THE TRACKING PROBLEM
Given a sequence of \(N\) images, is it possible to:

- Identify moving objects
- Predict their position in the next image

Goal: a sequence of tracked positions \((r, c)\) for each target as it moves across the image

Data: a sequence of images (i.e. a video)

MOTIVATION

- Objects: sign language recognition, vehicle monitoring
- People: overcrowding, sports, exclusion zones
- Animals: behaviour, health monitoring

TARGET TRACKING WITH NOISE AND BOUNCING

PROBLEM: track a ball falling and bouncing

SEE: homepages.inf.ed.ac.uk/rbf/... ...AVAUDIO/AUDIO8/demo.html

THE TARGET

PLAN:

1. Removal of irrelevant background + detection of changes
2. Tracking noisy motion with **Kalman filter**
3. Coping with events and noise with **condensation tracking**
Issues & Constraints

+ Constant background
+ Color difference with background: Realistic for controlled environments, less realistic for public places: plazas, streets, shopping areas
+ Newtonian motion model

Problems: Motion blur & the bounce

Why a ball?

- Ball bounce (direction, magnitude) is hard to model without precise knowledge of mass, forces, elasticity
- Prediction of $n+1$ position using first n frames
- Simple shape allows us to concentrate on tracking issues without 3D shape problems

BALL DETECTION CODE

```matlab
% sub background & select pixels with a big difference
fore = (abs(Imwork(:,:,1)-Imback(:,:,1)) > 10) ...
    | (abs(Imwork(:,:,2) - Imback(:,:,2)) > 10) ...
    | (abs(Imwork(:,:,3) - Imback(:,:,3)) > 10);

% erode to remove small noise
foremm = bwmorph(fore,'erode',2);

% select largest object
labeled = bwlabel(foremm,4);
stats = regionprops(labeled,['basic']);
[N,W] = size(stats);

% do bubble sort (large to small) on regions in case
% there are more than 1
```

```matlab
for i = 1 : N
    id(i) = i;
end
for i = 1 : N-1
    for j = i+1 : N
        if stats(i).Area < stats(j).Area
            tmp = stats(i);
            stats(i) = stats(j);
            stats(j) = tmp;
            tmp = id(i);
            id(i) = id(j);
            id(j) = tmp;
        end
    end
end
```

```matlab
% get center of mass and radius of largest
centroid = stats(1).Centroid;
radius = sqrt(stats(1).Area/pi);
```
What’s wrong?

- Moving ball blurred
- Noisy observations
- Potentially poor contrast

We done have:

- Track of positions for ball in frames 0…N
- Ability to predict position in frame N + 1

So: incorporate motion model in tracker

Architecture of Model-Based Tracker

Incorporates a motion model, e.g., ball accelerating due to gravity

Model based Tracking: Kalman filter

Why? Model can be used to

1. Predict likely position, thus reducing search
2. Integrate noisy observations, thus giving improved estimates

What’s in model (here called state): position, velocity, shape, ...
KALMAN FILTER INTRODUCTION

“A set of mathematical equations that provides an efficient computational (recursive) solution to the least-squares method.” [Welch & Bishop]

Most commonly used position estimator used in tracking problems

KALMAN FILTER THEORY

Assumes:

1. A changing state (situation) vector: \vec{x}_t and its associated covariance matrix A_t

2. A process model that updates the state over time:

$$\vec{x}_t = A \vec{x}_{t-1} + B \vec{u}_{t-1} + \vec{w}_{t-1}$$

where:
- A - updates the state
- $B \vec{u}$ - some external control of the state
- \vec{w} - process noise: multi-variate normal distribution, mean $\vec{0}$ and covariance Q

KALMAN FILTER ALGORITHM

1. Predict likely state given what we already know: $\vec{y}_t = A \vec{x}_{t-1} + B \vec{u}_{t-1}$

2. Estimate error of predicted state:

$$E_t = A P_{t-1} A' + Q$$

3. Estimate correction gain between actual and predicted observations:

$$K_t = E_t H' (HE_t H' + R)^{-1}$$

where:
- H - extracts observations
- \vec{v} - observation noise: multi-variate normal distribution, mean $\vec{0}$ and covariance R
4. Estimate new state given prediction and correction from observations:
\[\vec{x}_t = \vec{y}_t + K_t(\vec{z}_t - H\vec{y}_t) \]

