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THE TRACKING PROBLEM MOTIVATION

Given a sequence of N images, is it possible to:

e Identify moving objects e Objects: sign language

recognition, vehicle

e Predict their position in monitoring
the next image e People: overcrowding,
Goal: a sequence of tracked positions (r, ¢) for sports, exclusion zones

each target as it moves across the image . .
& & e Animals: behaviour,

Data: a sequence of images (ie. a video) health monitoring
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TARGET TRACKING WITH NOISE THE TARGET

AND BOUNCING
PROBLEM: track a ball falling and bouncing

PLAN:

1. Removal of irrelevant background +

detection of changes

2. Tracking noisy motion with Kalman filter

3. Coping with events and noise with
SEE: homepages.inf.ed.ac.uk/rbf/...

... AVAUDIO/AUDIOS/demo.html condensation tracking
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Why a ball?

Issues & Constraints
e Ball bounce (direction, magnitude) is hard to model

ith ise knowl f fi lastici
+ Constant backgroun d without precise knowledge of mass, forces, elasticity
e Prediction of n + 1 position using first n frames

+ Color difference with background: Realistic . _
. o e Simple shape allows us to concentrate on tracking
for controlled environments, less realistic for

issues without 3D shape problems

public places: plazas, streets, shopping areas

+ Newtonian motion model

Problems: Motion blur & the bounce
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BALL DETECTION CODE fori=1:1N
id(i) = i;

% sub background & select pixels with a big difference
fore = (abs(Imwork(:,:,1)-Imback(:,:,1)) > 10)

| (abs(Imwork(:,:,2) - Imback(:,:,2)) > 10)

| (abs(Imwork(:,:,3) - Imback(:,:,3)) > 10);

end
for i =1 : N-1
for j =i+l : N
if stats(i).Area < stats(j).Area
tmp = stats(i);
stats(i) = stats(j);
stats(j) = tmp;

% erode to remove small noise
foremm = bwmorph(fore,’erode’,2);

. . tmp = id(1);
% select largest object S o
id(i) = id(§);
labeled = bwlabel(foremm,4);
id(j) = tmp;

stats = regionprops(labeled, [’basic’]);

[N,W] = size(stats);
% get center of mass and radius of largest
% do bubble sort (large to small) on regions in case centroid = stats(1).Centroid;

Y there are more than 1 radius = sqrt(stats(l).Area/pi);

AV: Tracking Fisher system 2 slide 7 AV: Tracking Fisher system 2 slide 8



School of Informatics, University of Edinburgh

DETECTION RESULTS
BACKGROUND REMOVED

CLEANED DETECTED

AV: Tracking Fisher system 2 slide 9

School of Informatics, University of Edinburgh

Architecture of Model-Based Tracker

PREDICT
LOCATION
A

OBJECT
p STATE
| SCENE |
DATA |~
« \
UPDATE VERIFY

LOCATION

STATE

Incorporates a motion model, eg. ball
accelerating due to gravity
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What’s wrong?

e Moving ball blurred
e Noisy observations

e Potentially poor contrast

We done have:
e Track of positions for ball in frames 0... N

e Ability to predict position in frame N + 1

So: incorporate motion model in tracker
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Model based Tracking: Kalman filter
Why? Model can be used to
1. Predict likely position, thus reducing search

2. Integrate noisy observations, thus giving

improved estimates

What’s in model (here called state): position,
velocity, shape, ...
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KALMAN FILTER THEORY

Assumes:

1. A changing state (situation) vector: Z; and its
associated covariance matrix A,

* A set of mathematical equations that provides 2. A process model that updates the state over time:

an efficient computational (recursive) solution

to the least-squares method.” [Welch & Bishop]

KALMAN FILTER INTRODUCTION

Ty = AT, + Bty + W

where:
e A - updates the state

e B - some external control of the state

Most commonly used position estimator used in
tracking problems

e 1 - process noise: multi-variate normal
distribution, mean 0 and covariance Q
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KALMAN FILTER ALGORITHM

