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Modeling Classes of Shapes

Suppose you have a class of shapes with a range
of variations:
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How to represent whole class?

Statistical shape models

AV: Modeling Classes of Shapes Fisher lecture 4 slide 1

School of Informatics, University of Edinburgh

System 2 Overview

System processes

Previous Systems: Thresholding, Boundary Tracking,

Corner Finding (but here with better threshold)

This System:

Orientation to standard position

Training: Point Distribution Model calculation

Recognition: likelihood calculation
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Motivation

Not all objects

• are made equal: variations in production

• grow equally: eg. fruit classification

• appear equal: movement, configurations

But if they belong to the same class of object,
we want to recognize them as such
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How to recognize shape classes?

All TEE parts belong to the same shape class, but have large

variations in shape in common ways
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Need to:

1. Identify common modes (ie. directions) of variation for

each class

2. Represent the shape class as statistical variation over these

modes

3. Use statistical recognition based on comparison to

statistical shape representation
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Lecture Set Overview

Principal Component Analysis

Point Distribution Models

Model Learning and Data Classification

Rotating TEEs to Standard Position

Representing TEEs using Point Distribution Models

Recognize new examples w/statistical classifier
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Principal Component Analysis

Given a set of D dimension points {~xi} with mean ~m
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Find a new set of D perpendicular coordinate axes {~aj} such that

~xi = ~m +
∑

j

wij~aj

IE. point ~xi represented as a mean plus weighted sum of axis

directions
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Transforming points to the new

representation

Transforming points is easy as ~ak · ~aj = 0 and ~ak · ~ak = 1 for k 6= j
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Computing wik is easy:

~ak · (~xi − ~m) = ~ak ·
∑

j

wij~aj =
∑

j

wij~ak · ~aj = wik
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How to do PCA I

1. Choose axis ~a1 as the direction of the most variation in the

dataset:
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2. Project each ~xi onto a D − 1 dimensional subspace

perpendicular to ~a1 (ie removing the component of variation in

direction ~a1) to give ~x′

i

3. Calculate the axis ~a2 as the direction of the most remaining

variation in {~x′

i}
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4. Project each ~x′

i onto a D − 2 dimension subspace

5. Continue like this until all D new axes ~ai are found.
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Why PCA

Many possible axis sets {~ai}

PCA chooses axis directions ~ai in order of largest remaining

variation

Gives an ordering on dimensions from most to least significant

Allows us to omit low significance axes. Eg, projecting ~a2 gives:
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How to Do PCA II

Via Eigenanalysis

Given N D-dimensional points {~xi}

1. Mean ~m = 1

N

∑
i ~xi

2. Compute scatter matrix S =
∑

i(~xi − ~m)(~xi − ~m)′

3. Compute Singular Value Decomposition (SVD): S =

U D V’, where D is a diagonal matrix and U’ U = V’

V = I

4. PCA: ith column of V is axis ~ai (ith eigenvector of S)

dii of D is a measure of significance (ith eigenvalue)
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Midlecture Problem

If you had a 3D dataset like this
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How many principal components does it
have?
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Point Distribution Models

Given:

Set of objects from the same class

Set of point positions {~xi} for each object instance

Assume:

Point positions have a systematic structural variation plus a

Gaussian noise point distribution

Thus, point position variations are correlated

Goals:

Construct a model that captures structural as well as statistical

position variation.

Use model for recognition
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Data Example

A family of objects with shape variations

How to represent?
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Point Distribution Models - PDMs

Given a set of N observations, each with P
boundary points {(rik, cik)}, k = 1..P, i = 1..N
in corresponding positions.

Key Trick: rewrite {(rik, cik)} as a new 2P
vector ~xi = (ri1, ci1, ri2, ci2, ..., rip, cip)

′

Gives N vectors {~xi} of dimension 2P
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PDMs II

If shape variations are random, then
components of {~xi} will be uncorrelated.

If there is a systematic variation, then
components will be correlated.

Use PCA to find correlated variations.
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PDM II: The Structural Model

PCA over the set {~xi} gives a set of 2P axes such that

~xi = ~m +
2P∑

j=1

wij~aj

2P axes gives complete representation for {~xi}.

Approximate shapes using a subset M of the most

significant axes (based on the eigenvalue size from PCA):

~xi
.
= ~m +

M∑

j=1

wij~aj (1)
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PDM II: The Structural Model

Represent ~xi using ~wi = (wi1, ..., wiM)′

A smaller representation as M << 2P

Goal: represent the essential structure variations

Approximate full shape reconstruction using ~wi and (1)

Can vary ~wi to vary shape
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Structural model - varying the weights

Each row here varies one of top 3 eigenvectors of model
from hand outlines

Visualisation of the main modes of structural variation
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PDM III: The Statistical Model

If we have a good structural model, then the component weights

should characterise the shape.