5. Estimate error of new state:
\[P_t = (I - K_tH)E_t \]

BALL TRACKING WITH THE KALMAN FILTER

Ball physical model:
- Position: \(\vec{p}_t = (col_t, row_t) \)
- Velocity: \(\vec{v}_t = (velcol_t, velrow_t) \)
- Position update: \(\vec{p}_t = \vec{p}_{t-1} + \vec{v}_{t-1}\Delta t \)
- Velocity update: \(\vec{v}_t = \vec{v}_{t-1} + \vec{a}_{t-1}\Delta t \)
- Acceleration (gravity down): \(\vec{a}_t = (0, g)' \)

State vector: \(\vec{x}_t = (col_t, row_t, velcol_t, velrow_t)' \)
Initial state vector: random

Ball physics update

Prediction: \(\vec{y}_t = A\vec{x}_{t-1} + B\vec{u}_t \)
\[
A = \begin{bmatrix}
1 & 0 & \Delta t & 0 \\
0 & 1 & 0 & \Delta t \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
\[
B\vec{u}_t = \begin{bmatrix}
0 \\
0 \\
0 \\
g\Delta t
\end{bmatrix}
\]
Use \(\Delta t = 1 \)

Rest of model

Observation process:
\[
H = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix}
\]

Measurement noise:
\[
R = \begin{bmatrix}
0.285 & 0.005 \\
0.005 & 0.046
\end{bmatrix}
\]

System noise: \(Q = 0.01 \times I \)
Kalman filter analysis

- Smooths noisy observations (not so noisy here) to give better estimates
- Could also estimate ball radius
- Could also plot boundary of 95% likelihood of ball position - grows when fit is bad
- Dynamic model doesn’t work at bounce & stop
CONSENSATION TRACKING

Conditional Density Propogation

AKA Particle Filtering

- Keeps multiple hypotheses
- Updates using new data
- Selects hypotheses probabilistically
- Copes with: very noisy data & process state changes
- Tunable computation load

CONSENSATION TRACKING: THEORY

Maintains set of multiple hypotheses (eg. state vectors, including different models) with estimated probabilities

Probabilistically generates new hypotheses from the set

Update hypotheses with observed data (Kalman filter)

Update hypothesis probabilities

Given set of \(N \) hypotheses at time \(t - 1 \)

\(\mathcal{H}_{t-1} = \{ \bar{x}_{1,t-1}, \bar{x}_{2,t-1}, \ldots, \bar{x}_{N,t-1} \} \) with associated probabilities \(\{ p(\bar{x}_{1,t-1}), p(\bar{x}_{2,t-1}), \ldots, p(\bar{x}_{N,t-1}) \} \)

Repeat \(N \) times to generate \(\mathcal{H}_t \):

1. Randomly select a hypothesis \(\bar{x}_{k,t-1} \) from \(\mathcal{H}_{t-1} \) with probability \(p(\bar{x}_{k,t-1}) \)
2. Generate a new state vector \(\bar{s}_{t-1} \) from a distribution centered at \(\bar{x}_{k,t-1} \)
3. Get new state vector using dynamic model
 \(\bar{x}_t = f(\bar{s}_{t-1}) \) and Kalman filter
4. Evaluate probability \(p(\bar{z}_t | \bar{x}_t) \) of observed data \(\bar{z}_t \) given state \(\bar{x}_t \)
5. Use Bayes rule to get \(p(\bar{x}_t | \bar{z}_t) \)
WHY DOES CONDENSATION TRACKING WORK?

- Many slightly different hypotheses: maybe get one that fits better
- Dynamic model can introduce different effects (eg. state transitions)
- Sampling by probability weeds out bad hypotheses
- Generating by probability introduces corrections

CONDENSATION TRACKING OF BOUNCING BALL

1) Select \(N=100 \) samples of a ball motion vector by probability of vector

2) Use estimated covariance \(P() \) to create state samples \(s_{t-1} \)

3) Situation switching model. \(P_b = 0.3, P_s = 0.05 \)

If in STOP situation: zero vertical speed

If in BOUNCE situation: \(v_{row} = -0.7 \cdot v_{row} \)
Also don’t know when bounce was so add some random vertical motion

Then use Kalman filter

4) Estimate hypothesis goodness by
\[
1 / \| H \bar{x}_t - \bar{z}_t \|^2
\]
Normalize to estimate hypothesis probability

EXAMPLE OF SAMPLING EFFECTS

Red: final estimate Green: data
Yellow: BOUNCE Blue: STOP Black: FALL
CONDENSATION TRACKING CORE CODE

ident: an array of IDCOUNT sample ids. Each id appears with the same probability as in H_{t-1}P(): estimated state covariance x(): state vectors

