System 5 Introduction

Is there a Wedge in this 3D scene?

Data a stereo pair of images!

3D	part	recognition	using	geometric	stereo

AV: 3D recognition from binocular stereo

Fisher system 5 slide 1

School of Informatics, University of Edinburgh

AV: 3D recognition from binocular stereo

School of Informatics, University of Edinburgh

System 5 Overview 1. Feature extraction: Canny edge detector RANSAC straight line finding SIFT point features 2. Feature matching: Stereo correspondence matching lines SIFT points 3. Triangulation: 3D line feature position estimation 4. **3D** Object recognition: 3D geometric model Model-data matching 3D pose estimation Fisher system 5 slide 7

School of Informatics, University of Edinburgh

AV: 3D recognition from binocular stereo

Fisher system 5 slide 6

School of Informatics, University of Edinburgh

Edge Detector Introduction

- Edge detection: find pixels at large changes in intensity
- Much historical work on this topic in computer vision (Roberts, Sobel)
- Canny edge detector first modern edge detector and still commonly used today
- Edge detection never very accurate process: image noise, areas of low contrast, a question of scale. Humans see edges where none exist.

Canny Edge Detector

Four stages:

- 1. Gaussian smoothing: to reduce noise and smooth away small edges
- 2. Gradient calculation: to locate potential edge areas
- 3. Non-maximal suppression: to locate "best" edge positions
- 4. Hysteresis edge tracking: to locate reliable, but weak edges

AV: 3D recognition from binocular stereo

Fisher system 5 slide 9

School of Informatics, University of Edinburgh

AV: 3D recognition from binocular stereo

Conservative Smoothing

Gaussian smoothing inappropriate for salt&pepper/spot noise

Noisy image

Gauss smooth Conservative

AV: 3D recognition from binocular stereo

Fisher system 5 slide 13

School of Informatics, University of Edinburgh

Gradient magnitude:

$$H(r,c) = \sqrt{G_r(r,c)^2 + G_c(r,c)^2}$$

$$\doteq \mid G_r(r,c) \mid + \mid G_c(r,c) \mid$$

Gradient direction

$$\theta(r,c) = \arctan(G_r(r,c), G_c(r,c))$$

$$G_r(r,c) = \frac{\partial G}{\partial r} = \lim_{h \to 0} \frac{G(r+h,c) - G(r,c)}{h}$$

$$\doteq G(r+1,c) - G(r,c)$$

AV: 3D recognition from binocular stereo

Canny: Gradient Magnitude Calculation

G(r,c) is smoothed image

Compute local derivatives in the r and c directions as $G_r(r,c)$, $G_c(r,c)$:

Edge gradient: $\nabla G(r, c) = (G_r(r, c), G_c(r, c))$

AV: 3D recognition from binocular stereo

Fisher system 5 slide 14

School of Informatics, University of Edinburgh

Canny: Non-maximal Suppression

Where exactly is the edge? peak of gradient Suppress lower gradient magnitude values: need to check **ACROSS** gradient

AV: 3D recognition from binocular stereo

Fisher system 5 slide 17

School of Informatics, University of Edinburgh

AV: 3D recognition from binocular stereo

Fisher system 5 slide 18

School of Informatics, University of Edinburgh

Midlecture Problem

Where might the Canny edge detector find edges in this image?

AV: 3D recognition from binocular stereo

Fisher system 5 slide 21

School of Informatics, University of Edinburgh

Finding Lines from Edges

RANSAC: Random Sample and Consensus

Model-based feature detection: features based on some *a priori* model

Works even in much noise and clutter

Tunable failure rate

Assume

- Shape of feature determined by T true data points
- Hypothesized feature is valid if V data points nearby

AV: 3D recognition from binocular stereo

Fisher system 5 slide 22

School of Informatics, University of Edinburgh

RANSAC Termination Limit

 p_{all-f} is probability of algorithm failing to detect a feature p_1 is probability of a data point belonging to a valid feature p_d is probability of a data point belonging to same feature Algorithm fails if Trials consecutive failures

$$p_{all-f} = (p_{one-f})^{Trials}$$

Success if all needed T random data items are valid

$$p_{one-f} = 1 - p_1 (p_d)^{T-1}$$

Solving for expected number of trials:

$$Trials = \frac{log(p_{all-f})}{log(1 - p_1(p_d)^{T-1})}$$

Some random data crossings

Х

p

Want to find approximate observed start and end of true segment

1. Project points $\{\vec{x}_i\}$ onto ideal line thru point \vec{p} with direction \vec{a} : $\lambda_i = (\vec{x}_i - \vec{p}) \cdot \vec{a}$. Projected point is $\vec{p} + \lambda_i \vec{a}$

а

- 2. Remove points not having 43 neighbor points within 45 pixels distance
- 3. Endpoints are given by smallest and largest remaining λ_i .