A family of shapes should have a distribution that characterises

normal shapes (and abnormal shapes are outliers).

We assume that the distribution of normal shape weights is

Gaussian.

Statistical Model:

Given a set of N component projection vectors {~wi}

Mean vector is ~t = 1
N

∑
i ~wi

Covariance matrix C = 1
N−1

∑
i(~wi − ~t)(~wi − ~t)′
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Statistical Model Matlab code

Uses inverse of C (invcor):

% Vecs(N,D) is N observations of D

% dimensional vector

Mean = mean(Vecs)’;

diffs = Vecs - ones(N,1)*Mean’;

Invcor = inv(diffs’*diffs/(N-1));
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Classification/Recognition

Given:

• Unknown sample ~x

• Structural model: mean ~m + M variation axes ~aj

• Statistical model: class means {~ti} and associated

covariance matrices {Ci} for i = 1..K classes

For each class i:

1. Project ~x onto ~aj to get weights ~w (M dim vector)

2. Compute Mahalanobis distances:

di(~w) = ((~w − ~ti)
′(Ci)

−1(~w − ~ti))
1

2

Select class i with smallest distance di(~w)
Reject if smallest distance is too large
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Algorithm Pre-processing

Load image, convert to binary (e.g. IVR)

Get boundary and find corners (system 1)

Problem: poor segmentation → varying numbers of corners
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Algorithm Pre-processing

Exploit problem constraints: long lines, meet at
given angles → delete short badly placed
segments and extend to intersection

Exploit problem constraints: long lines →
search for lines directly
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Model Learning Summary

1. Load image, threshold, get boundary and find corners (c.f.

TASK 1, except with a better corner finding threshold)

2. Point Distribution Model learning method:

(a) Rotate TEEs to standard position

(b) Get vertices into vector in a standard order

(c) Construct structural model using PCA

(d) Project examples into PCA weight space

(e) Estimate statistical model of projections
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Recognition Summary

1. Load image, threshold, get boundary and find corners (c.f.

TASK 1, except with a better corner finding threshold)

2. Point Distribution Model classification method:

(a) Constraint: reject if not 8 vertices

(b) Rotate TEE to standard position for PDM (Constraint:

reject if not 2 sets of 4 nearly parallel lines)

(c) Get vertices into vector in a standard order

(d) Project vector into PCA weight space (structural model)

(e) Evaluate statistical likelihood of projection (statistical

model)
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Rotating TEE to standard position

Assumes 8 lines in a rough TEE shape

Use heuristic algorithm (about 160 lines of code)

1. Sort 8 lines into 2 sets of 4 mutually nearly parallel lines (reject

if not possible): find direction of one line, sort all others by

whether angle with this line is ≤ π
4

or not

2. Find which set is the head of TEE (reject if neither or both

satisfy criteria). Also sort into positional order: if longest is

sufficiently longer than the next and the 3 shortest are about

the same length as the longest, the longest is the head of TEE

3. Estimate transformation of TEE to standard position with

TEE head top parallel to column axis and center of TEE at

origin. Apply transformation to TEE.
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Example segmented boundary and

standard alignment
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Training Code

function train

% training phase

datacount = 0;

maximages = 31;

imagestem=input(’Training image file stem\n?’,’s’);

for imagenum = 1 : maximages

currentimagergb = imread([imagestem, ...

int2str(imagenum),’.jpg’],’jpg’);

currentimage = rgb2gray(currentimagergb);

% get corners using TASK2’s method

Image = getbinary(currentimage,0,0,0,0,0); %threshold

[H,W] = size(Image);

[r,c] = find( bwperim(Image,4) == 1 ); %perimeter
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[sr,sc] = removespurs(r,c,H,W,0); %clean

[tr,tc] = boundarytrack(sr,sc,H,W,0); %track

datalines = zeros(100,4); % space for results

numlines = 0;

findcorners(tr,tc,H,W,9,16); %segment

% process boundary, assuming it is a TEE

if numlines == 8

% rotate datalines to standard position

[newlines,flag] = standard_position( ...

datalines(1:numlines,:),numlines,11);

% get vertices

if flag

% sort vertices into a standard order

sortvertices=sortvert(newlines(1:numlines,1:2));
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% add to scatter matrix

