
Advanced Vision Practical 3

“Image Mosaic-ing”

Tim Lukins
School of Informatics

March 2008

Abstract

This describes the third, and last, assignment for assessment on Advanced Vision. The goal
is to use a recent technique for identifying unique matching feature points within two images.
You will then investigating the ways to establish the homographies between the images. Finally
you then use this knowledge to “stitch” or “mosaic” the images together to form larger images.

Task Background

Finding robust and reliable feature points in an image that are invariant to scale, orientation,
and lighting is a fundamental task in Computer Vision. Resolving which features are the same
between images, or frames of video, allows us to define the geometric relationships that underpin
the image formation process and motion of the camera. Exploiting such knowledge gives us the
foundations for several higher-level vision tasks: such as structure-from-motion, SLAM, stereo
reconstruction, and image mosaic-ing.

One of the most recent and advanced features descriptor is the Scale Invariant Feature
Transform (SIFT), introduced by David Lowe (D. Lowe, “Object recognition from local scale-
invariant features”. ICCV 1999.). This provides a readily available fast solution to finding
candidate points that are shared between two images. These can then be used to estimate a
homography (as a 3 × 3 matrix) that describes the linear mapping between the set of points
pi ↔ p′

i for each point i as Hpi = p′
i
1.

This matrix H represents a 2D projective transformation between the established sets of
matching points in each image. It can be estimated by employing a straight-forward linear
algorithm - DLT - which is the approach introduced for homographies in the IVR course (see:
http://www.inf.ed.ac.uk/teaching/courses/ivr/ code for flat part recognition). Alterna-
tively, for the case of outliers, a more robust iterative approach uses RANSAC (as presented in
lectures) to estimate the homography:

1. Find 4 points randomly whose SIFT descriptors match.

2. Estimate the homography.

3. Verify the homography by counting the number of SIFT points paired by the homography
and with matching descriptors.

4. Repeat 1-3 a given number of times until success or failure.

5. Perform the DLT with all matched points to improve accuracy.

1This is a projective relation using homogeneous co-ordinates - i.e. p = [x, y, 1]T.

1

Having established H it is possible to use it to warp one image into the co-ordinate frame
of another. This information then allows us to re-project the images onto a single projective
plane to recreate complete mosaics. If all the images share a planar surface (or indeed lie on the
plane at infinity) and are taken from roughly the same position this should produce well-matched
results, since we can ignore some of the more complex aspects involving camera properties. For a
further explanation see: http://pages.cs.wisc.edu/~dyer/ai-qual/szeliski-tr06.pdf

1. Original
separate
images.

2. Homographies
computed from
matching SIFT
points.

3. Images
warped onto
same projective
plane.

4.
Composite
blended from
final warp.

5. Difference
calculated
between full
original
image.

Figure 1: The overall goal of the practical - from multiple images to a single panorama.

Once the pixel data has been projected into the same image co-ordinate frame, there is
then the final task of deciding which values to keep or amalgamate. These are the issues of
compositing - particularly with regard to the selection and/or blending the data together such
that it has a seamless appearance. The final results should be indistinguishable from an original
wide angle image. If we have a suitable test image - from which the individual single images
are derived - then we can quantifiably measure the difference error of the reconstruction. For
another example, see the following: http://www.cs.ubc.ca/~lowe/papers/07brown.pdf.

2

Specific Tasks

You will work in teams of 2 on these tasks (in a different pairing from the last practical).
The practical is in two parts. In the first part you will familiarise yourself and experiment
with established means of calculating homographies. In the second part you will combine this
knowledge and use it to warp and blend separate images together. You will produce a report
describing your experiences, including your final code listing along with example input and
results showing evidence of empirical evaluation. You will also give a live demo of your solution.

Part I

1. Download the first (and official) implementation of SIFT from David Lowe’s web site here:
http://www.cs.ubc.ca/~lowe/keypoints/

Unzip the siftDemoV4.zip file. In it you will find the pre-compiled implementation of
the SIFT algorithm (for both Linux and Windows) - along with the MATLAB wrapper
function sift.m. Have a look at the example match.m and run it to see the algorithm in
operation. Understand how the matching is performed by comparing the feature vectors.
Notice how some images have the obviously incorrectly matched outliers. In this phase
of the practical we will test matching performance. We do this by computing the SIFT
features for a known object and searching for it in a new test scene.
Use one of the web cameras in the lab to capture a “training” images (for example a book or
CD cover, or something else flat). Then capture a set of “test” scene images with the object
somewhere in view. If you have problems with lens distortion - try using the inner half of
the image. Experiment with varying degrees of rotation and perspective effects/distance,
plus different lighting conditions and levels of occlusions. What do you notice about the
differences in matching between planar and non-planar surfaces? Is the matching perfect?
Include figures of example output in your answer. Compute performance statistics on the
basis of your varying examples (shown as a graph or table).

