centre of a fully connected cluster has a C of 1




Clustering co-efficients and networks. Ravasz et al.,(2002) Hierarchical Organisation of Modularity in Metabolic Networks. Science 297, 1551-1555 • The modularity (ave C) of the metabolic networks is an order of magnitude higher than for truly scale free networks. Metabolic network Non modular network Armstrong, 2008

Clustering on C • Clustering on the basis of C allows us to rebuild the sub-domains of the network • Producing a tree can predict functional clustered arrangements. Amstrong, 2008

Biological Profiling

- · Microarrays
 - cDNA arrays
 - oligonucleotide arrays
 - whole genome arrays
- · Proteomics
 - yeast two hybrid
 - PAGE techniques
 - Mass Spectrometry (Lecture 2)

Armstrong, 2008

Protein Interactions

- Individual Proteins form functional complexes
- · These complexes are semi-redundant
- The individual proteins are sparsely connected
- The networks can be represented and analysed as an undirected graph

Armstrong, 2008

How to build a protein network

- · What is there
- High throughput 2D PAGE
- · Automatic analysis of 2D Page
- · How is it connected
- · Yeast two hybrid screening
- · Building and analysing the network
- An example

Armstrong, 2008

Proteomics - PAGE techniques

- Proteins can be run through a poly acrylamide gel (similar to that used to seqparate DNA molecules).
- Can be separated based on charge or mass.
- 2D Page separates a protein extract in two dimensions.

Armstrong, 200

2D Page mass charge Armstrong, 2008

DiGE

- We want to compare two protein extracts in the way we can compare two mRNA extracts from two paired samples
- <u>Differential Gel Electrophoresis</u>
- Take two protein extracts, label one green and one red (Cy3 and Cy5)

DiGE

• The ratio of green:red shows the ratio of the protein across the samples.

Armstrong, 2008

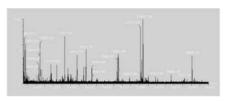
Identifying a protein 'blob'

- Unlike DNA microarrays, we do not normally know the identify of each 'spot' or blob on a protein gel.
- We do know two things about the proteins that comprise a blob:
 - mass
 - charge

Armstrong, 2008

Identifying a protein 'blob'

- Mass and Charge are themselves insufficient for positive identification.
- Recover from selected blobs the protein (this can be automated)
- Trypsin digest the proteins extracted from the blob (chops into small pieces)


Armstrong, 2008

Identifying a protein 'blob'

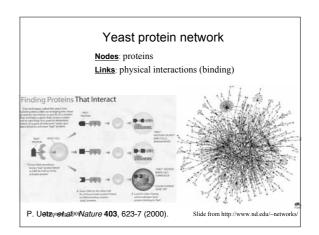
- Take the small pieces and run through a mass spectrometer. This gives an accurate measurement of the weight of each.
- The total weight and mass of trypsin digested fragments is often enough to identify a protein.
- The mass spec is known as a MALDI-TOFF

Armstrong, 20

Identifying a protein 'blob'

MALDI-TOFF output from myosin Good for rapid identification of single proteins. Does not work well with protein mixtures.

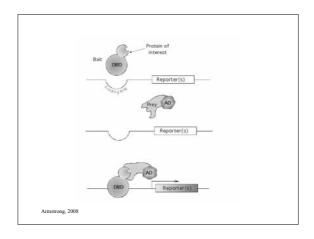
Armstrong, 200


Identifying a protein 'blob'

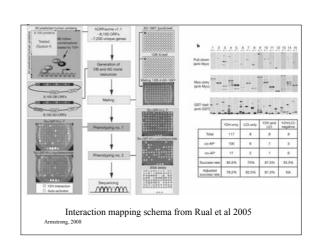
- When MALDI derived information is insufficient. Need peptide sequence:
- Q-TOF allows short fragments of peptide sequences to be obtained.
- We now have a total mass for the protein, an exact mass for each trypsin fragment and some partial amino acid sequence for these fragments.

