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System 5 Introduction

Is there a Wedge in this 3D scene?

Data a stereo pair of images!

3D part recognition using geometric stereo
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Binocular Stereo Vision

Given two 2D images of an object, how can we
reconstruct 3D awareness of it?
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Binocular Stereo

Goal: build 3D scene description (eg. depth) given two 2D image

descriptions

Useful for: obstacle avoidance, grasping, object location

Key principle: triangulation
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Stereo vision - a solution

1) Feature extraction

2) Feature matching:

3) Triangulation:
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Possible image features

1) Edge fragments

2) Edge structures (eg vertical indoor lines)
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3) General interest points

Larger easier to match but harder to get and less dependable

Human visual system thought to work at edge fragment level
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System 5 Overview

1. Feature extraction:

Canny edge detector

RANSAC straight line finding

SIFT point features

2. Feature matching:

Stereo correspondence matching lines

SIFT points

3. Triangulation:

3D line feature position estimation

4. 3D Object recognition:

3D geometric model

Model-data matching

3D pose estimation
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Edge Detector Introduction

• Edge detection: find pixels at large changes

in intensity

• Much historical work on this topic in

computer vision (Roberts, Sobel)

• Canny edge detector first modern edge

detector and still commonly used today

• Edge detection never very accurate process:

image noise, areas of low contrast, a question

of scale. Humans see edges where none exist.
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Canny Edge Detector

Four stages:

1. Gaussian smoothing: to reduce noise and

smooth away small edges

2. Gradient calculation: to locate potential

edge areas

3. Non-maximal suppression: to locate “best”

edge positions

4. Hysteresis edge tracking: to locate reliable,

but weak edges
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Canny: Gaussian Smoothing

Convolve with a 2D Gaussian

Averages pixels with preference near center:

smooths noise without too much blurring of

edges
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σ of Gaussian controls smoothing explicitly

convolution mask(r, c) =
1

2πσ
e−

r2+c2

2σ2

Larger σ gives more smoothing - low pass filter
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Gaussian Smoothing Examples

σ = 2 σ = 4
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Conservative Smoothing

Gaussian smoothing inappropriate for
salt&pepper/spot noise

Noisy image Gauss smooth Conservative
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Canny: Gradient Magnitude Calculation

G(r, c) is smoothed image

Compute local derivatives in the r and c

directions as Gr(r, c), Gc(r, c):

Edge gradient: ∇G(r, c) = (Gr(r, c), Gc(r, c))
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Gradient magnitude:

H(r, c) =
√

Gr(r, c)2 + Gc(r, c)2

.=| Gr(r, c) | + | Gc(r, c) |

Gradient direction

θ(r, c) = arctan(Gr(r, c), Gc(r, c))

Gr(r, c) =
∂G

∂r
= limh→0

G(r + h, c) − G(r, c)

h
.= G(r + 1, c) − G(r, c)
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Gradient Magnitude Examples

σ = 2 σ = 4

σ controls amount of smoothing
Smaller σ gives more detail & noise
Larger σ gives less detail & noise
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Canny: Non-maximal Suppression

Where exactly is the edge? peak of gradient

Suppress lower gradient magnitude values: need

to check ACROSS gradient
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Estimate gradient magnitudes using gradient
direction:

H4

3H H

H

H

H

1

2

α

A

A

1

: GRADIENT DIRECTION

: INTERPOLATED PIXEL
Hβ

: REAL PIXEL POSITION

A = |Gr|
|Gc|

Hα = AH1 + (1 − A)H2

Hβ = AH4 + (1 − A)H3

Suppress (set to 0) if H < Hα OR H < Hβ
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Canny: Hysteresis Tracking

Start edges at certainty: H > τstart
Reduce requirements at connected edges to get
weaker edges: H > τcontinue
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Stereo Canny Edges

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

Matlab has Canny: edge(leftr,’canny’,[0.08,0.2],3);

AV: 3D recognition from binocular stereo Fisher system 5 slide 20



School of Informatics, University of Edinburgh

Midlecture Problem

Where might the Canny edge detector
find edges in this image?
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Finding Lines from Edges

