System 6 Introduction

Is there a Wedge in this 3D scene?

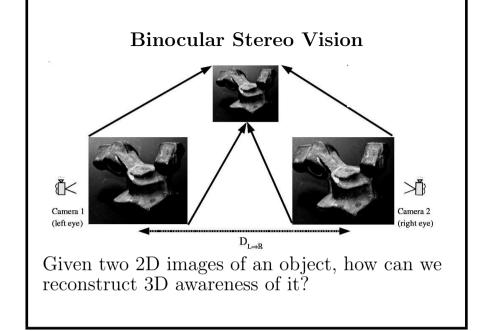
Data a stereo pair of images!

AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 1

School of Informatics, University of Edinburgh

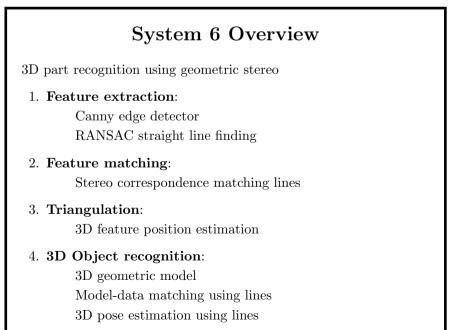


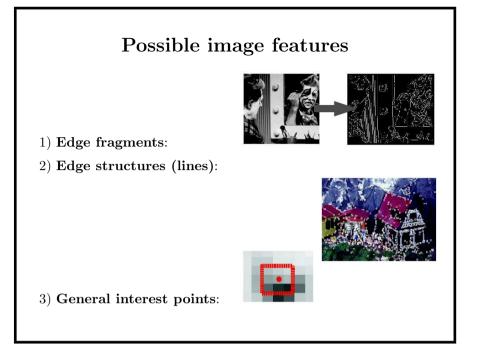


AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 2

School of Informatics, University of Edinburgh





Fisher lecture 6 slide 5

School of Informatics, University of Edinburgh

Canny Edge Detector

Four stages:

- 1. Gaussian smoothing: to reduce noise and smooth away small edges
- 2. Gradient calculation: to locate potential edge areas
- 3. Non-maximal suppression: to locate "best" edge positions
- 4. Hysteresis edge tracking: to locate reliable, but weak edges

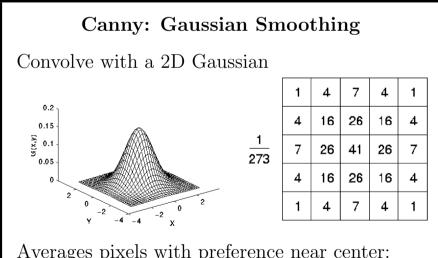
Edge Detector Introduction

- Edge detection: find pixels at large changes in intensity
- Much historical work on this topic in computer vision (Roberts, Sobel)
- Canny edge detector first modern edge detector and still commonly used today
- Edge detection never very accurate process: image noise, areas of low contrast, a question of scale. Humans see edges where none exist.

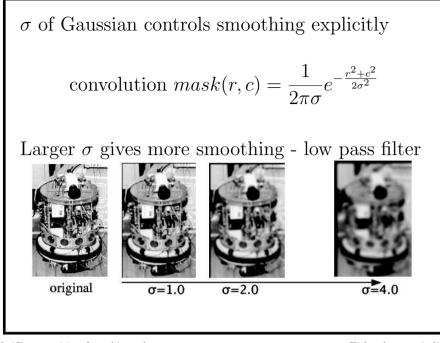
AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 6

School of Informatics, University of Edinburgh

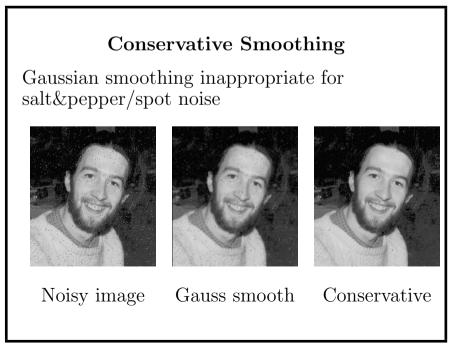


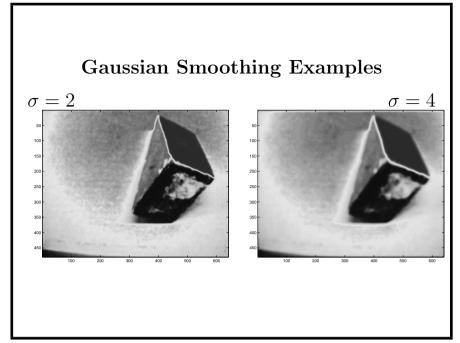
Averages pixels with preference near center: smooths noise without too much blurring of edges