[Vnum,Vcoord] = size(sortvertices);

if Vnum == 8

% turn points into long array

datacount = datacount + 1;

allvertices(datacount,:) = ...

reshape(sortvertices,1,Vnum*Vcoord);

end

end

end

end

% Create model

meanvertex = mean(allvertices);

vertexdev = allvertices - ones(datacount,1)*meanvertex;

scatter = vertexdev’*vertexdev;
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[U,D,V]= svd(scatter);

modeldev = V(:,1:5)’ % use only first 5 components

% get projections onto data

vecs = vertexdev*modeldev’;

% get class mean vector and covariance matrix

[Mean,Invcor] = buildmodel(vecs,maximages);

% save training data

save modelfile modeldev meanvertex Mean Invcor
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Mahalanobis Distance

Vector distance measure that takes account of different range of

values for different positions in vector

Given vectors ~a, ~b from a set with covariance C, the Euclidean

Distance between the vectors is:

|| ~a −~b ||= [(~a −~b)′(~a −~b)]
1

2

The Mahalanobis Distance is:

[(~a −~b)′C−1(~a −~b)]
1

2

IE, scaled differences
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Recognition Code

Same as Training code up to where 8 × 2 sorted point list reshaped

into 16-vector

% turn 8 2D points into 16 vector

tmp = reshape(sortvertices,1,2*Vnum);

% project onto eigenvectors

vec = (tmp - meanvertex)*modeldev’;

% get class distance

dist = mahalanobis(vec’,Mean,Invcor);
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Representing the TEEs using PDMs

Have 8 2D points for each TEE in standard
position
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Have N = 31 instances with variations

Can we make a model of the TEEs? YES!
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Midlecture Problem

What might the first few principal
components encode for the TEE data?
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Representing the TEEs using PDMs II

Each corner point in the TEE model has a:

• Standard position

• Modified by shape variations

Use a Point Distribution Model (mean + PCA
based main variation vectors) to represent
structural variations and statistical model
(mean + covariance matrix) to represent
in-class variation
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Some of Training Data
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Correlation of x1 and x2
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Note strong correlation
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Eigenvalues of Scatter Matrix for TEE

corners
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First Four Modes of Variation
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Correlation of c1 and c2 (of c1 ... c5)

* - good data, diamond = bad data

−100 −80 −60 −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

Note 1) decorrelated, 2) bad data tends to be
further from mean
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Good TEE Results

All TEEs recognized

Plot of Mahalanobis distances for training data
Distributed Chi-squared mean: 5/2, std. dev.: sqrt(2*5)

‘3-sigma’ test threshold: 3
√

Dim = 3
√

5 = 6.7
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Bad TEE Shapes: Corner (5) & Rotation

(1) Failures
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‘Invalid’ TEE Shapes Aligned and

Classified
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Values are Mahalanobis distances
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Problems

• Getting same number of points (3 failures on

“good” data)

• Getting points in the same positions on

smooth curves

• Alignment when shape too extreme
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Discussion

• Applicable to smooth curves

• Applicable to other data beside points, 3D,

ultrasound

• Covariance matrix links correlations between

pairs of features. What about triples, ...?

• Can extend to include greylevel variations

• Training samples need not be in order (batch

mode)
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What We Have Learned

• Point Distribution Model (PDM) method for

representing classes of objects

• Principal Component Analysis (PCA)

decomposition for estimating the dominant

modes of variation
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PCA-based Face Recognition

• Eigenfaces (Turk & Pentland 1991)

Representation of faces using PCA directly

on image intensities

One of most famous uses of PCA in

computer vision

Seminal reference for face recognition (but

would work better if we modeled shape

variation rather than lightness variation)
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• Key principle:

Turn image array into long vector

Represent sample image (face) as weighted

sum of eigenimages (eigenfaces)
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Eigenfaces

1. Given set of K registered face images

(R × C) with varying capture conditions

2. Represent as R × C long vectors

3. Do PCA (special trick for large matrices)
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4. Represent person i by projection weights ~wi
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Eigenface Recognition

Given unknown face image Fu

1. Subtract mean face and project onto

eigenfaces → ~wu

2. Given database of projections {~wi}K
i=1, find

class c with smallest Mahalanobis distance

dc to ~wu

3. If dc small enough, return c as identity
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Eigenface Results

2500 128 × 128 image database, varied lighting

• 96% successful recognition over lighting

variations

• 85% over orientation variations

• 64% over size variations
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Eigenface Discussion

• Variations in position, orientation, scale &

occlusion cause problems

• Research topics

• 4-36% failure rate a problem at busy airports
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