RANSAC: Random Sample and Consensus

Model-based feature detection: features based on some a priori

model

Works even in much noise and clutter

Tunable failure rate

Assume

• Shape of feature determined by T true data points

• Hypothesized feature is valid if V data points nearby
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RANSAC Pseudocode

for i = 1 : Trials

Select T data points randomly

Estimate feature parameters

if number of nearby data points > V

return success

end

end

return failure
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RANSAC Termination Limit

pall−f is probability of algorithm failing to detect a feature

p1 is probability of a data point belonging to a valid feature

pd is probability of a data point belonging to same feature

Algorithm fails if Trials consecutive failures

pall−f = (pone−f )Trials

Success if all needed T random data items are valid

pone−f = 1 − p1(pd)
T−1

Solving for expected number of trials:

Trials =
log(pall−f )

log(1 − p1(pd)T−1)
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RANSAC Line Detection

Line model: infinite line through 2 points (T = 2)

T = 2 edge points randomly chosen

Accept if V = 80 edge points within 3 pixels

pall−f = 0.001, p1 = 0.1, pd = 0.01, Trials = 688
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Mostly accurate lines, but don’t know endpoints
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Finding line segments

Some random data crossings

Want to find approximate observed start and end of true segment

1. Project points {~xi} onto ideal line thru point ~p with direction

~a: λi = (~xi − ~p) · ~a. Projected point is ~p + λi~a

p

ax

λ

2. Remove points not having 43 neighbor points within 45 pixels

distance

3. Endpoints are given by smallest and largest remaining λi.
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Found line segments
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SIFT Features

SIFT: Scale Invariant Feature Transform

Image point feature + local description
(128 vector)

Sparse, reasonably distinguishable points
Invariant to translation, rotation, scale,

some 3D
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Example feature locations
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Matching Applications

Matchable features for:

• Object recognition

• Model-data alignment

• Image registration

• Stereo matching
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Four Step Algorithm

1. Detect extremal points in scale space

2. Accurate keypoint localization

3. Feature orientation estimation

4. Keypoint descriptor calculation
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Scale Space Smoothing

Gaussian smoothing via convolution

L(x, y, σ) = G(x, y, σ) ◦ I(x, y)

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

Difference of Gaussians:

D(x, y, n) = L(x, y, 2
n
S ) − L(x, y, 2

n−1
S )

where n = 1 . . . N
S = 3 best
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Scale Space
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Point Extrema

Pick extremal points larger/smaller than their

26 neighbours:
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Subpixel Extrema Localization

Hessian:

H =

















∂2D/∂x2 ∂2D/∂x∂y ∂2D/∂x∂σ

∂2D/∂x∂y ∂2D/∂y2 ∂2D/∂y∂σ

∂2D/∂x∂σ ∂2D/∂y∂σ ∂2D/∂σ2
















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Optimal position is (x, y, σ) + x̂, where

x̂ = −H−1

















∂D/∂x

∂D/∂y

∂D/∂σ
















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Low Contrast Extrema Pruning

Predict DoG value at extrema:

p =| D(x, y, σ) +
1

2

[

∂D

∂x
,
∂D

∂y
,
∂D

∂σ

]

x̂ |

Reject if p < 0.03
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Unstable Point Extrema Pruning

Let

H =









∂2D/∂x2 ∂2D/∂x∂y

∂2D/∂x∂y ∂2D/∂y2









Reject if det(H) < 0 or

trace(H)2

det(H)
> τ (e.g.12)

Rejects points that can slide along an edge
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Getting Rotation Invariance

Local orientation θ̂ estimation

Use keypoint scale σ
Let ~v = ∇L(r, s, σ) for (r, s) ∈ neigh(x, y)
Compute strength m =| ~v | and
θ = direction(~v)
Compute histogram of θ values weighted by m

Pick top peak direction θ̂ in histogram for
feature orientation
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Local Descriptor Computation

Use 16 × 16 neighbourhood about feature point
subdivided into 16 4 × 4 pixel blocks
Create an 8 orientation histogram for each block