Fisher lecture 6 slide 9

School of Informatics, University of Edinburgh





AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 10

School of Informatics, University of Edinburgh

Canny: Gradient Magnitude Calculation

G(r,c) is smoothed image

Compute local derivatives in the r and c directions as $G_r(r,c)$, $G_c(r,c)$:

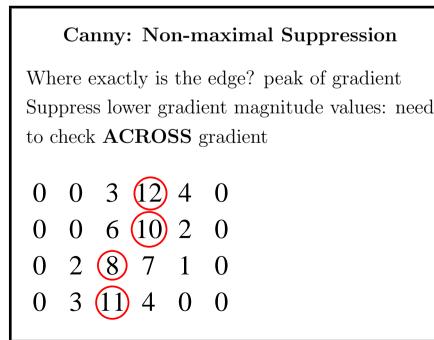
Edge gradient: $\nabla G(r,c) = (G_r(r,c), G_c(r,c))$

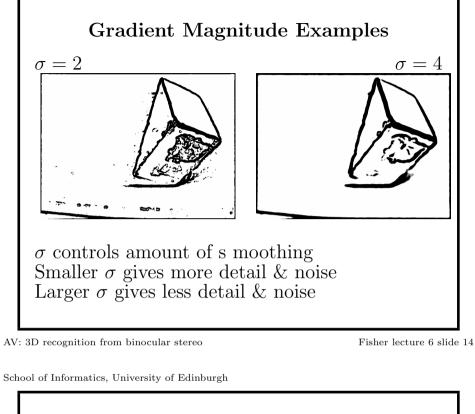
Gradient magnitude: $H(r,c) = \sqrt{G_r(r,c)^2 + G_c(r,c)^2}$ $\doteq |G_r(r,c)| + |G_c(r,c)|$ Gradient direction $\theta(r,c) = \arctan(G_r(r,c), G_c(r,c))$ $G_r(r,c) = \frac{\partial G}{\partial r} = \lim_{h \to 0} \frac{G(r+h,c) - G(r,c)}{h}$ $\doteq G(r+1,c) - G(r,c)$

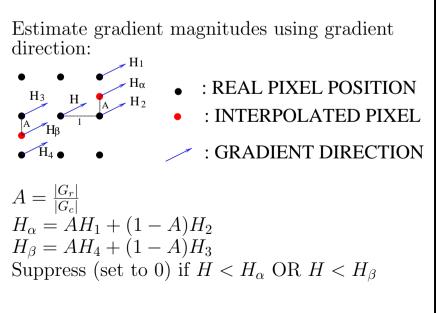
AV: 3D recognition from binocular stereo

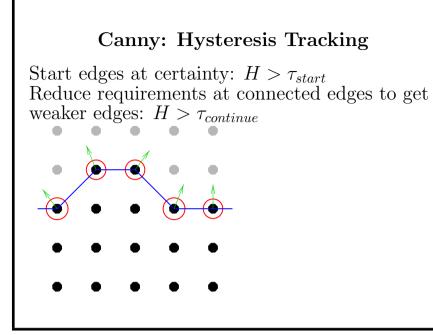
Fisher lecture 6 slide 13

Fisher lecture 6 slide 15





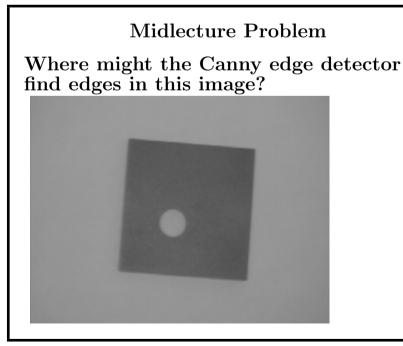


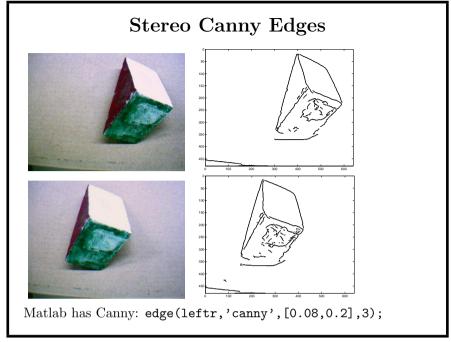


AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 17

School of Informatics, University of Edinburgh





AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 18

School of Informatics, University of Edinburgh

RANSAC: Random Sample and Consensus

Model-based feature detection: features based on some *a priori* model

Works even in much noise and clutter

Tunable failure rate

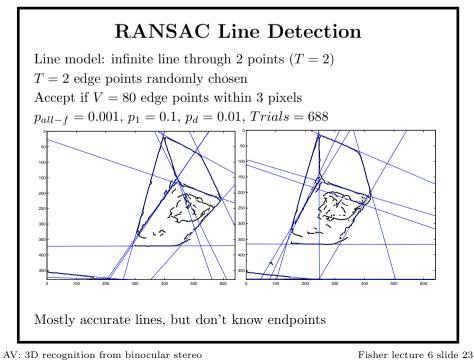
Assume

- Shape of feature determined by T true data points
- Hypothesized feature is valid if V data points nearby