% generate NCON new samples
for j = 1 : NCON
 k = ident(ceil(IDCOUNT*rand(1))); % get sample
 xc(:) = x(k,time-1,:); % get state
 A,B = ... % replace A,B for stop model
 xc(4) = 0; % zero vertical velocity
 tracksituation(j,time)=1;
else % normal motion
 tracksituation(j,time)=3;
% update new hypotheses via Kalman filter
x(j,time,:) = f(xc)
P(j,time,:) = ...

elseif r < (pbounce + pstop) % bounce sit.
 % add random vertical motion due to
 % imprecision about time of bounce
 xc(2) = xc(2) + 3*abs(xc(4))*(rand(1)-0.5);
 % invert velocity with some loss
 xc(4) = -loss*xc(4);
 tracksituation(j,time)=2;
else % normal motion
 tracksituation(j,time)=3;
% weight hypothesis by distance from data
dvec = [cc(time),cr(time)]
 - [x(j,time,1),x(j,time,2)];
 weights(j,time) = 1/(dvec*dvec');
% rescale new hypothesis weights to give sum=1
 totalw=sum(weights(:,time)');
 weights(:,time)=weights(:,time)/totalw;
% select top hypothesis to draw
 subset=weights(:,time);
 top = find(subset == max(subset));
% generate a new SAMPLE at this state
 xc = xc + 5*sqrt(P(j,time-1,:,:))*randn(4);
 if tracksituation(k,time-1)==1 % if in stop sit.
 A,B = ... % replace A,B for stop model
 xc(4) = 0; % zero vertical velocity
 tracksituation(j,time)=1;
 else
 r=rand(1);% random number for sit. selection
 if r < pstop % gone to stop situation
 A,B = ... % replace A,B for state model
 xc(4) = 0; % zero vertical velocity
 tracksituation(j,time)=1;
 elseif r < (pbounce + pstop) % bounce sit.
 % add random vertical motion due to
 % imprecision about time of bounce
 xc(2) = xc(2) + 3*abs(xc(4))*(rand(1)-0.5);
 % invert velocity with some loss
 xc(4) = -loss*xc(4);
 tracksituation(j,time)=2;
 end
 end
TRACKING IN GENERAL

Can track \{ people, vehicles, animals \} using Kalman filter or condensation tracking

- Need a motion model
- Can learn model, or from calibrated parametric model

Newton’s Laws of Motion often used:
\[
\vec{x}(t) = \vec{s}_0 + t\vec{v}_0 + \frac{1}{2}t^2\vec{a}
\]

BUT

- Still need to know what is being tracked in image
- Easy for bouncing ball scene: contrasting object, plain background
- Hard in real scenes: objects come and go, lighting changes, shadows, moving scene structure (eg. leaves)

TARGET DETECTION BY IMAGE DIFFERENCING

Problems: Illumination changes, overlapping changes, scene vibrations
Solutions: Compare images to pre-learned background image model
ADAPTIVE CHANGE DETECTION

Naive method
\[|\text{current} - \text{background}| > \text{threshold} \]
doesn’t work well in uncontrolled situations

Fix by using:
- Color spaces & shadows
- Kernel density modelling
- Kernel parameter estimation

CHANGE DETECTION ISSUES

If we have a single background, then what about:
- Gradual illumination changes: sun movement
- Rapid illumination changes: lights on
- Background object shadow movement
- Camera jitter
- Halting objects: cars parked

Problem: model out of date
Solution: adapt background model over time

CHROMATICITY COORDINATES

Image: (red,green,blue)=\((R,G,B)\)
Shadows have same color, but are darker
Use chromaticity coordinates
\[(r, g, b) = (\frac{R}{R+G+B}, \frac{G}{R+G+B}, \frac{B}{R+G+B})\]
Normalizes for lightness
\[r + g + b = 1\] so just use \((r, g)\)

SIMILAR FOREGROUND COLORS

In chromaticity space, grey=white=black

Want to detect lightness changes

Lightness: \[s = (R + G + B)/3\]
Model pixel at time \(t\) as \((r_t, g_t, s_t)\)
Model background as \((r_B, g_B, s_B)\)
If \[\frac{s_t}{s_B} < \alpha\] or \[\frac{s_t}{s_B} > \beta\] or chromaticity different then foreground else background
(Eg. \(\alpha = 0.8, \beta = 1.2\))
CHROMATICITY MODELLING

Using average color has problems with scene and camera jitter: no single pixel value

Instead use non-parametric distribution:

\[Pr(x | \text{BACKGROUND}) = \frac{1}{N} \sum_{i=1}^{N} K_\sigma(x - b_i) \]