→ 128 vector
Compute gradient orientation at each point

Rotate all orientations by θ̂ (for invariance)
Add to histogram weighted (details in paper)
Normalize 128 vector to unit length for

illumination invariance
Descriptor similarity using Euclidean distance
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Descriptor Example

4 histograms from 8 × 8 neighbourhood about
feature point:
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Example Points
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Rotation & Scale Invariance
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SIFT Summary

• Sparse, distinctive point features

• Translation independent by using local histogram

• Rotation independent by orientation adjustment

• Scale independent by extremal scale estimation

• Illumination independent by descriptor normalisation

• Widely used

• Real-time implementation possible
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SIFT References

www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

en.wikipedia.org/wiki/Scale-invariant_feature_transform
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Stereo Overview
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Stereo Correspondence Problem

Which feature in left image matches a given feature in the right?
LEFT RIGHT

WHICH?{

Different pairings give different depth results

Often considered the key problem of stereo
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Constraining Matches: Edge Direction

:

OK BAD BAD
Match features with nearly same orientation
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Constraining Matches: Edge Contrast

:

OK BAD BAD
Match features with nearly same contrast across edge
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Constraining Matches: Feature Shape

:

OK BAD BAD
Match features with nearly same length
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Constraining Matches: Uniqueness and

Smoothness

Smoothness: match features giving nearly same depth as neighbors

Uniqueness: a feature in one image can match from the other

image:

0 - occlusion

1 - normal case

2+ - transparencies, wires, vines, etc from coincidental alignments
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Midlecture Problem

Which stereo correspondence constraint
would you use to reject these matches?

:
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Image Projection Geometry

Pinhole camera model: Matrix Pi projects 3D point ~v = (x, y, z, 1)′

onto image point ~ui = (ri, ci, 1)′ : λi~ui = Pi~v. i = L, R.

Notice use of homogeneous coordinates in 2D and 3D

(r ,c )0 0

v=(x,y,z)
+X

+Y

+Z

+C

+R

(0,0)

OPTICAL AXIS

zyx(e ,e ,e )

u=(r,c)
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Projection matrix Pi decomposes as

Pi = KiRi[I| − ~ei]

where Ri : orientation of camera (3 degrees of freedom)

~ei = (exi, eyi, ezi)
′ : camera center in world (3 DoF)

Ki : camera intrinsic calibration matrix =








fimri si r0i

0 fimci c0i

0 0 1









fi : camera focal length in mm

mri, mci : row, col pixels/mm conversion on image plane

r0i, c0i : where optical axis intersects image plane

si : skew factor

=========

12 parameters (11 Degrees of Freedom) per camera
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Constraining Matches: Epipolar

Geometry

Feature ~pl in left image lies on a ray ~r thru space.

~r projects to an epipolar line e in the right image, along which the

matching image feature must lie.

lp

+Z

+Y

+X

e

r

p r

p
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If images are ‘rectified’, then the epipolar line is an image row.

Reduces 2D search to 1D search

lp

+Z

+Y

+X

e

r

p r

p

Images are linked by the Fundamental matrix F

Matched points satisfy ~p′lF~pr = 0

(Points are in homogeneous coordinates, F is 3 × 3)
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Stereo Matching Results

Maximally consistent set of matches

Based on local and epipolar constraints
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Estimating the Fundamental matrix

Assume N ≥ 7 matched points ~ui : ~vi, i = 1 . . . N in 2 images

Each should satisfy ~u′

iF~vi = 0

Noisy, so use a least squares algorithm. Expanding ~u′

iF~vi gives an

equation in N variables:

[uixvix, uixviy, uix, uiyvix, uiyviy, uiy, vix, viy, 1]~f = Ai
~f = 0

when we unfold

F =









f11 f12 f13

f21 f22 f23

f31 f32 f33









into ~f = (f11, f12, f13, f21, f22, f23, f31, f32, f33)
′.
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Then we stack the Ai up as:

A~f =









A1

. . .

