Advanced Vision

School of Informatics UG4/MSc - 2012/13

Bob Fisher - rbf@inf.ed.ac.uk Room: IF 1.26. Tel: 651-3441

Research Interests:

3D computer vision/video analysis

AV: 2D Coordinate Systems

Fisher lecture 1 slide 1

School of Informatics, University of Edinburgh

Types of Visual Sensing

1. RGB:

2. Greyscale:

Problem of Vision - complexity

Human Vision:

- Builtin 3D stereo & video
- Excellent visual reasoning
- Not well understood

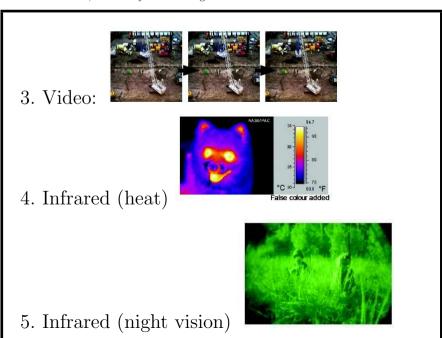
Computer Vision:

- Hard to get quality 3D
- Noise (environment, sensor)
- Limited, static viewpoints
- Low relative resolution
- Well understood, limited algorithms

AV: 2D Coordinate Systems

Fisher lecture 1 slide 2

School of Informatics, University of Edinburgh



AV: 2D Coordinate Systems

Fisher lecture 1 slide 3

AV: 2D Coordinate Systems

Fisher lecture 1 slide 4

6. 3D capture (static)

7. 3D capture (video)

AV: 2D Coordinate Systems

Fisher lecture 1 slide 5

School of Informatics, University of Edinburgh

Review of 2D coordinate geometry

- 1. Object and Scene Coordinate Systems
- 2. Coordinate System Transformations
- 3. Homogeneous Coordinates I
- 4. Multiple Reference Frame Transformations
- 5. Simple 2D Rigid Part Modeling

AV: Six Visual Systems

- 1. Orthographically viewed rigid 2D objects
- 2. Orthographically viewed non-rigid 2D objects
- 3. Video change detection & tracking
- 4. Video: human behaviour analysis
- 5. Recognising 3D objects from range data
- 6. Recognising 3D objects from stereo data

AV: 2D Coordinate Systems

Fisher lecture 1 slide 6

School of Informatics, University of Edinburgh

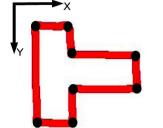
Object and Scene Coordinate Systems

Issues:

- + Want to describe object features independently of the object's position.
- + Want to specify object position and orientation within scene

AV: 2D Coordinate Systems

Why? Generic Model Vs. Specific Position



Generic:

Specific:

Object geometric Scene position in

model, aligned

pixels, not aligned

AV: 2D Coordinate Systems

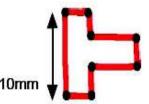
Fisher lecture 1 slide 9

School of Informatics, University of Edinburgh

Object and Scene Coordinate Systems III

(c,r) in image (eg. in pixels) relates to (x,y) in scene (eg. in mm) using column, row scale factors ρ_c, ρ_r : $(x, y) = (\rho_c c, \rho_r r)$

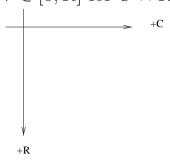
178 pixels



Object and Scene Coordinate Systems II

Solution: Use separate object and scene coordinate systems and link by reference frame transformations

Use image coordinate system $(c, r), c \in [0, C]$, $r \in [0, R]$ for $C \times R$ image (for convenience)



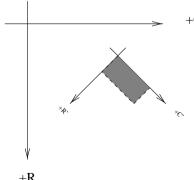
AV: 2D Coordinate Systems

Fisher lecture 1 slide 10

School of Informatics, University of Edinburgh

Object and Scene Coordinate Systems IV

Use separate coordinate systems for object and scene

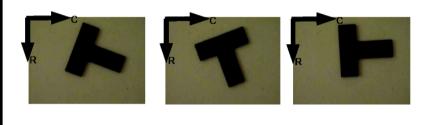


Also - image and camera coordinate systems

Coordinate System Transformations I

Placement of object relative to scene requires a coordinate system transformation

In 2D, need 1 rotation angle θ and $\vec{t} = (t_c, t_r)'$ translation (' is for transposing a row vector to a column vector and *vice versa*)



AV: 2D Coordinate Systems

Fisher lecture 1 slide 13

School of Informatics, University of Edinburgh

Coordinate System Transformations III

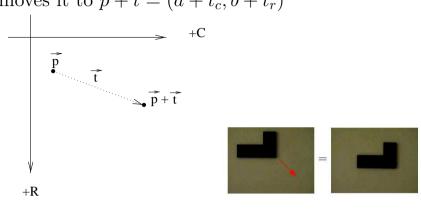
If θ is the rotation angle, let

$$R = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}$$

Sometime see $sin(\theta)$ and $-sin(\theta)$ swapped. A matter of convention about direction of rotation.