AV: 3D recognition from binocular stereo

Fisher system 5 slide 26

School of Informatics, University of Edinburgh

AV: 3D recognition from binocular stereo

Fisher system 5 slide 29

School of Informatics, University of Edinburgh

Four Step Algorithm

- 1. Detect extremal points in scale space
- 2. Accurate keypoint localization
- 3. Feature orientation estimation
- 4. Keypoint descriptor calculation

School of Informatics, University of Edinburgh

Matchable features for: • Object recognition • Model-data alignment • Image registration • Stereo matching

AV: 3D recognition from binocular stereo

Fisher system 5 slide 30

School of Informatics, University of Edinburgh

Scale Space Smoothing Gaussian smoothing via convolution $L(x, y, \sigma) = G(x, y, \sigma) \circ I(x, y)$ $G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-(x^2+y^2)/2\sigma^2}$ Difference of Gaussians: $D(x, y, n) = L(x, y, 2^{\frac{n}{S}}) - L(x, y, 2^{\frac{n-1}{S}})$ where $n = 1 \dots N$ S = 3 best

AV: 3D recognition from binocular stereo

Fisher system 5 slide 31

Fisher system 5 slide 33

School of Informatics, University of Edinburgh

AV: 3D recognition from binocular stereo

Fisher system 5 slide 34

School of Informatics, University of Edinburgh

Low Contrast Extrema Pruning

Predict DoG value at extrema:

$$p = \mid D(x, y, \sigma) + \frac{1}{2} \left[\frac{\partial D}{\partial x}, \frac{\partial D}{\partial y}, \frac{\partial D}{\partial \sigma} \right] \hat{x}$$

Reject if p < 0.03

AV: 3D recognition from binocular stereo

Fisher system 5 slide 37

School of Informatics, University of Edinburgh

Getting Rotation Invariance

Local orientation $\hat{\theta}$ estimation

```
Use keypoint scale \sigma
Let \vec{v} = \nabla L(r, s, \sigma) for (r, s) \in neigh(x, y)
Compute strength m = \mid \vec{v} \mid and
\theta = direction(\vec{v})
Compute histogram of \theta values weighted by m
```

```
Pick top peak direction \hat{\theta} in histogram for feature orientation
```

Unstable Point Extrema Pruning
Let

$$H = \begin{bmatrix} \partial^2 D / \partial x^2 & \partial^2 D / \partial x \partial y \\ \partial^2 D / \partial x \partial y & \partial^2 D / \partial y^2 \end{bmatrix}$$
Reject if det(H) < 0 or

$$\frac{trace(H)^2}{det(H)} > \tau \ (e.g.12)$$
Rejects points that can slide along an edge

School of Informatics, University of Edinburgh

AV: :

AV: 3D recognition from binocular stereo

Fisher system 5 slide 41

School of Informatics, University of Edinburgh

AV: 3D recognition from binocular stereo $% \left({{{\rm{AV}}} \right)$

Fisher system 5 slide 42

School of Informatics, University of Edinburgh

SIFT References

www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

en.wikipedia.org/wiki/Scale-invariant_feature_transform

AV: 3D recognition from binocular stereo

Fisher system 5 slide 45

Fisher system 5 slide 47

School of Informatics, University of Edinburgh

AV: 3D recognition from binocular stereo

Fisher system 5 slide 46

School of Informatics, University of Edinburgh

School of Informatics, University of Edinburgh

Constraining Matches: Uniqueness and Smoothness

Smoothness: match features giving nearly same depth as neighbors

Uniqueness: a feature in one image can match from the other image:

 $0\,$ - occlusion

 $1\,$ - normal case

 $2+\,$ - transparencies, wires, vines, etc from coincidental alignments

School of Informatics, University of Edinburgh

Midlecture Problem Which stereo correspondence constraint would you use to reject these matches?