AN









~f = 0

Solve for ~f : svd(A) = UDV ′, ~f = V (:, 9) (Plus some numerical

fixes)

Not numerically best algorithm, but simple to understand

See Hartley and Zisserman Chapter 10
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Epipoles

Line connecting the 2 camera centres intersects the image planes

c
l

xl xr

e l e r

c r

X?
X

X?

Estimate epipoles ~el, ~er, by exploiting ~el
′F = F~er = ~0

Solve 3 equations

in 2 variables for unknown epipoles (elx, ely, 1)F = F (erx, ery, 1)′ = ~0

eR=null(F,’r’); eR = eR/eR(3) eL=null(F’); eL = eL/eL(3)
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Estimating Projection Matrices

Use the epipoles

PL = KL ∗









1 0 0 0

0 1 0 0

0 0 1 0









PR = KR ∗

















0 −1 ery

1 0 −erx

−ery erx 0









∗ F ~er








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3D Line Calculation

Aim: recovery of 3D line positions

Assume: line successfully matched in L & R

images

1. Compute 3D plane that goes through image

line and camera origin

2. Compute intersection of 3D planes from 2

cameras (which gives a line)
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3D plane passing thru 2D image line

+X

+Y

+Z

+C

+R

(0,0)

3D LINE

2D IMAGE LINE

(e ,e ,e )zyx

2D image line l = [a, b, c]′ is:

a ∗ col + b ∗ row + c = 0

Then plane is l′P

Do for left and right images
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3D Plane Intersection → 3D Line

3D LINE

+X

+Y

+Z

+X

+Y

+Z

Let ~lL and ~lR be the left and right image lines

(2D, but in homogeneous coordinates)

3D line represented by 2 × 4 matrix:

L =





~l′LPL

~l′RPR




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Matched Lines
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3D Line Equations

Number Pairs direction point

1 L1:R4 (-0.82, 0.08,-0.56) (9.1,2.0,-13.0)

2 L5:R11 ( 0.61,-0.06, 0.78) (-125.3,98.6,107.1)

3 L6:R7 (-0.28,-0.95,-0.03) (0.9,-10.6,294.4)

4 L7:R2 ( 0.07,-0.62,-0.77) (48.3,-97.0,82.9)

5 L8:R5 (-0.18,-0.45, 0.87) (114.8,91.8,72.1)

6 L10:R12 (-0.50,-0.73, 0.44) (71.5,77.0,208.8)

7 L11:R10 ( 0.79,-0.20, 0.57) (-98.4,57.2,154.6)

8 L12:R3 ( 0.11,-0.69,-0.70) (110.4,-123.6,140.1)
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Projected Stereo Line Positions

A little off, but: 1) calibration errors, 2) didn’t account for lens

distortion
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Angles Between Lines

3D line 1 3D line 2 Angle True

2 3 1.4347 1.57

2 4 1.0221 1.57

2 5 0.9281 1.57

2 6 1.4863 1.57

2 7 0.3023 0.00

2 8 1.1186 1.57

3 4 0.9180 0.71

3 5 1.0964 0.71

3 6 0.5848 0.71

3 7 1.5221 1.57

3 8 0.8457 0.71

4 5 1.1527 1.57

4 6 1.4920 1.57

4 7 1.3026 1.57

4 8 0.1085 0.00

5 6 0.6152 0.00

5 7 1.1060 1.57

5 8 1.2453 1.57

6 7 1.5679 1.57

6 8 1.4276 1.57

7 8 1.3918 1.57
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3D Edge Based Recognition Pipeline
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3D Edge Based Recognition

Match 3D data edges to 3D wireframe model edges

M4

M6

M3

M7

M9
M5M2M1

M8

+Z

(0,0,46)

(0,67,0)

+X +Y

(67,0,0)

(0,0,0)

Model =

(0,0,0)-(67,0,0)

(0,0,0)-(0,67,0)

(0,0,0)-(0,0,46)

(67,0,0)-(67,0,46)

(0,67,0)-(0,67,46)

(0,0,46)-(67,0,46)

(0,0,46)-(0,67,46)

(67,0,0)-(0,67,0)