RANSAC Pseudocode
for i = 1 : Trials
Select T data points randomly
Estimate feature parameters
if number of nearby data points > V
return success
end
end
return failure

Fisher lecture 6 slide 21

School of Informatics, University of Edinburgh



RANSAC Termination Limit

 p_{all-f} is probability of algorithm failing to detect a feature p_1 is probability of a data point belonging to a valid feature p_d is probability of a data point belonging to same feature Algorithm fails if *Trials* consecutive failures

$$p_{all-f} = (p_{one-f})^{Trials}$$

Success if all needed T random data items are valid

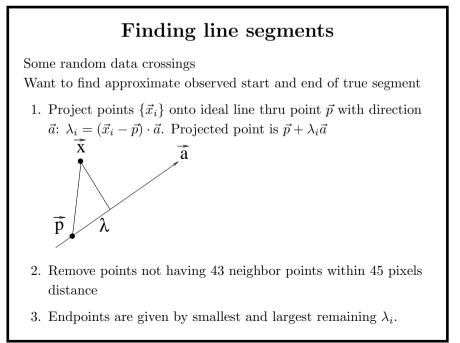
$$p_{one-f} = 1 - p_1 (p_d)^{T-1}$$

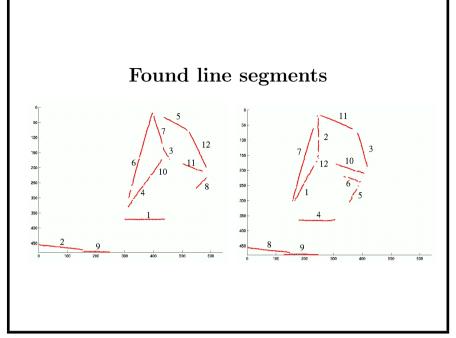
Solving for expected number of trials:

$$Trials = \frac{\log(p_{all-f})}{\log(1 - p_1(p_d)^{T-1})}$$

AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 22



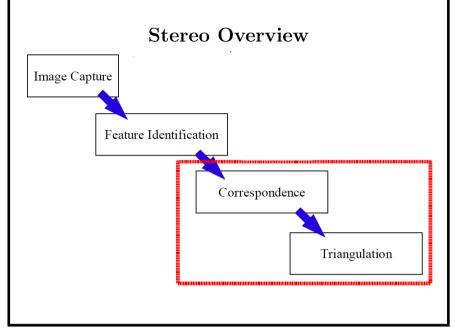


AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 25

School of Informatics, University of Edinburgh

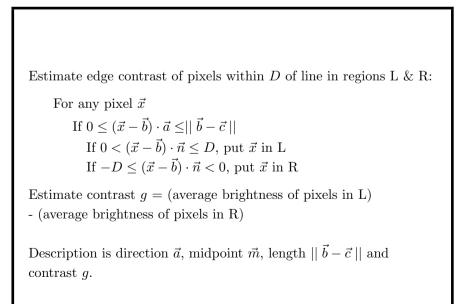
Line Segment Description Given line segment endpoints \vec{b} and \vec{c} with direction $\vec{a} = (u, v)$: \vec{a} \vec{a} $\vec{$



AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 26

School of Informatics, University of Edinburgh



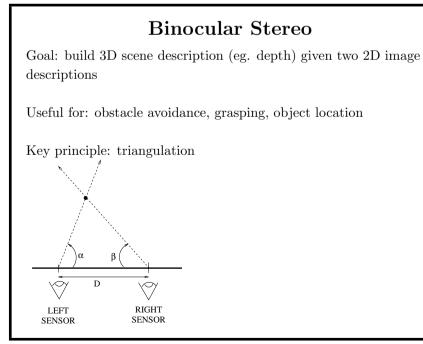
Corresponding Line Properties

Edges	L dir	R dir	L len	R len
L1:R4	(0.00,-1.00)	(0.00, -1.00)	137	125
L5:R11	(0.45, 0.89)	(0.38, 0.93)	90	119
L6:R7	(0.96, -0.28)	(0.96, -0.29)	291	251
L7:R2	(0.95, 0.32)	(1.00, 0.00)	93	140
L8:R5	(0.70, -0.71)	(0.86, -0.50)	49	61
L10:R12	(0.81, -0.59)	(0.86, -0.52)	87	82
L11:R10	(-0.33, -0.94)	(-0.29, -0.96)	72	101
L12:R3	(0.89, 0.45)	(0.96, 0.28)	129	115

AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 29

School of Informatics, University of Edinburgh



AV: 3D recognition from binocular stereo

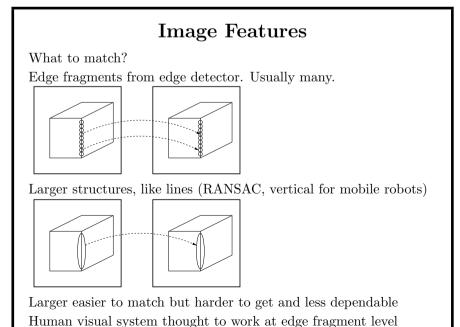
School of Informatics, University of Edinburgh

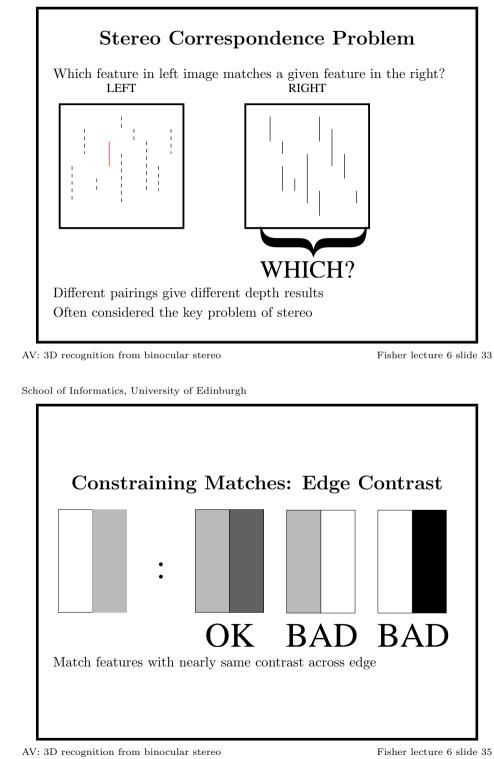
Edges	L mid	R mid	L con	R con
L1:R4	(370, 369)	(364, 242)	-91	-37
L5:R11	(55, 477)	(40, 309)	28	18
L6:R7	(158, 355)	(181, 194)	44	55
L7:R2	(74, 416)	(90, 246)	-117	-44
L8:R5	(250, 567)	(278, 371)	-66	-31
L10:R12	(208, 402)	(205, 221)	38	55
L11:R10	(199, 536)	(195, 358)	141	113
L12:R3	(140,554)	(132,400)	47	23

AV: 3D recognition from binocular stereo

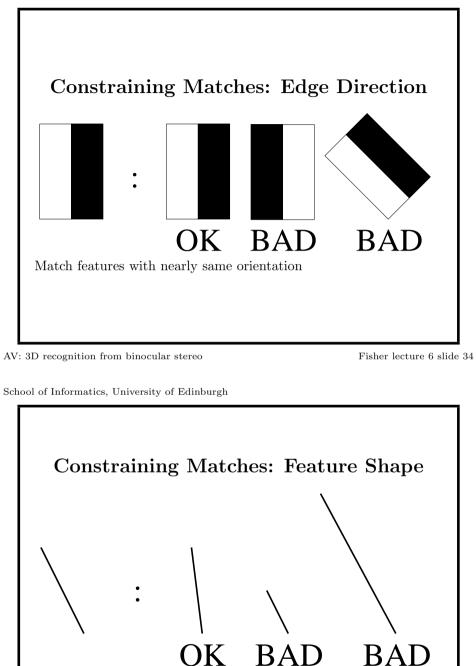
Fisher lecture 6 slide 30

School of Informatics, University of Edinburgh





School of Informatics, University of Edinburgh



Match features with nearly same length

Constraining Matches: Uniqueness and Smoothness

Smoothness: match features giving nearly same depth as neighbors

Uniqueness: a feature in one image can match from the other image:

 $0\,$ - occlusion

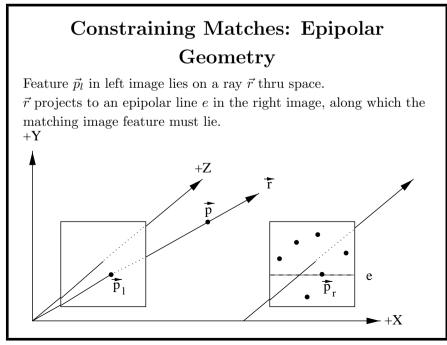
1 - normal case

2+ - transparencies, wires, vines, etc from coincidental alignments

AV: 3D recognition from binocular stereo

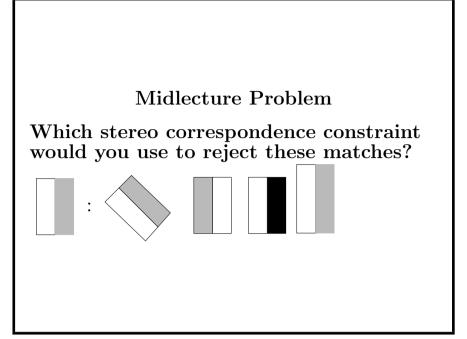
Fisher lecture 6 slide 37

School of Informatics, University of Edinburgh



AV: 3D recognition from binocular stereo

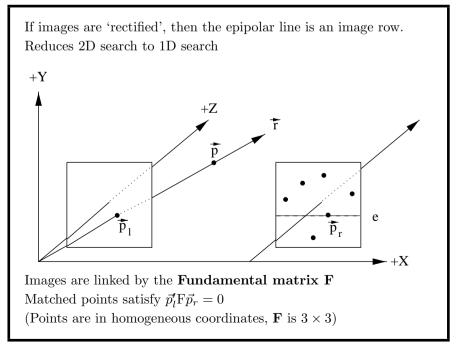
Fisher lecture 6 slide 39

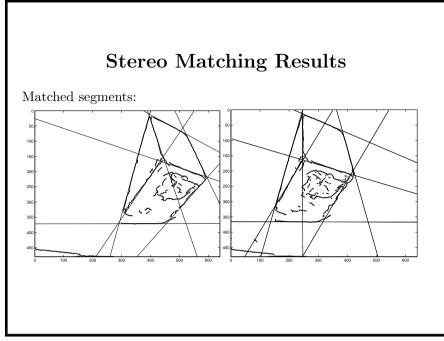


AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 38

School of Informatics, University of Edinburgh

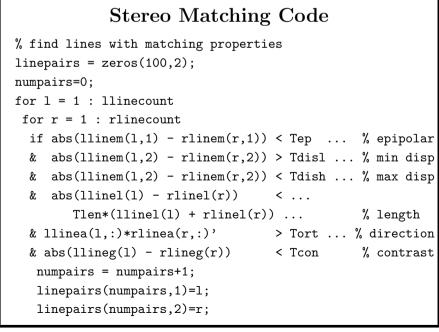


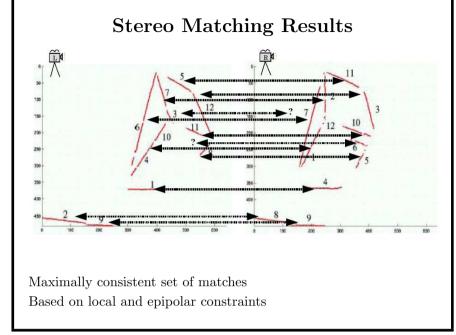


AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 41

School of Informatics, University of Edinburgh





AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 42

School of Informatics, University of Edinburgh

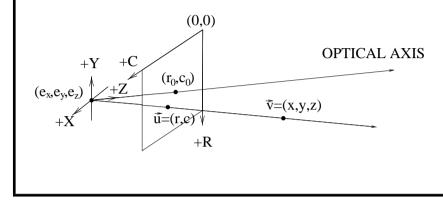
```
pairs = 0; % Enforce uniqueness
pairlist = zeros(100,2);
changes = 1;
while changes
changes = 0;
for l = 1 : numpairs
if linepairs(1,1) > 0
testset = find(linepairs(:,1)==linepairs(1,1));
if length(testset) == 1
changes = 1;
pairs = pairs + 1;
pairlist(pairs,1) = linepairs(1,1);
pairlist(pairs,2) = linepairs(1,2);
linepairs(testset(1),:) = zeros(1,2); % clear taken
```

AV: 3D recognition from binocular stereo

Image Projection Geometry

Pinhole camera model: projects 3D point $\vec{v} = (x, y, z, 1)'$ onto image point $\vec{u}_i = (r_i, c_i, 1)'$: $\lambda \vec{u}_i = P_i \vec{v}$. i = L, R.

