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System 3 Introduction

Is there a Wedge in this 3D scene?

Data a set of 3D points!
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System 3 Overview

3D part recognition using range data

1. Range data from light stripe triangulation

2. Differential geometry of surfaces

3. Extraction of planes from range data via region growing

4. 3D geometric modeling

5. Model-data matching

6. 3D pose estimation

7. Verification
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Range Data

Intensity image: observed brightness(r,c)

Range image: distance from sensor(r,c) or {(xi, yi, zi)}

top: intensity bottom: range
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Range Data Representations

Range image:

• (r,c) pixel location

• pixel encodes depth, not colour

Point cloud: {(x, y, z)}
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Active 3D Sensing - Motivations

Parts/Objects:

• Analysis/manufacture

• Reverse engineering

Buildings:

• Use in 3D VR

• Change analysis

Robotic navigation:

on-board laser scanner
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Why Range Data

Advantages

Direct, accurate 3D scene information

Unambiguous measurement (unlike brightness)

Disadvantages

More complex/expensive sensor

Dark/shiny objects a problem

Generally indirect capture (eg. computed, scanned)
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Triangulation range sensors

z

LASER
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SENSOR
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z = f(α, β, D)

Light beam usually a laser (“laser range scanning”):

Bright

Single frequency (eg 633 nm)

Matching optical filter can eliminate other scene light
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Triangulation range calculation

Find pixel ~p on laser stripe (here ~p is in 3D
coordinates, known from camera parameters)

~p defines ray thru camera origin ~c

x

p

c

LIGHT PLANE

IMAGE PLANE

CAMERA ORIGIN

Ray equation: ~x = ~c + λ(~p − ~c)
Light plane equation: ~x · ~n = d
Find intersection, solve for λ,

substitute to get ~x (3D coords of point)
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Getting a full range image

Laser gives a spot, not full image
Use half-cylindrical lens

HALF
CYLINDER

LENS

LIGHT STRIPE

This gives a stripe on the observed target
For full range image, need to cover all of target
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Covering the whole scene

1) Can sweep light plane with rotating mirror

2) Can move sensor (eg sensor in lab)

3) Move parts underneath stripe, eg on a conveyor belt

Builds up image column by column as part moves
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Example: Reversa 25 Range Scanner

Laser scan head mounted on XYZ robotic gantry

• Accuracy X/Y: 0.05mm, Z(depth): 10 µm

• Cost c. £50,000

• Flat bed object capture via dual camera triangulation
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Example Scans

Point cloud (left) and depth coded range image
(right)
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Problem of Observed stripe

If scene scanned from above:

The TV camera sees:

Each row r corresponds to a different depth z(r)
Gives a linear set of range values
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Incomplete data

Have depth/3D knowledge in only 1 direction:

Possible solutions (both difficult):

• Capture from different directions and merge

• Infer missing data from observed data
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Range image examples

Raw range image Cosine shaded
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More range image examples
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Midlecture Problem

What would a range image of this object
look like if the sensor was above this
part?
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Segmentation: Plane Surface Extraction

Assume: scene contains only planes

Aim: extract instances of planes

• Can be used for later part recognition

• Local shape classes are too noisy

• Use surface fitting instead of diff. geom.
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Planar Segmentation Algorithm

Range image versus point clouds

Row×Column image representation

• Obvious neighbour relations

• Easier region growing algorithms

3D Point Clouds

• Neighbour relations in R3

• Good data structures can help with neighbour

connections

Segmenting range image into planar regions:
Use region growing algorithm
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Surface Detection Main Algorithm

% find surface patches

[NPts,W] = size(R);

planelist = zeros(20,4);

foundcount=0;

while notdone

% select small local surface patch from remaining points

[oldlist,plane] = select_patch(remaining);

% grow patch

stillgrowing = 1;

while stillgrowing

% find neighbouring points that lie in plane

stillgrowing = 0;
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[newlist,remaining] = getallpoints(plane,oldlist,

remaining,NPts);

[NewL,W] = size(newlist);

[OldL,W] = size(oldlist);

if NewL > OldL + 50

% refit plane

[newplane,fit] = fitplane(newlist);

if fit > 0.04*NewL % fit going bad - stop growing

break

end

stillgrowing = 1;

foundcount = foundcount+1;

planelist(foundcount,:) = newplane’;

oldlist = newlist;

plane = newplane;
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Region Growing Principles

Given a planar region formed from points S with equation

~n′~x + d = 0, and a new point ~y, add ~y to S if:

1) | ~n′~y+d |< τp and 2) there is a point ~z in S such that || ~y−~z ||< τn.
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Plane Fitting

Given a set of datapoints {~xi}, find the ~n and d
that best fit ~n′~xi + d = 0 for all i.

Extend data: ~yi = [~xi, 1]
Extend parameters: ~p = [~n, d]
Plane equation is now: ~y′i~p = 0

Least squared error:
∑

i(~y
′
i~p)2 =

∑

i ~p
′~yi~y

′
i~p = ~p′(

∑

i ~yi~y
′
i)~p = ~p′M~p

Eigenvector of smallest eigenvalue of M is
desired parameter vector, provided eigenvalue is
small.
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Full Segmentation

D1

D2

D4D3
D5

Could get 4 planes by parameter adjustment,
but 5 means more data for matching stage
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Extensions

Extend fitting to additional surface types:
cylinders, spheres, etc

Allows recognition of more complex objects
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3D Geometric Modelling

Goal: model 3D objects for recognition

Recognition requires some sort of model

Easier matching if data and model use same representations
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3D Coordinate Systems

Like 2D systems: for modelling and object pose

Need rotation and translation specification
Translation easy - 3D vector ~t = (tx, ty, tz)

′

Rotation needs 3 values. Many different coding
systems.