(67,0,46)-(0,67,46)
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3D Model Matching

Use Interpretation Tree algorithm: match
edges, Limit = 5

Unary test: similar length | lm − ld |< τl(lm + ld)

Binary test: similar angle between pairs:
| θm − θd |< τa
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Matching Performance

144 interpretation tree matches thru to pose estimation and

verification

Two valid solutions found (symmetric model rotated 180 degrees)

Data Model 1 Model 2

Segment Segment Segment

3 M8 M9

4 M2 M6

6 M1 M7

7 M3 M3

8 M7 M1
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3D Pose Estimation

Given: matched line directions {(~mi, ~di)} and points on

corresponding lines (but not necessarily same point positions)

{(~ai,~bi)}

Rotation (matrix R): estimate rotation from matched vectors

(same as previous task) except:

1) use line directions instead of surface normals

2) don’t know which ± direction for edge correspondence: try both

for each matched segment

3) if det(R) = −1 then need to flip symmetry

4) verify rotation by comparing rotated model and data line

orientations
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3D Translation Estimation

Given N paired model and data segments, with point ~ai on model

segment i and ~bi on data segment i

Direction ~di of data segment i

Previously estimated rotation R

b

a

d

R
λ

~λi = R~ai +~t−~b− ~di(~d
′

i(R~ai +~t−~b)) is translation error to minimize

Goal: find ~t that minimizes
∑

i
~λ′

i
~λi
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How: L =
∑

i(I − ~di
~d′i)

′(I − ~di
~d′i)

~n =
∑

i(I − ~di
~d′i)

′(I − ~di
~d′i)(R~ai −~bi)

~t = L−1~n

Verify translation by comparing perpendicular distance of

transformed model endpoints to data line

TRANSFORMED
MODEL

λ

λ

DATA

287 verify attempts (2 successes)
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Matching Overlay

Two solutions for symmetric model

Left and right image with matched portion of model overlaid:

Calibration a bit off
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Discussion

• Hard to find reliable edges/lines, but Canny finds most

reasonable edges and RANSAC can put them together for lines

• Given enough stereo correspondence constraints, can get

reasonably correct correspondences

• Large features help stereo matching but require more

preprocessing

• Stereo geometry easy but needs accurate calibration: not

always easy, but now possible to autocalibrate using 7 matched

points

• Binocular feature matching stereo gives good 3D at

corresponding features, but nothing in between: use scan line

stereo?
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Dense Depth Data

Problem: have depth only at triangulated feature locations

Solution 1: Linear interpolate known values at all other pixels

Solution 2: Correlation-based stereo

Use pixel neighborhoods as features

Triangulate depth at every pixel

But needs to find matching pixel - not easy
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Correlation based stereo

• Use stereo image pair

• Features are neighborhoods at each pixel

• Match using similarity metric: SSD - Sum of Squared

Differences (of pixel values) of left image at (u, v) to right

image at (r, s):

SSD(u, v, r, s) =

N

2
∑

i=−
N

2

N

2
∑

j=−
N

2

(L(u + i, v + j) − R(r + i, s + j))2
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Finding best match

For each scanline on rectified image pair:

1. Build array of all possible matching scores

2. Dynamic programming finds lowest cost path (bright line thru

middle of array above - optimisation problem)
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Dense Stereo Results

AV: 3D recognition from binocular stereo Fisher system 5 slide 81

School of Informatics, University of Edinburgh

Commercial Dense Stereo Results
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What We Have Learned

Feature based stereo:

• Feature detection: Canny & RANSAC

• Stereo matching: local & epipolar constraints

• Triangulation & 3D: epipolar geometry

• Recognition: IT algorithm & verification

Correlation based stereo: similar but using pixel neighbourhoods
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The Course

• intensity, stereo and range sensors

• Feature detection: curve segmentation, Canny edges, plane

region growing, RANSAC line detector, least square estimation

• Geometric coordinate systems, modeling, recognition and pose

estimation: 2D and 3D

• Matching algorithms: Interpretation Tree

• Match verification by feature alignment

• Point distribution modelling for variable shapes
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