NORMAL TARGET TRACKING

General problem: in first image have R targets $\{F_i\}$ In next image have L targets $\{N_i\}$ How to pair the targets out of the $(R+1)^L$ possibilities?

Video rate fast \rightarrow targets don't move much Kalman Filter predicts position Overlap with detected target makes correspondences

Advanced Vision lecture set 3

Fisher slide 1

School of Informatics, University of Edinburgh

PROBLEM REPRESENTATION

Break trajectories at occlusions

Create label nodes X_i for each track S_i , also inheriting previous tracks

MAINTAINING TARGET PERSISTENCE

Issue: tracking targets breaks down when close or occluded

Solution: need identity persistence thru occlusion

Advanced Vision lecture set 3

Fisher slide 2

School of Informatics, University of Edinburgh

Fisher slide 3

MATCHING COLOUR TARGETS I

Assume binary mask of target Use mask to select target pixels $\{(r_i, g_i, b_i)\}$

Compute RGB histogram over all pixels in region and all frames in segment (eg. maybe 20K values):

 $\forall i \ h_1(r_i, g_i, b_i) = h_1(r_i, g_i, b_i) + 1$

How well does distribution $h_1(r_i, g_i, b_i)$ match distribution $h_2(r_i, g_i, b_i)$?

Advanced Vision lecture set 3

Fisher slide 5

Fisher slide 7

School of Informatics, University of Edinburgh

EXTENDING NETWORK

Create label nodes X_i for each segment section S_i

Add data matching nodes Y_i (color histogram of target appearance)

Add restriction nodes R_i enforcing mutual exclusion between sibling nodes

MATCHING COLOUR TARGETS II

Normalize:

$$H_j(r,g,b) = h_j(r,g,b) / \Sigma_{r,g,b} h_j(r,g,b)$$

Use Bhattacharyya distance:

$$d(H_1, H_2) = 1 - \sum_{r,g,b} \sqrt{H_1(r, g, b) \times H_2(r, g, b)}$$

If $d(h_1, h_2)$ small then likely same target

Group colour levels together (eg. 0-31, 32-64, ... 224-255) because so few pixels

Advanced Vision lecture set 3

Fisher slide 6

EVALUATING PERSISTENCE

Find labeling \vec{X} that maximizes

 $p(\vec{X} \mid \vec{Y}, \vec{R})$

Probability of labeling \vec{X} given data \vec{Y} and restrictions \vec{R}

Gives probability that each person P_i is observed in track X_j

Use standard conditional probability propagation algorithm

Advanced Vision lecture set 3

Fisher slide 9

Fisher slide 11

School of Informatics, University of Edinburgh

PROBLEM 1: REAL-TIME ANSWERS

Full network evaluation is expensive

Incremental evaluation, using Bayes rule after the k^{th} block of T frames:

 $p(x_i \mid \vec{Y}_0^t, \vec{R}_0^t) = \alpha p(\vec{Y}_{kT}^t, \vec{R}_{kT}^t \mid x_i) p(x_i \mid \vec{Y}_0^{kT}, \vec{R}_0^{kT})$

Advanced Vision lecture set 3

Fisher slide 10

School of Informatics, University of Edinburgh

Advanced Vision lecture set 3

Advanced Vision lecture set 3

Fisher slide 13

School of Informatics, University of Edinburgh

Advanced Vision lecture set 3

Fisher slide 14

Lecture Problem

These Bayesian network graphs do not have any loops. How could we handle a person walking in a loop, meeting the same person several times?

Advanced Vision lecture set 3

Fisher slide 17

School of Informatics, University of Edinburgh

Near field (bodies 300 pixels high) \rightarrow Use geometric model Far field (bodies 3 pixels high) \rightarrow Use tracking

Here: medium field (bodies 30 pixels high)

PROBLEM

SHORT TERM ACTION RECOGNITION

Action primitives, not sequences, eg. a hand wave

Temporally local/short-term image analysis/instantaneous

Appearance based/viewpoint specific

Efros, Berg, Mori & Malik

Advanced Vision lecture set 3

Fisher slide 18

School of Informatics, University of Edinburgh

Advanced Vision lecture set 3

Select matching activities from database of video clips

Advanced Vision lecture set 3

Fisher slide 21

Fisher slide 23

School of Informatics, University of Edinburgh

KEY CONCEPT Pattern of stabilized optical flow

Advanced Vision lecture set 3

Fisher slide 22

Image velocity (u, v) at every pixel: where each pixel's data is moving to in next image

Computed by standard algorithms that match local gradients to temporal gradients

Advanced Vision lecture set 3

Fisher slide 25

School of Informatics, University of Edinburgh

OPTICAL FLOW DESCRIPTORS 1

Goal: aggregate spatial pattern of noisy relative O.F.

O.F. IMAGE = $[...(u_i, v_i)...]$

Advanced Vision lecture set 3

Fisher slide 26

School of Informatics, University of Edinburgh

OPTICAL FLOW DESCRIPTORS 3

Noisy so smooth, but smoothing cancels +/- aspects

Solution: split +/- components

f(x) = x if $x \ge 0$ else x = 0

 $(u_i, v_i) \to (f(u_i), f(-u_i), f(v_i), f(-v_i))$

Advanced Vision lecture set 3

Fisher slide 29

School of Informatics, University of Edinburgh

MATCHING DESCRIPTORS II

Time window of T = 50 frames

$$S(i,j) = \sum_{r=-T/2}^{r=+T/2} \sum_{s=-T/2}^{s=+T/2} K(r,s)m(i+r,j+s)$$

Weighted sum of nearby in time frames

Advanced Vision lecture set 3

Fisher slide 33

School of Informatics, University of Edinburgh

Advanced Vision lecture set 3

WHAT WE HAVE LEARNED

- 1. Short term action recognition technique
- 2. Based on stabilized optical flow of local medium sized windows
- 3. Encodes temporal structure better
- 4. But: still somewhat viewpoint and scale dependent

Advanced Vision lecture set 3

Fisher slide 37