Coordinate System Transformations II

 $\vec{p} = (a, b)'$ is a point in the 2D coord system Translation of point $\vec{p} = (a, b)'$ by $\vec{t} = (t_c, t_r)'$ moves it to $\vec{p} + \vec{t} = (a + t_c, b + t_r)'$



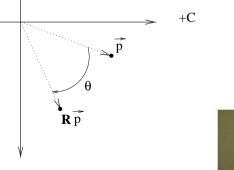
AV: 2D Coordinate Systems

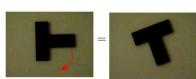
Fisher lecture 1 slide 14

School of Informatics, University of Edinburgh

Coordinate System Transformations IV

Rotation of point $\vec{p} = (a, b)'$ by R moves it to $R\vec{p} = (a \cdot cos(\theta) - b \cdot sin(\theta), a \cdot sin(\theta) + b \cdot cos(\theta))'$

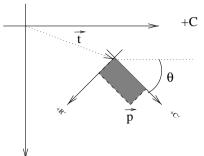




 θ positive is clockwise rotation (other definition common)

Complete Transformations

Rotation & Translations: $R\vec{p} + \vec{t}$



If the object local coordinate system starts at (0,0), then the rotation & translation specify its position

AV: 2D Coordinate Systems

Fisher lecture 1 slide 17

School of Informatics, University of Edinburgh

Homogeneous Coordinates I

Instead of 2 operations to implement the transformation, often only one operation based on homogeneous coordinates (more advanced form in later lectures)

- 1) Extend points $\vec{p} = (a, b)'$ to $\vec{P} = (a, b, 1)'$
- 2) Extend vectors $\vec{d} = (u, v)'$ to $\vec{D} = (u, v, 0)'$
- 3) Combine rotation and translation into one 3×3 matrix

$$T = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & t_c \\ \sin(\theta) & \cos(\theta) & t_r \\ 0 & 0 & 1 \end{bmatrix}$$

Full transformation of \vec{p} is now $T\vec{P}$

Midlecture Problem

What is the position resulting from rotating the point $\vec{x} = (10, 20)'$ by $\frac{\pi}{2}$ and translating the result by $\vec{t} = (-10, 30)'$?

AV: 2D Coordinate Systems

Fisher lecture 1 slide 18

School of Informatics, University of Edinburgh

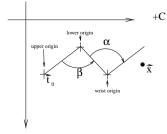
Multiple Transformations

Given 2 joint robot arm whose joint angles are α and β

 $\mathcal{T}_w(\alpha)$ is the wrist joint position relative to the lower arm

 $T_l(\beta)$ is the lower arm position relative to the upper arm

The arm is at position T_0



AV: 2D Coordinate Systems

Multiple Transformations II

Then, a wrist coordinate point \vec{x} at the tip of the robot is at

$$\vec{y} = T_0 T_l(\beta) T_w(\alpha) \vec{x}$$

Can also easily invert positions:

$$\vec{x} = (T_w(\alpha))^{-1} (T_l(\beta))^{-1} (T_0)^{-1} \vec{y}$$

is the wrist coordinates of scene point \vec{y}

AV: 2D Coordinate Systems

Fisher lecture 1 slide 21

School of Informatics, University of Edinburgh

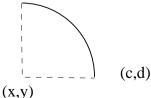
Polycurve / Polyline Modeling

Set of vertices connected by line / curve segments

Line segment: (a,b) -L- (c,d)

Arc segment: (a,b) -arc(x,y) - (c,d)

(a,b)



Arbitrary position in local object-centered coordinate system

Geometric Shape Model

Here: rigid, piecewise linear / circular boundary segments

Options:

- Region representation: pixel list, quadtree
- Boundary representation
 - Curve
 - * Set of boundary segments
 - * Pixel list / chain code (incremental pixel list)
 - Vertices

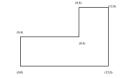
AV: 2D Coordinate Systems

Fisher lecture 1 slide 22

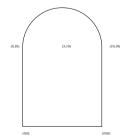
School of Informatics, University of Edinburgh

Example Models

(0,0)-L-(12,0)-L-(12,8)-L-(8,8)-L-(8,4)-L-(0,4)-L-(0,0)



(0,0) -L- (10,0) -L- (10,10) -arc(5,10)- (0,10) -L- (0,0)



AV: 2D Coordinate Systems

What We Have Learned

- 1. Review of Coordinate Systems Transformations
- 2. Introduction to Homogeneous Coordinates
- 3. Simple 2D Rigid Part Modeling

AV: 2D Coordinate Systems

Fisher lecture 1 slide 25