How to build a protein network

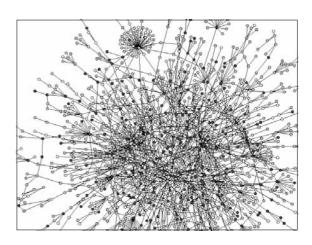
- · What is there
- High throughput 2D PAGE
- · Automatic analysis of 2D Page
- · How is it connected
- · Yeast two hybrid screening
- Building and analysing the network
- An example

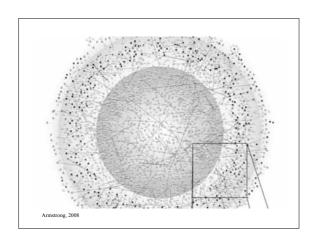

Armstrong 2008

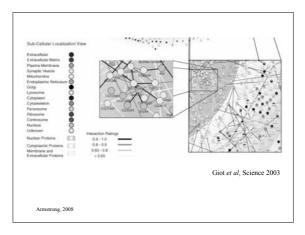
Yeast two hybrid

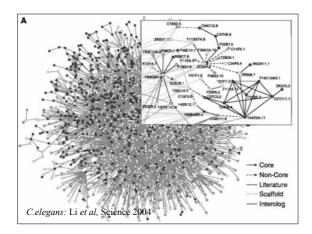

- Use two mating strains of yeast
- In one strain fuse one set of genes to a transcription factor DNA binding site
- In the other strain fuse the other set of genes to a transcriptional activating domain
- Where the two proteins bind, you get a functional transcription factor.

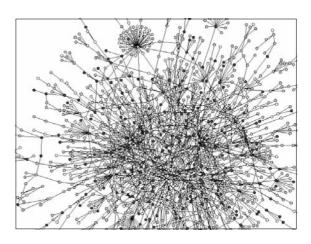
Armstrong, 2008


Data obtained


- Depending on sample, you get a profile of potential protein-protein interactions that can be used to predict functional protein complexes.
- False positives are frequent.
- Can be confirmed by affinity purification etc.

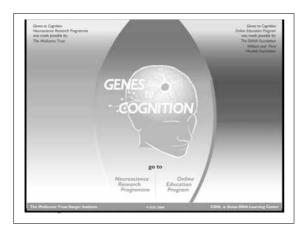


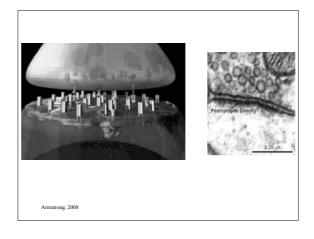

Protein Networks

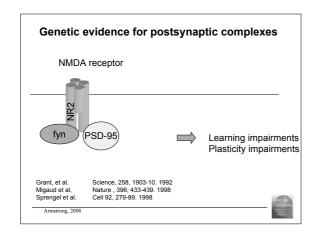

- Networks derived from high throughput yeast 2 hybrid techniques
 - yeast
 - Drosophila melanogaster
 - C.elegans
- Predictive value of reconstructed networks

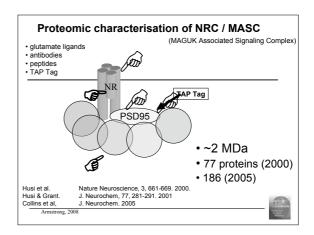
Predictive value of networks

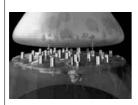
Jeong et al., (2001) Lethality and Centrality in protein networks. Nature 411 p41


- In the yeast genome, the essential vs. unessential genes are known.
- · Rank the most connected genes
- Compare known lethal genes with rank order


k	fraction	%lethal		
<6	93%	21%		
>15	0.7%	62%		


Armstrong, 2008


A walk-through example...