1. Predict likely state given what we already

3. An observation model that relates measured data know: y; = A%, 1 + B4

Z; to the current state:
2. Estimate error of predicted state:
E:= AP, 1A'+ Q

zy = HZ, + 4

where:
, 3. Estimate correction gain between actual and
e H - extracts observations

predicted observations:
Kt - EtH/(HEtH, -l— R)_l

e U - observation noise: multi-variate normal
distribution, mean 0 and covariance R
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BALL TRACKING WITH THE
KALMAN FILTER

4. Estimate new state given prediction and Ball physical model:

correction from observations: Position: p, = (col, Towt)
. - 9

7 = gy + Ki(Z: — Hyp) Velocity: v, = (velcoly, velrowy)
. Position update: p; = py_1 + U4 _1 At
5. Estimate error of new state: Velocity update: 0, = U,_1 + a@;_1 At
P, = (I- K,;H)E, Acceleration (gravity down): a; = (0, g)’

State vector: @ = (coly, rowy, velcoly, velrow;)'
Initial state vector: random
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Rest of model
Ball physics update

. . . . Observation process:
Prediction: y; = Ax;_1 + Bu,

1000
] i i i 1=
10 At 0 0 0100
A — 01 0 At B, 0 Measurement noise:
00 10 0 0.285 0.005
00 0 1] | gAL 0.005 0.046
Use At =1

System noise: Q = 0.01 x I
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KALMAN FILTER SUCCESSES

SEE: homepages.inf.ed.ac.uk/rbf/. ..
.. .AVAUDIO/AUDI08/demo.html

35:
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Kalman filter analysis
e Smooths noisy observations (not so noisy
here) to give better estimates
e Could also estimate ball radius

e Could also plot boundary of 95% likelihood

of ball position - grows when fit is bad

e Dynamic model doesn’t work at bounce &

stop

AV: Tracking Fisher system 2 slide 23

School of Informatics, University of Edinburgh

KALMAN FILTER FAILURES
14: BOUNCE OVERSHOOT 16: SLOW CATCH UP

59: GRAVITY PULLS DOWN AT REST
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MID-LECTURE QUESTION

HOW MIGHT YOU CORRECT THE TRACKING
FAILURE AT THE BOUNCE?
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CONDENSATION TRACKING

Conditional Density Propogation
AKA Particle Filtering

e Keeps multiple hypotheses
e Updates using new data
e Selects hypotheses probabilistically

e Copes with: very noisy data & process state

changes

e Tunable computation load
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CONDENSATION TRACKING
THEORY

Given set of N hypotheses at time ¢t — 1

Hi1 = {Z14-1,To4-1,...Tn—1} with associated
probabilities {p(71¢-1), p(Z24-1), ... P(Tni-1)}
Repeat N times to generate H;:

1. Randomly select a hypothesis 7,1 from H;_; with
probability p(Zxi-1)

2. Generate a new state vector s;_; from a distribution
centered at Ty ;1

3. Get new state vector using dynamic model
7y = f(5;-1) and Kalman filter
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CONDENSATION TRACKING:
THEORY

e Maintains set of multiple hypotheses (eg.
state vectors, including different models)

with estimated probabilities

e Probabilistically generates new hypotheses

from the set

e Update hypotheses with observed data
(Kalman filter)

e Update hypothesis probabilities
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4. Evaluate probability p(z; | Z;) of observed data Z

given state

5. Use Bayes rule to get p(Z; | Z;)
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WHY DOES CONDENSATION CONDENSATION TRACKING OF
TRACKING WORK? BOUNCING BALL
_ _ 1) Select (N=100 samples) of a ball motion vector by
e Many slightly different hypotheses: maybe probability of vector

get one that fits better

2) Use estimated covariance P() to create state samples
e Dynamic model can introduce different St-1

effects (eg. state transitions) 3) Situation switching model. P, = 0.3,P, = 0.05
Pb

e Sampling by probability weeds out bad {
hypotheses BOUNCE £ FREEFALL Pﬁsmﬂj
" Cw )
e Generating by probability introduces o+ Pb+w

corrections
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EXAMPLE OF SAMPLING EFFECTS

If in STOP situation: zero vertical speed

If in BOUNCE situation: v,gpm = —0.7 % Uy
Also don’t know when bounce was so
add some random vertical motion