Notice use of homogeneous coordinates in 2D and 3D



AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 45

School of Informatics, University of Edinburgh

Calibration

 $R_L = R_R = I$ (by definition and controlled camera motions)

 $\vec{e}_L = (0,0,0)'$ by definition and $\vec{e}_R = (55,0,0)'$ by calibrated motion

 $s_L = s_R = 0$ (usual for CCD cameras)

 $(r_{0L}, c_{0L})' = (r_{0R}, c_{0R})' = (HEIGHT/2, WIDTH/2)'$ (approximate)

 $f_L m_{rL} = f_L m_{cL} = f_R m_{rR} = f_R m_{cR} = 832.5$ (same camera + calibration)

 $K_L = K_R$ as same camera moved 55 mm to right

 P_i decomposes as

$$\mathbf{P}_i = \mathbf{K}_i \mathbf{R}_i [I] - \vec{e}_i$$

where R_i : orientation of camera (3 degrees of freedom) $\vec{e_i} = (e_{xi}, e_{yi}, e_{zi})'$: camera center in world (3 DoF) K_i : camera intrinsic calibration matrix =

 $\begin{bmatrix} f_i m_{ri} & s_i & r_{0i} \\ 0 & f_i m_{ci} & c_{0i} \\ 0 & 0 & 1 \end{bmatrix}$

 f_i : camera focal length in mm

 m_{ri},m_{ci} : row, col pixels/mm conversion on image plane

 r_{0i}, c_{0i} : where optical axis intersects image plane

 s_i : skew factor

=========

12 Degrees of Freedom per camera

AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 46

School of Informatics, University of Edinburgh

Slightly permuted because of different axis labeling and image axis directions

 $\begin{bmatrix} 0 & -fm_r & r_0 \\ fm_c & 0 & c_0 \\ 0 & 0 & 1 \end{bmatrix}$

3D Line Calculation

Aim: recovery of 3D line positions **Assume:** line successfully matched in L & R images

- 1. Compute 3D plane that goes through image line and camera origin
- 2. Compute intersection of 3D planes from 2 cameras (which gives a line)

AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 49

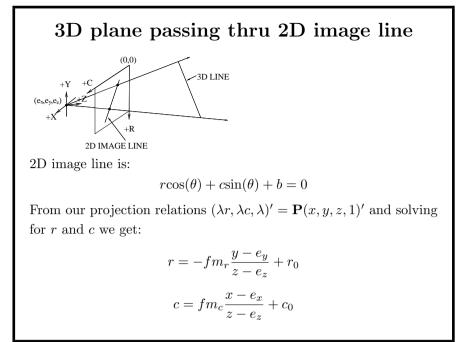
School of Informatics, University of Edinburgh

Both geometric and algebraic analysis give the same result.

Substituting r and c into the line equation, we get the equation for the plane that contains the coplanar points (x, y, z)': $\vec{n}' \cdot (x, y, z)' + d = 0$

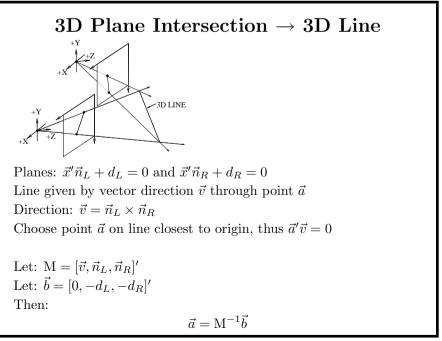
 $\vec{n} = (fm_c sin(\theta), -fm_r cos(\theta), r_0 cos(\theta) + c_0 sin(\theta) + b)'$ $d = -\vec{n}'(e_x, e_y, e_z)'$

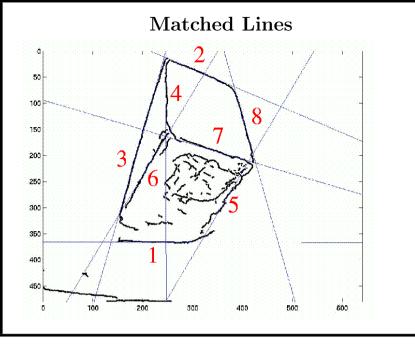
Do this for both left and right cameras: gives two planes that intersect at the 3D edge.



AV: 3D recognition from binocular stereo

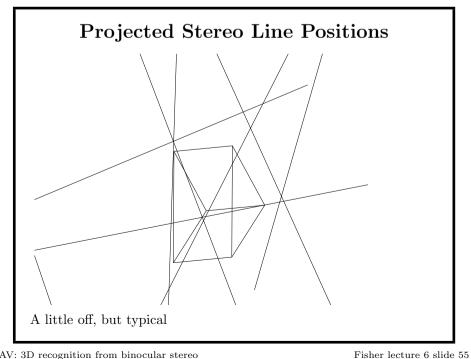
Fisher lecture 6 slide 50





Fisher lecture 6 slide 53

School of Informatics, University of Edinburgh



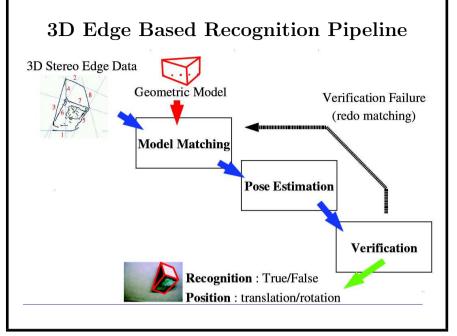
3D Line H	Equations
-----------	-----------