See linked papers on for further methodological details

Post Synaptic Density	1124
ER:microsomes	491
Splicesome	311
NRC/MASC	186
Nucleolus	147
Peroxisomes	181
Mitochondria	179
Phagosomes	140
Golgi	81
Choroplasts	81
Lysosomes	27
Exosomes	21

Armstrong, 2008
Grant. (2006) Biochemical Society Transactions. 34, 59-63. 2006

Literature Mining

- · 680 proteins identified from protein preps
- · Many already known to interact with each other
- · Also interact with other known proteins
 - Immunoprecipitation is not sensitive (only finds abundant proteins)
- Literature searching has identified a group of around 4200 proteins
 - Currently we have extensive interaction data on 1700

Armstrong 2008

Annotating the DB

- How do we find existing interactions?
 - Search PubMed with keyword and synonym combinations
 - Download abstracts
 - Sub-select and rank-order using regex's
 - Fast web interface displays the most 'productive' abstracts for each potential interaction

Armstrong, 2008

Keyword and synonym problem

- PSD-95:
 - DLG4,PSD-95,PSD95,Sap90,Tip-15,Tip15, Post Synatpic Density Protein - 95kD, PSD 95, Discs, large homolog 4, Presynaptic density protein 95
- NR2a:
 - Glutamate [NMDA] receptor subunit epsilon I precursor (N-methyl D-aspartate receptor subtype 2A) (NR2A) (NMDAR2A) (hNR2A) NR2a
- Protein interactions:
 - interacts with, binds to, does not bind to....

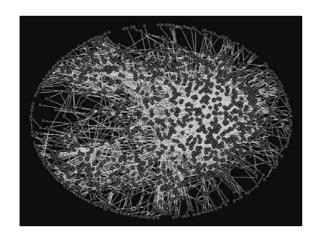
Armstrong, 2008

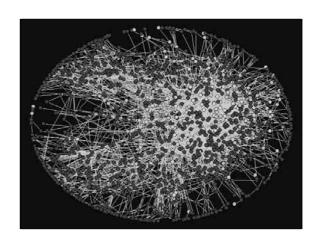
.+\sand\s.+\sinteract

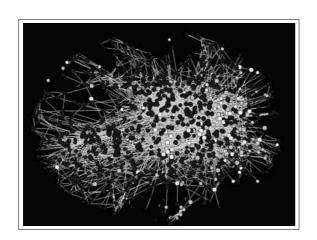
(1..N characters) (space) and (1..N characters) interact

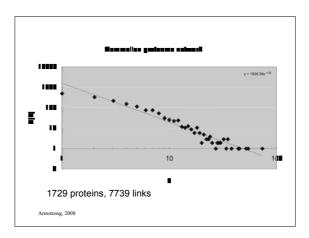
 $. + \s((is)|(was)) \sbound \sto\s. + \s$

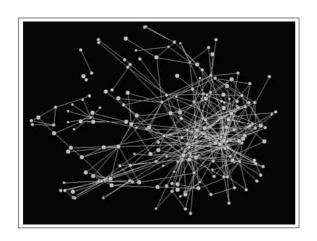
(1...N characters) (space) (is or was) (space) bound (space) to (1...N characters) (space)

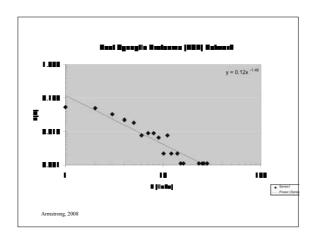

 $. + \s binding \s of \s. + \s ((and) | (to)) \s. +$

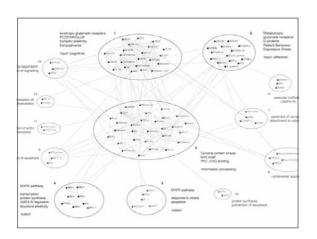

(1...N characters) (space) binding (space) of (and or to) (space) (1...N characters)