Then use Kalman filter

4) Estimate hypothesis goodness by
1/ || He, — z |2
Normalize to estimate hypothesis probability

Red:final estimate Green:data
Yellow:BOUNCE Blue:STOP Black:FALL
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CONDENSATION TRACKING CORE
CODE

ident: an array of IDCOUNT sample ids. Each id
appears with the same probability as in H_(t-1)
P(): estimated state covariance

x(): state vectors

% generate NCON new samples
for j =1 : NCON

k = ident(ceil (IDCOUNT*rand(1))); % get sample
xc(:) = x(k,time-1,:); % get state
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elseif r < (pbounce + pstop) % bounce sit.
% add random vertical motion due to
% imprecision about time of bounce
xc(2) = xc(2) + 3*abs(xc(4))*(rand(1)-0.5);
% invert velocity with some loss
xc(4) = -loss*xc(4);
tracksituation(j,time)=2;

else % normal motion
tracksituation(j,time)=3;

% update new hypotheses via Kalman filter
x(j,time,:) = f(xc)
P(j,time,:,:) = ...
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/» generate a new SAMPLE at this state

xc = xc + bxsqrt(P(j,time-1,:,:))*randn(4);

if tracksituation(k,time-1)==1 % if in stop sit|
A,B= ... % replace A,B for stop model
xc(4) = 0; % zero vertical velocity
tracksituation(j,time)=1;

else
r=rand (1) ;7% random number for sit. selection

if r < pstop % gone to stop situation
AB= ... % replace A,B for state model
xc(4) = 0; % zero vertical velocity

tracksituation(j,time)=1;
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% weight hypothesis by distance from data
dvec = [cc(time),cr(time)]

- [x(j,time,1) ,x(j,time,2)];
weights(j,time) = 1/(dvec*dvec’);

% rescale new hypothesis weights to give sum=1
totalw=sum(weights(:,time)’);
weights(:,time)=weights(:,time)/totalw;

% select top hypothesis to draw
subset=weights(:,time);
top = find(subset == max(subset));
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KALMAN FILTER FAILURES FIXED
TRACKING IN GENERAL

Can track { people, vehicles, animals } using

Kalman filter or condensation tracking

e Need a motion model
14 16

e Can learn model, or from calibrated

parametric model

Newton’s Laws of Motion often used:

ZL’(t) = §0 + tUo + %tQJ

29 L 14
N=20 HYPS Y:BOUNCE B:FALL R:FINAL G:DATA
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BUT TARGET DETECTION BY IMAGE

DIFFERENCING

e Still need to know what is being tracked in

image

e Easy for bouncing ball scene: contrasting

object, plain background

[Morris '04]
e Hard in real scenes: objects come and go,
Problems: Illumination changes, overlapping
changes, scene vibrations

structure (eg. leaves) Solutions: Compare images to pre-learned
background image model

lighting changes, shadows, moving scene
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ADAPTIVE CHANGE DETECTION
CHANGE DETECTION ISSUES

Naive method
If we have a single background, then what about:

| current — background |> threshold L
e Gradual illumination changes: sun movement

doesn’t work well in uncontrolled situations e Rapid illumination changes: lights on

e Background object shadow movement

Fix by using:

e Camera jitter

e Color spaces & shadows e Halting objects: cars parked

e Kernel density modelling Problem: model out of date

) ) Solution: adapt background model over time
e Kernel parameter estimation
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SIMILAR FOREGROUND COLORS
CHROMATICITY COORDINATES

In chromaticity space, grey=white=black
Image: (red,green,blue)=(R,G,B)

Want to detect lightness changes
Shadows have same color, but are darker

o . Lightness: s = (R+ G+ B)/3
Use chromaticity coordinates

R ; . Model pixel at time t as (14, g¢, S¢)
(r,9,0) = ( R+G+B’ R+G+B’ R+G+B) Model background as (rg, g5, Sp)

Normalizes for lightness If 2t <aort> [ or chromaticity different

r4g+4b=1so just use (r,g) then foreground else background

(Eg. « =0.8,8=1.2)
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CHROMATICITY MODELLING
Using average color has problems with scene

and camera jitter: no single pixel value

Instead use non-parametric distribution:

1 N
Pr(z] BACKGROUND) = - 3~ K, (v — b))

1=1

b; : samples from background

Gauss kernel function K,(z) = - v

School of Informatics, University of Edinburgh
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ADDING COLOR INTO MODEL

Chromaticity coordinates have 2 values: (7, g)

ROBUSTLY ESTIMATING KERNEL
PARAMETER o

Different o for each pixel. use robust estimator:
Assumption: consecutive pixel values usually in same distribution
Use robust estimator for o, based on m = median({| x¢ — x141 |})

Median gets typical difference due to noise, rather than abrupt
scene changes, like due to jitter

m

T 0.68v2

g
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Use 7 = (1, 9)
1 N
PT(f‘BACKGROUND) == N H Ka-(xj_bij)
i=1je{rg}
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TEST SCENE

BACKGROUND IMAGE TYPICAL IMAGE
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DISTRIBUTION RESULTS DETECTING CHANGES 1
o 50 SAMPLES Xi AT Maintain background history H = {#;} = {(rs, gi, s;)} for each pixel

H is the last N pixel values classified as background for this pixel

PIXEL (100,100) A different set H for each pixel

At time t for a new pixel value ¥; = (r¢, g¢, S¢), for each
] b; = (rs, i, s;) in the background history H for this pixel

“ If o < 3+ < f3 record sample in M (a=038,0=1.2)
] If|M|=0

il ] then FOREGROUND
else estimate probability of Z; = (74, g¢, $¢) being background
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DETECTING CHANGES II BACKCROUND TYPICAL IMAGE

Want to estimate Pr(BACKGROUND|Z;)

1
Pr(#|BACKGROUND) = T3] S I Kolzj—bij)
ieM je{r,g}

o Pr(i#|BG) x Pr(BG)
PT(BG|xt) - P’l“(ft|BG) % PT(BG) + P’I“(ft‘FG) X (1 _ PT(BG)) PROBABILITY

Pr(BACKGROUND) = 0.99 (estimated a priori likelihood)
Pr(Z;]FOREGROUND) = 0.001 (estimated - all values likely)

If Pr(BACKGROUND|#;) < 7 then FOREGROUND (7 = 0.05)
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NOISE CLEANING
UPDATING THE MODEL

Final stage: remove noise in thresholded foreground
image:

At each pixel i, keep N most recent (ry, g¢, S¢)
background pixel values

1. Collect into regions by 4-connectedness
Allows slow drift in illumination

Set allows multiple backgrounds due to jitter 2. Remove groups with less than 5 pixels
3. “Close” (dilate and then erode) to fill in gaps

(Discard non_background pixels) 4. Remove resulting groups still with less than 20 pixels

) Future: remove groups whose bounding boxes do not
N = 50 in examples sroub &

overlap another in previous & next frame
Future: Track boxes thru time using Kalman filter
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THRESHOLDED CLEANED

RESULTS URL

SEE: homepages.inf.ed.ac.uk/rbf/. ..
.. .AVAUDIO/AUDIO8/demo2.html

- .
W - l I
wilh.
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OBSERVATIONS & EXTENSIONS

1. Big model arrays (o and kernel samples per pixel): 100+ Mb
history for 50 observations

2. Rapid illumination changes, eg. lights on: chromaticity ok,
lightness not

3. Image compression introduces noise: eg. JPEG artifacts
4. Future: suppress moving groups (eg. moving tree branches)

5. Future: foreground statistical models
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Visual Ethics

Time to ask yourself questions:

1. Video surveillance: around prisons? Lothian Road? Corner
shops?

2. Autonomous navigation: goods delivery in factories?
Predator AUVs?

3. Factory Automation: cheaper, more reliable goods?
unemployment?

4. Biometrics: Spot the terrorist? Secure banking?

5. Car registration plate reading: Speed control? Police
database?
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Techniques good for:

situation change

1. Change detection by modelling the background statistically
2. Kalman filtering - tracking & hypothesis noise reduction

3. Condensation tracking - multiple undecided hypotheses,

SUMMARY
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