AV: 3D recognition from binocular stereo

Image Projection Geometry

Pinhole camera model: Matrix P_i projects 3D point $\vec{v} = (x, y, z, 1)'$ onto image point $\vec{u}_i = (r_i, c_i, 1)'$: $\lambda_i \vec{u}_i = P_i \vec{v}$. i = L, R.

Notice use of homogeneous coordinates in 2D and 3D

AV: 3D recognition from binocular stereo

Fisher system 5 slide 53

School of Informatics, University of Edinburgh

AV: 3D recognition from binocular stereo

Fisher system 5 slide 55

Projection matrix P_i decomposes as $P_i = K_i R_i [I] - \vec{e_i}]$ where R_i : orientation of camera (3 degrees of freedom) $\vec{e_i} = (e_{xi}, e_{yi}, e_{zi})'$: camera center in world (3 DoF) K_i : camera intrinsic calibration matrix = $\begin{bmatrix} f_i m_{ri} & s_i & r_{0i} \\ 0 & f_i m_{ci} & c_{0i} \\ 0 & 0 & 1 \end{bmatrix}$ f_i : camera focal length in mm m_{ri}, m_{ci} : row, col pixels/mm conversion on image plane r_{0i}, c_{0i} : where optical axis intersects image plane s_i : skew factor======12 parameters (11 Degrees of Freedom) per cameraAV: 3D recognition from binocular stered

School of Informatics, University of Edinburgh

Fisher system 5 slide 57

School of Informatics, University of Edinburgh

Estimating the Fundamental matrix

Assume $N \ge 7$ matched points $\vec{u}_i : \vec{v}_i, i = 1 \dots N$ in 2 images Each should satisfy $\vec{u}'_i \mathbf{F} \vec{v}_i = 0$

Noisy, so use a least squares algorithm. Expanding $\vec{u}_i' {\rm F} \vec{v}_i$ gives an equation in N variables:

$$[u_{ix}v_{ix}, u_{ix}v_{iy}, u_{ix}, u_{iy}v_{ix}, u_{iy}v_{iy}, u_{iy}, v_{ix}, v_{iy}, 1]\vec{f} = A_i\vec{f} = 0$$

when we unfold

$$\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$$

into
$$\vec{f} = (f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33})'.$$

AV: 3D recognition from binocular stereo

Fisher system 5 slide 58

School of Informatics, University of Edinburgh

AV: 3D recognition from binocular stereo

Fisher system 5 slide 59

Estimating Projection Matrices

Use the epipoles

$$P_{L} = K_{L} * \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
$$P_{R} = K_{R} * \begin{bmatrix} 0 & -1 & e_{ry} \\ 1 & 0 & -e_{rx} \\ -e_{ry} & e_{rx} & 0 \end{bmatrix} * F \begin{vmatrix} \vec{e_{r}} \\ \vec{e_{r}} \end{vmatrix}$$

AV: 3D recognition from binocular stereo

Fisher system 5 slide 61

School of Informatics, University of Edinburgh

3D Line Calculation

Aim: recovery of 3D line positions **Assume:** line successfully matched in L & R images

- 1. Compute 3D plane that goes through image line and camera origin
- 2. Compute intersection of 3D planes from 2 cameras (which gives a line)

AV: 3D recognition from binocular stereo

School of Informatics, University of Edinburgh

Fisher system 5 slide 65

Fisher system 5 slide 67

School of Informatics, University of Edinburgh

Number	Pairs	direction	point
1	L1:R4	(-0.82, 0.08, -0.56)	(9.1, 2.0, -13.0)
2	L5:R11	(0.61, -0.06, 0.78)	(-125.3, 98.6, 107.1)
3	L6:R7	(-0.28, -0.95, -0.03)	(0.9, -10.6, 294.4)
4	L7:R2	(0.07, -0.62, -0.77)	(48.3, -97.0, 82.9)
5	L8:R5	(-0.18, -0.45, 0.87)	(114.8, 91.8, 72.1)
6	L10:R12	(-0.50, -0.73, 0.44)	(71.5, 77.0, 208.8)
7	L11:R10	(0.79, -0.20, 0.57)	(-98.4, 57.2, 154.6)
8	L12:R3	(0.11, -0.69, -0.70)	(110.4, -123.6, 140.1)