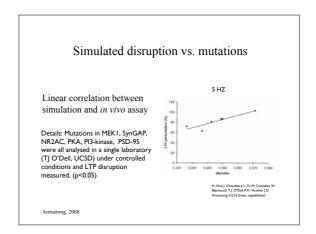

Armstrong, 2008

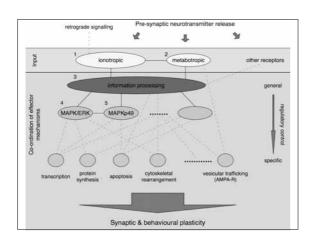

Annotating the DB

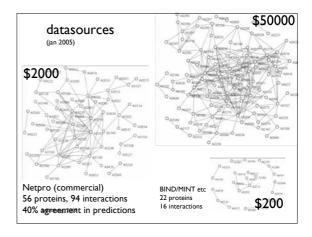

- How do we find existing interactions?
 - Search PubMed with keyword and synonym combinations
 - Download abstracts
 - Sub-select and rank-order using regex's
 - Fast web interface displays the most 'productive' abstracts for each potential interaction
 - Learn from good vs. bad abstracts





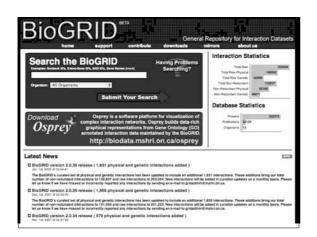




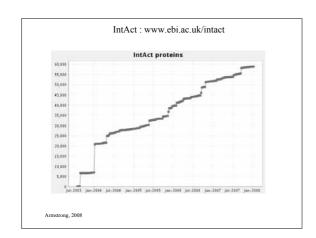


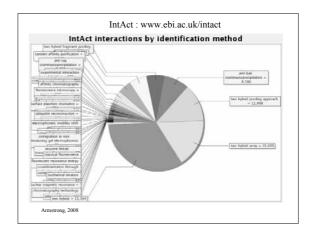
Synapse proteome summary

- · Protein parts list from proteomics
- · Literature searching produced a network
- · Network is essentially scale free
- Hubs more important in cognitive processes
- · Network clusters show functional subdivision
- · Overall architecture resembles bow-tie model
- Expensive...


Armstrong, 2008

Protein (and gene) interaction databases


BioGRID- A Database of Genetic and Physical Interactions
DIP - Database of Interacting Proteins
MINT - A Molecular Interacting Proteins
MIPS - Comprehensive Yeast Protein Interaction
MIPS - Comprehensive Yeast Protein-Interactions
MIPS - Comprehensive Yeast Protein-Interactions
Yeast Protein Interactions - Yeast two-hybrid results from Fields' group
PathCalling- A yeast protein interaction database by Curagen
SPID - Bacillus subrilis Protein Interaction Database
AllFuse - Functional Associations of Proteins in Complete Genomes
BRITE - Biomolecular Relations in Information Transmission and Expression
ProMesh - A Protein-Protein Interaction Database
The PIM Database - by Hybrigenics
Mouse Protein-Protein interactions
Human herpesvirus | Protein-Protein interactions
Human Protein Reference Database
BOND - The Biomolecular Object Network Databank. Former BIND
MDSP - Systematic identification of protein complexes enriched with the domain-domain structures
Proteins that interact with GroEl. and factors that affect their release
DPIDB - DNA-Protein Interaction Database
PYDTM - Yeast Proteome Database by Hybry


Source with links. http://proteome.wavne.edu/PIDBL.html

Armstrong, 2008 Source with links: http://proteome.wayne.edu/PIDBL.html

comparing two approaches

- Pocklington et al 2006
 - Emphasis on QC and literature mining
 - Focussed on subset of molecules
- Rual et al 2005
 - Emphasis on un-biased measurements
 - Focussed on proteome wide models
- Both then look at disease/network correlations