2. Combine the example code from the match.m example above with the other example code
from Peter Kovesi’s web-site here:

http://www.csse.uwa.edu.au/~pk/research/matlabfns/

First, download and use homograpy2d.m (you will also need to download normalise2dpts.m
as well). This provides a standard implementation of the Direct Linear Transformation
algorithm with enhanced estimation by first normalising the points to the centroid with
mean distance

√
2. See:

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4/tutorial.html

Take another set of test images (perhaps along the top of a nearby desk) using the web-
cam. Use your combined code to find the points, calculate the homography, then apply the
estimated matrix to map your “test” image points on top of the “training” image points.
Plot both sets of points (remembering to correct the scaling of the homogenous transform)
in the “training” image. Produce figures of your output and comment on the results. Does
this simple estimation of the homography work in all cases? Are all the points matched?
Try commenting out the normalisation code and observing the effects.

3. Next, download from Kovesi’s site the function ransacfithomography.m. You will also
need to download: ransac.m, iscolinear.m and hnormalise.m. These provide an alternative,
and more robust solution to homography estimation by using the RANSAC algorithm to
reject outliers. Compare the results of this approach - especially when you know you have
a few mismatched points between the images. Does it perform better that just the DLT
algorithm? Perhaps add a random amount of noise (using the rand()) function to your
points. How does the RANSAC algorithm cope? Illustrate your results - perhaps with a
graph of the number of inliers versus the amount of noise/motion.

3

Part II

By this stage you should have everything you need to be able to stitch multiple images together
into a single mosaic. First try creating a simple test set by cutting up a larger image into smaller
pieces. You can first safely assume the ordering - but think about how you would make it work
for a random collection. Try varying degrees of overlap between images (33% − 50%) and
establish the homographies (using your knowledge acquired in Part I).

You then need to produce a function that takes an image and applies the calculated homog-
raphy to produce a warped version in the image co-ordinates of the other image. The standard
way to accomplish this is to first project the four corner pixels of the image in question to es-
tablish the bounds of the warp, and then use the interp2() function to interpolate the values.
Remember again to accommodate for the homogeneous scaling.

Following this, you will then have to create a new, larger, image array to copy the result
into - along with the other “anchored” image. This is where you must consider how you are
to blend the two sets of data together where they overlap. Again, you should write another
function that takes the two images and outputs a seamless composite. In your report describe
how you accomplish this - particularly if you attempt different approaches. You might have to
consider a suitable approach to cropping out null values resulting from the transforms.

For verification of your final solution, you should consult the first reference given in the
introduction (the paper by Szeliski) which discusses a variety of error metrics that work on
images. You are not trying to directly estimate motion in this way, but should use the Sum
Square Difference (SSD) between two images to quantifiably measure the similarity between the
reconstruction and the original image. There may be some degree of global translation required
to adjust the alignment between the two. Simply plotting the difference between the images
can reveal a considerable amount of detail. Furthermore, looking at the pixel variance (i.e.
distribution of matched pixel values) is another useful metric that can also be performed for
local neighbourhoods.

Next, attempt to use the same code to stitch together a panorama of the lab captured using
a web-cam. Does this work? How are the camera properties - especially the lens distortion -
affecting the process? Produce some output images of your results.

Extra marks will be reserved for evidence of any of the following enhancements (you should
include a section in your report for each one attempted outlining how you try to solve it):

• Dealing with colour images (especially blending).

• Handling un-ordered sets of images.

• Bundle adjustment.

• Coping with lens distortion effectively.

• Using a cylindrical or spherical re-projection for full panoramas.

• Novel and innovative uses of your final algorithm (nice results).

Credit will be given where quantifiable results show progressive improvements to the algo-
rithm (i.e. measurable reductions in SSD).

4

Assignment Submission

Each team should present a single PDF file that includes your answers for Part I, along with
a description of your solution to Part II (with suitable examples/graphs plus your source code
listing at the end - you do not need to include print-outs of the downloaded functions unless
you modify them).

This file should be submitted electronically by 9am Wednesday March 19th, 2008. The
on-line submission line is:

submit msc av-5 3 FILE

or

submit ai4 av-4 3 FILE

where FILE is the name of your file.
The assignment is estimated to take 10-15 hours work for the assignment, resulting in a 5−7

page report. The assignment will be marked as follows:

Issue Percentage
1. Part I 25
2. Part II 25
3. Demonstration 40
4. Clarity of code and Report 10

Assessment of parts I and II will include algorithm choices and use of evidence to show
performance.

In addition, each team will also have to demonstrate their mosaic-ing algorithm on the
afternoon of Wednesday the 19th of March (the same day you hand in) from 2-6pm. You
will be allocated a time slot and will be asked to:

1. Take 3 overlapping images of a cluttered desktop using a web-cam, plus a 4th view that
encompasses the first 3.

2. Draw the image borders of the first 3 images on the 4th.

3. Compute a mosaic of the first 3 images.

4. (Finally showcase any additional “neat” aspects to your solution.)

5