Number	Pairs	direction	point
1	L1:R4	(-0.82, 0.08, -0.56)	(9.1, 2.0, -13.0)
2	L5:R11	(0.61, -0.06, 0.78)	(-125.3, 98.6, 107.1)
3	L6:R7	(-0.28, -0.95, -0.03)	(0.9, -10.6, 294.4)
4	L7:R2	(0.07, -0.62, -0.77)	(48.3, -97.0, 82.9)
5	L8:R5	(-0.18, -0.45, 0.87)	(114.8, 91.8, 72.1)
6	L10:R12	(-0.50, -0.73, 0.44)	(71.5, 77.0, 208.8)
7	L11:R10	(0.79, -0.20, 0.57)	(-98.4, 57.2, 154.6)
8	L12:R3	(0.11, -0.69, -0.70)	(110.4, -123.6, 140.1)

AV: 3D recognition from binocular stereo

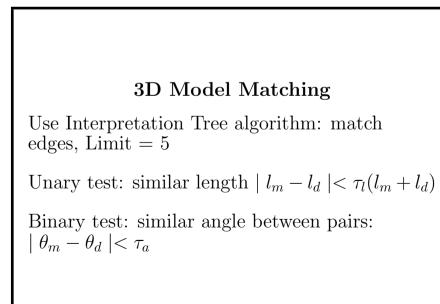
Fisher lecture 6 slide 54

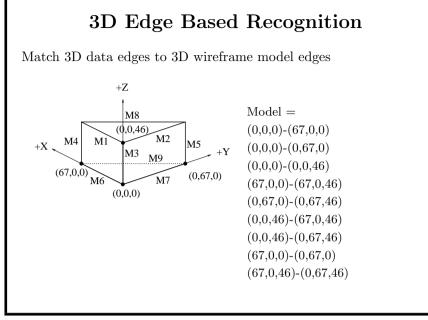
	P_{i}	angie	es d	etween Lines
3D line 1	3D line 2	Angle	True	
2	3	1.4347	1.57	
2	4	1.0221	1.57	
2	5	0.9281	1.57	
2	6	1.4863	1.57	
2	7	0.3023	0.00	
2	8	1.1186	1.57	
3	4	0.9180	0.71	
3	5	1.0964	0.71	
3	6	0.5848	0.71	
3	7	1.5221	1.57	
3	8	0.8457	0.71	
4	5	1.1527	1.57	
4	6	1.4920	1.57	
4	7	1.3026	1.57	
4	8	0.1085	0.00	
5	6	0.6152	0.00	
5	7	1.1060	1.57	
5	8	1.2453	1.57	
6	7	1.5679	1.57	
6	8	1.4276	1.57	
7	8	1.3918	1.57	



Fisher lecture 6 slide 57

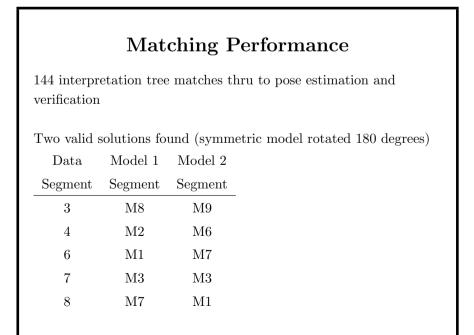
School of Informatics, University of Edinburgh





AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 58



3D Pose Estimation

Given: matched line directions $\{(\vec{m}_i, \vec{d}_i)\}$ and points on corresponding lines (but not necessarily same point positions) $\{(\vec{a}_i, \vec{b}_i)\}$

Rotation (matrix R): estimate rotation from matched vectors (same as previous task) except:

1) use line directions instead of surface normals

2) don't know which \pm direction for edge correspondence: try both for each matched segment

3) if $det(\mathbf{R}) = -1$ then need to flip symmetry

4) verify rotation by comparing rotated model and data line orientations

AV: 3D recognition from binocular stereo

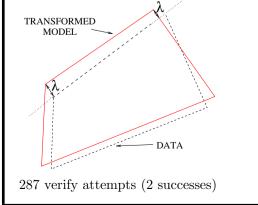
Fisher lecture 6 slide 61

School of Informatics, University of Edinburgh

How:
$$\mathbf{L} = \sum_{i} (I - \vec{d_i} \vec{d'_i})' (I - \vec{d_i} \vec{d'_i})$$