Altogether, 6 degrees of freedom = 6 position
parameters.
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Typical Rotation Specification

Arbitrary angle order, so specify rotation as:

R = Rx(θx)Ry(θy)Rz(θz)

Where

Rx(θx) =









1 0 0

0 cos(θx) −sin(θx)

0 sin(θx) cos(θx)









Ry(θy) =









cos(θy) 0 −sin(θy)

0 1 0

sin(θy) 0 cos(θy)








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Rz(θz) =









cos(θz) −sin(θz) 0

sin(θz) cos(θz) 0

0 0 1









Rotation parameters are: {θx, θy, θz}

Other systems possible: yaw/pitch/roll, azimuth/elevation/twist

Different parameter values, but always the same rotation, when

encoded in matrix R

Object position/translation: vector in R3
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3D Shape Modelling

Similar to 2D Modelling
Needs 3D coordinate system + 3D shape
primitives

+X +Y

+Z

(0,0,47)

(0,66,0)
(66,0,0)

(0,0,0)

M1

M3M2

Our primitives: polyhedra, defined by
polygonal patches, defined by lists of edges

Wireframe modelling
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Representation Scheme

Model: set of polygons (object faces)

Polygons: set of edges (polyhedron edges)

Edge: 2 points in R3 (edge endpoints)
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Wedge Model

planenorm(1,:) = [0,0,-1]; % tri face 1 surf normal

facelines(1) = 3; % # of boundary lines

model(1,1,:) = [0,0,0,66,0,0]; % Edge 1

model(1,2,:) = [0,0,0,0,66,0]; % edge 2

model(1,3,:) = [0,66,0,66,0,0]; % edge 3

planenorm(2,:) = [0, -1, 0]; % rect face 2 surf normal

facelines(2) = 4;

model(2,1,:) = [0,0,0,0,0,47];

model(2,2,:) = [0,0,0,66,0,0];

model(2,3,:) = [66,0,0,66,0,47];

model(2,4,:) = [0,0,47,66,0,47];

planenorm(3,:) = [-1, 0, 0]; % rect face 3 surf normal

facelines(3) = 4;

model(3,1,:) = [0,0,0,0,0,47];

...
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Midlecture Problem

How would you model the visible portion
of a cube?
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3D Recognition

Is there a wedge in the scene?

• Have geometric model:

3D a priori knowledge

• Data from laser scanner

• Planar region segments

• Geometric transforma-

tions
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Range data: 3D Recognition Pipeline
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Recognition: Model Matching

Use Interpretation Tree
Unary constraint: eg. surface area
Binary constraint: eg. angle between

vectors, like surface normals
Trinary constraint: sign of vector triple

product ~a · (~b × ~c), eg. on surface normals

Result: paired model and data planes
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Recognition: Matching Results

+X +Y

+Z

(0,0,47)

(0,66,0)
(66,0,0)

(0,0,0)

M1

M3M2

matchedpairs =

model data

M1 D2

M2 D3

M3 D4

D1

D2

D4D3
D5
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Pose Estimation

Like 2D case, estimate rotation first, then

translation

Assume:

• N paired planes {(Mi, Di)}
N
i=1

• model and data normals {~mi} and {~di}

• a point on each model patch {~ai}

• a point on each data patch {~bi} (need not

correspond to ~ai)
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Rotation Estimation

Want R such that R~mi
.= ~di

A least square problem, minimizing
∑

i

|| R~mi − ~di ||
2

Form matrix M = [~m1 ~m2 . . . ~mN ]

Form matrix D = [~d1
~d2 . . . ~dN ]

Compute singular value decomposition (SVD):
svd(DM’) = U*S*V’

Compute rotation matrix: R = V*U’
Assumes at least 3 non-coplaner vectors
(caution 1 special case)
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Translation Estimation

Minimize the perpendicular separation λi

between rotated model patch and data patch:

Ra + t

d

b

λ

Goal: find ~t that minimizes
∑

i λ
2
i

Form matrix: L =
∑

i
~di

~d′i
Form vector: ~n =

∑

i
~di

~d′i(R~ai −~bi)
Compute translation ~t = −(L)−1~n
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Verification

Multiple possible matching solutions

globally invalid pairings, alternative pose hypotheses

Use verification to find correct one

1. Rotated model normals ~mi close to data normals ~di:

acos(~d′iR~mi) < τ1

2. Transformed model vertices ~ei lie on the data plane

~n′~x + d = 0: | ~n′~ei + d |< τ2
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Matching Results

Object recognized but three pose solutions as
verification didn’t check overlap areas

Accurate model-data alignment!
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Range data: edges

Edges originate in range data from:
- Changes in depth: blade edge
- Changes in surface orientation: fold edge
- Changes in surface curvature properties

Blade and fold edges also usable for recognition
Similar to 2D case. See more later with stereo
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Discussion

• Range sensors now commercially available:

we designed a £50 sensor, commercial starts

at a few 1000 pounds.

• Accuracy can be amazing: our commercial

sensor has 10 µm accuracy.

• Range data unambiguous and very useful:

gives 3D info directly rather than needing

inference from other data
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• Many different ways to segment data

patches, many sensitive to data noise and

slow.

• Much more efficient to segment if data is in

image array rather than a set of points

• Techniques presented here particularly useful

in an industrial or robot navigation context
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What We Have Learned

• Range image and 3D point cloud data

• Triangulation range sensor technology

• Least square planar surface fitting

• Region growing

• 3D coordinate systems and transformation specification

• 3D wire frame shape modelling

• 3D pose estimation
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