AV: 3D recognition from binocular stereo

Fisher system 5 slide 66

School of Informatics, University of Edinburgh

	1	Ingle	.5 D
3D line 1	3D line 2	Angle	True
2	3	1.4347	1.57
2	4	1.0221	1.57
2	5	0.9281	1.57
2	6	1.4863	1.57
2	7	0.3023	0.00
2	8	1.1186	1.57
3	4	0.9180	0.71
3	5	1.0964	0.71
3	6	0.5848	0.71
3	7	1.5221	1.57
3	8	0.8457	0.71
4	5	1.1527	1.57
4	6	1.4920	1.57
4	7	1.3026	1.57
4	8	0.1085	0.00
5	6	0.6152	0.00
5	7	1.1060	1.57
5	8	1.2453	1.57
6	7	1.5679	1.57
6	8	1.4276	1.57
7	8	1.3918	1.57

Fisher system 5 slide 69

School of Informatics, University of Edinburgh

AV: 3D recognition from binocular stereo

Fisher system 5 slide 70

School of Informatics, University of Edinburgh

3D Pose Estimation

Given: matched line directions $\{(\vec{m}_i, \vec{d}_i)\}$ and points on corresponding lines (but not necessarily same point positions) $\{(\vec{a}_i, \vec{b}_i)\}$

Rotation (matrix R): estimate rotation from matched vectors (same as previous task) except:

1) use line directions instead of surface normals

2) don't know which \pm direction for edge correspondence: try both for each matched segment

3) if $det(\mathbf{R}) = -1$ then need to flip symmetry

4) verify rotation by comparing rotated model and data line orientations

AV: 3D recognition from binocular stereo

Fisher system 5 slide 73

School of Informatics, University of Edinburgh

How:
$$\mathbf{L} = \sum_{i} (I - \vec{d_i} \vec{d'_i})' (I - \vec{d_i} \vec{d'_i})$$

 $\vec{n} = \sum_{i} (I - \vec{d_i} \vec{d'_i})' (I - \vec{d_i} \vec{d'_i}) (\mathbf{R} \vec{a_i} - \vec{b_i})$
 $\vec{t} = \mathbf{L}^{-1} \vec{n}$

Verify translation by comparing perpendicular distance of transformed model endpoints to data line

3D Translation Estimation

Given N paired model and data segments, with point \vec{a}_i on model segment i and \vec{b}_i on data segment iDirection \vec{d}_i of data segment iPreviously estimated rotation R \vec{d} \vec{R} \vec{a}_i \vec{b} $\vec{\lambda}_i = R\vec{a}_i + \vec{t} - \vec{b} - \vec{d}_i(\vec{d}_i'(R\vec{a}_i + \vec{t} - \vec{b}))$ is translation error to minimize

AV: 3D recognition from binocular stereo

Fisher system 5 slide 74

School of Informatics, University of Edinburgh

Goal: find \vec{t} that minimizes $\sum_i \vec{\lambda}'_i \vec{\lambda}_i$

Discussion

- Hard to find reliable edges/lines, but Canny finds most reasonable edges and RANSAC can put them together for lines
- Given enough stereo correspondence constraints, can get reasonably correct correspondences
- Large features help stereo matching but require more preprocessing
- Stereo geometry easy but needs accurate calibration: not always easy, but now possible to autocalibrate using 7 matched points
- Binocular feature matching stereo gives good 3D at corresponding features, but nothing in between: use scan line stereo?

AV: 3D recognition from binocular stereo

Fisher system 5 slide 77

School of Informatics, University of Edinburgh

Dense Depth Data

Problem: have depth only at triangulated feature locations

Solution 1: Linear interpolate known values at all other pixels

Solution 2: Correlation-based stereo Use pixel neighborhoods as features Triangulate depth at every pixel But needs to find matching pixel - not easy

AV: 3D recognition from binocular stereo

Fisher system 5 slide 78

School of Informatics, University of Edinburgh

middle of array above - optimisation problem)

AV: 3D recognition from binocular stereo

Fisher system 5 slide 79

Fisher system 5 slide 81

School of Informatics, University of Edinburgh

AV: 3D recognition from binocular stereo

Fisher system 5 slide 82

School of Informatics, University of Edinburgh

• Point distribution modelling for variable shapes