 $\vec{n} = \sum_{i} (I - \vec{d_i} \vec{d'_i})' (I - \vec{d_i} \vec{d'_i}) (\mathbf{R} \vec{a_i} - \vec{b_i})$
 $\vec{t} = \mathbf{L}^{-1} \vec{n}$

Verify translation by comparing perpendicular distance of transformed model endpoints to data line



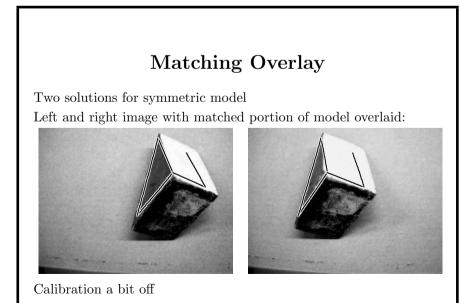
3D Translation Estimation

Given N paired model and data segments, with point \vec{a}_i on model segment i and \vec{b}_i on data segment iDirection \vec{d}_i of data segment iPreviously estimated rotation R \vec{d} \vec{a} \vec{a} $\vec{\lambda}_i = R\vec{a}_i + \vec{t} - \vec{b} - \vec{d}_i(\vec{d}_i(R\vec{a}_i + \vec{t} - \vec{b}))$ is translation error to minimize Goal: find \vec{t} that minimizes $\sum_i \vec{\lambda}'_i \vec{\lambda}_i$

AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 62

School of Informatics, University of Edinburgh



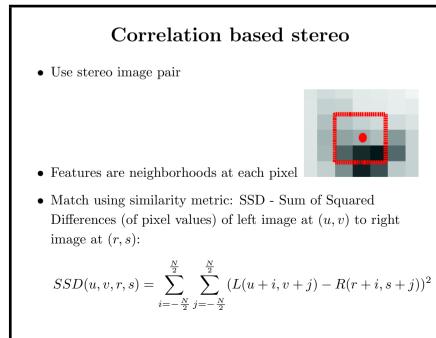
Discussion

- Hard to find reliable edges/lines, but Canny finds most reasonable edges and RANSAC can put them together for lines
- Given enough stereo correspondence constraints, can get reasonably correct correspondences
- Large features help stereo matching but require more preprocessing
- Stereo geometry easy but needs accurate calibration: not always easy, but now possible to autocalibrate using 8 matched points
- Binocular feature matching stereo gives good 3D at corresponding features, but nothing in between: use scan line stereo?

AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 65

School of Informatics, University of Edinburgh

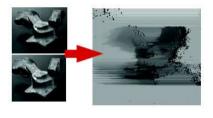


Dense Depth Data

Problem: have depth only at triangulated feature locations

Solution 1: Linear interpolate known values at all other pixels

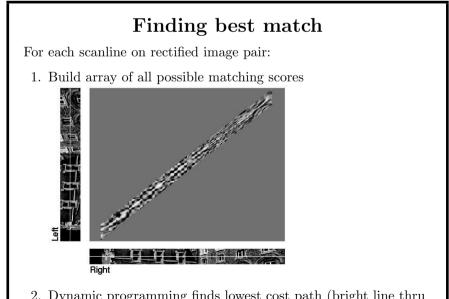
Solution 2: Correlation-based stereo Use pixel neighborhoods as features Triangulate depth at every pixel But needs to find matching pixel - not easy



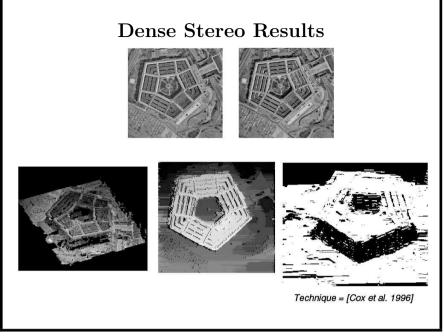
AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 66

School of Informatics, University of Edinburgh

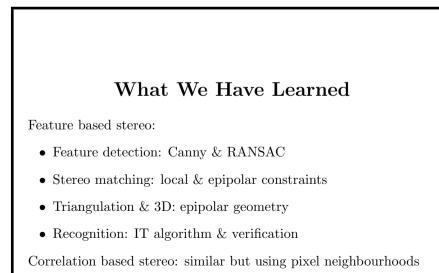


2. Dynamic programming finds lowest cost path (bright line thru middle of array above - optimisation problem)



Fisher lecture 6 slide 69

School of Informatics, University of Edinburgh



AV: 3D recognition from binocular stereo

Fisher lecture 6 slide 70

Fisher lecture 6 slide 71