\(b_i \): samples from background
Gauss kernel function \(K_\sigma(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}} \)

ADDING COLOR INTO MODEL

Chromaticity coordinates have 2 values: (\(r, g \))

Use \(\bar{x} = (r, g) \)

\[Pr(\bar{x} | \text{BACKGROUND}) = \frac{1}{N} \sum_{i=1}^{N} \prod_{j \in \{r,g\}} K_\sigma(x_j - b_{ij}) \]

ROBUSTLY ESTIMATING KERNEL PARAMETER \(\sigma \)

Different \(\sigma \) for each pixel. use robust estimator:

Assumption: consecutive pixel values usually in same distribution

Use robust estimator for \(\sigma \), based on \(m = \text{median}(|x_t - x_{t+1}|) \)

Median gets typical difference due to noise, rather than abrupt scene changes, like due to jitter

\[\sigma = \frac{m}{0.68\sqrt{2}} \]
DISTRIBUTION RESULTS

σ
50 SAMPLES Xi AT PIXEL (100,100)

DETECTING CHANGES I

Maintain background history \(H = \{ \vec{v}_i \} = \{(r_i, g_i, s_i)\} \) for each pixel

\(H \) is the last \(N \) pixel values classified as background for this pixel

A different set \(H \) for each pixel

At time \(t \) for a new pixel value \(\vec{x}_t = (r_t, g_t, s_t) \), for each

\(\vec{b}_i = (r_i, g_i, s_i) \) in the background history \(H \) for this pixel

If \(\alpha \leq \frac{\vec{x}_t}{\vec{b}_i} \leq \beta \) record sample in \(M \) (\(\alpha = 0.8, \beta = 1.2 \))

If \(|M| = 0 \)

then FOREGROUND

else estimate probability of \(\vec{x}_t = (r_t, g_t, s_t) \) being background

DETECTING CHANGES II

Want to estimate \(Pr(\text{BACKGROUND}|\vec{x}_t) \)

\[
Pr(\vec{x}_t|\text{BACKGROUND}) = \frac{1}{|M|} \sum_{i \in M} \prod_{j \in \{r,g\}} K_\sigma (x_j - b_{ij})
\]

\[
Pr(\text{BG}|\vec{x}_t) = \frac{Pr(\vec{x}_t|\text{BG}) \times Pr(\text{BG})}{Pr(\vec{x}_t|\text{BG}) \times Pr(\text{BG}) + Pr(\vec{x}_t|\text{FG}) \times (1 - Pr(\text{BG}))}
\]

\(Pr(\text{BACKGROUND}) = 0.99 \) (estimated a priori likelihood)

\(Pr(\vec{x}_t|\text{FOREGROUND}) = 0.001 \) (estimated - all values likely)

If \(Pr(\text{BACKGROUND}|\vec{x}_t) < \tau \) then FOREGROUND (\(\tau = 0.05 \))
UPDATING THE MODEL

At each pixel i, keep N most recent (r_t, g_t, s_t) background pixel values

Allows slow drift in illumination
Set allows multiple backgrounds due to jitter

(Discard non-background pixels)

$N = 50$ in examples

NOISE CLEANING

Final stage: remove noise in thresholded foreground image:

1. Collect into regions by 4-connectedness
2. Remove groups with less than 5 pixels
3. “Close” (dilate and then erode) to fill in gaps
4. Remove resulting groups still with less than 20 pixels

Future: remove groups whose bounding boxes do not overlap another in previous & next frame

Future: Track boxes thru time using Kalman filter

RESULTS URL

SEE: homepages.inf.ed.ac.uk/rbf/AVAUDIO/AUDIO8/demo2.html
OBSERVATIONS & EXTENSIONS

1. Big model arrays (σ and kernel samples per pixel): 100+ Mb history for 50 observations
2. Rapid illumination changes, eg. lights on: chromaticity ok, lightness not
3. Image compression introduces noise: eg. JPEG artifacts
4. Future: suppress moving groups (eg. moving tree branches)
5. Future: foreground statistical models

SUMMARY

Techniques good for:

1. Change detection by modelling the background statistically
2. Kalman filtering - tracking & hypothesis noise reduction
3. Condensation tracking - multiple undecided hypotheses, situation change

Visual Ethics

Time to ask yourself questions:

1. **Video surveillance**: around prisons? Lothian Road? Corner shops?
2. **Autonomous navigation**: goods delivery in factories? Predator AUVs?
3. **Factory Automation**: cheaper, more reliable goods? unemployment?
4. **Biometrics**: Spot the terrorist? Secure banking?
5. **Car registration plate reading**: Speed control? Police database?