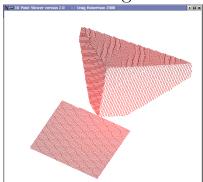
## System 3 Introduction

Is there a Wedge in this 3D scene?



Data a set of 3D points!

AV: 3D recognition from range data

Fisher lecture 5 slide 1

School of Informatics, University of Edinburgh

#### Range Data

Intensity image: observed\_brightness(r,c)

Range image: distance\_from\_sensor(r,c) or  $\{(x_i, y_i, z_i)\}$ 

top: intensity bottom: range



### System 3 Overview

3D part recognition using range data

- 1. Range data from light stripe triangulation
- 2. Differential geometry of surfaces
- 3. Extraction of planes from range data via region growing
- 4. 3D geometric modeling
- 5. Model-data matching
- 6. 3D pose estimation
- 7. Verification

AV: 3D recognition from range data

Fisher lecture 5 slide 2

School of Informatics, University of Edinburgh

# Range Data Representations





Range image:

- (r,c) pixel location
- pixel encodes depth, not colour



Point cloud:  $\{(x, y, z)\}$ 

AV: 3D recognition from range data

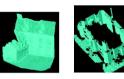
## Active 3D Sensing - Motivations

#### Parts/Objects:

- Analysis/manufacture
- Reverse engineering

#### Buildings:

- Use in 3D VR.
- Change analysis







Robotic navigation:

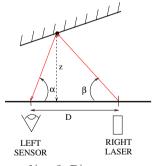
on-board laser scanner

AV: 3D recognition from range data

Fisher lecture 5 slide 5

School of Informatics, University of Edinburgh

### Triangulation range sensors



 $z = f(\alpha, \beta, D)$ 

Light beam usually a laser ("laser range scanning"):

Bright

Single frequency (eg 633 nm)

Matching optical filter can eliminate other scene light

### Why Range Data

#### Advantages

Direct, accurate 3D scene information

Unambiguous measurement (unlike brightness)

#### Disadvantages

More complex/expensive sensor

Dark/shiny objects a problem

Generally indirect capture (eg. computed, scanned)

AV: 3D recognition from range data

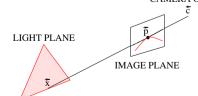
Fisher lecture 5 slide 6

School of Informatics, University of Edinburgh

## Triangulation range calculation

Find pixel  $\vec{p}$  on laser stripe (here  $\vec{p}$  is in 3D coordinates, known from camera parameters)

 $\vec{p}$  defines ray thru camera origin  $\vec{c}$ 

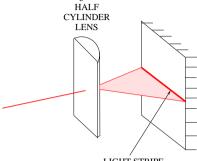


Ray equation:  $\vec{x} = \vec{c} + \lambda(\vec{p} - \vec{c})$ Light plane equation:  $\vec{x} \cdot \vec{n} = d$ Find intersection, solve for  $\lambda$ ,

substitute to get  $\vec{x}$  (3D coords of point)

## Getting a full range image

Laser gives a spot, not full image Use half-cylindrical lens



This gives a stripe on the observed target For full range image, need to cover all of target

AV: 3D recognition from range data

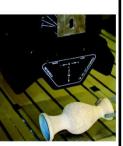
Fisher lecture 5 slide 9

School of Informatics, University of Edinburgh

## Example: Reversa 25 Range Scanner





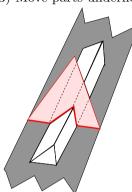


Laser scan head mounted on XYZ robotic gantry

- Accuracy X/Y: 0.05mm, Z(depth): 10  $\mu$ m
- Cost c. £50,000
- Flat bed object capture via dual camera triangulation

#### Covering the whole scene

- 1) Can sweep light plane with rotating mirror
- 2) Can move sensor (eg sensor in lab)
- 3) Move parts underneath stripe, eg on a conveyor belt



Builds up image column by column as part moves

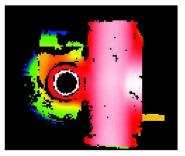
AV: 3D recognition from range data

Fisher lecture 5 slide 10

School of Informatics, University of Edinburgh

# **Example Scans**

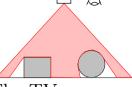




Point cloud (left) and depth coded range image (right)

# Problem of Observed stripe

If scene scanned from above:



The TV camera sees:



Each row r corresponds to a different depth z(r) Gives a linear set of range values

AV: 3D recognition from range data

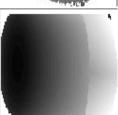
Fisher lecture 5 slide 13

School of Informatics, University of Edinburgh

# Range image examples

Raw range image









### Incomplete data

Have depth/3D knowledge in only 1 direction:



Possible solutions (both difficult):

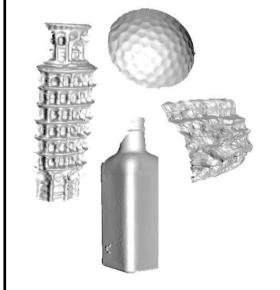
- Capture from different directions and merge
- Infer missing data from observed data

AV: 3D recognition from range data

Fisher lecture 5 slide 14

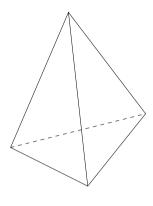
School of Informatics, University of Edinburgh

# More range image examples



#### Midlecture Problem

What would a range image of this object look like if the sensor was above this part?



AV: 3D recognition from range data

Fisher lecture 5 slide 17

School of Informatics, University of Edinburgh

### Planar Segmentation Algorithm

Range image versus point clouds

Row×Column image representation

- Obvious neighbour relations
- Easier region growing algorithms

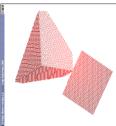
3D Point Clouds

- Neighbour relations in R<sup>3</sup>
- Good data structures can help with neighbour connections

Segmenting range image into planar regions: Use region growing algorithm

#### Segmentation: Plane Surface Extraction

Assume: scene contains only planes



Aim: extract instances of planes

- Can be used for later part recognition
- Local shape classes are too noisy
- Use surface fitting instead of diff. geom.

AV: 3D recognition from range data

Fisher lecture 5 slide 18

School of Informatics, University of Edinburgh

### Surface Detection Main Algorithm

```
% find surface patches
[NPts,W] = size(R);
planelist = zeros(20,4);
foundcount=0;
while notdone

% select small local surface patch from remaining points
[oldlist,plane] = select_patch(remaining);

% grow patch
stillgrowing = 1;
while stillgrowing

% find neighbouring points that lie in plane
stillgrowing = 0;
```

AV: 3D recognition from range data

Fisher lecture 5 slide 21

School of Informatics, University of Edinburgh

#### Plane Fitting

Given a set of datapoints  $\{\vec{x}_i\}$ , find the  $\vec{n}$  and d that best fit  $\vec{n}'\vec{x}_i + d = 0$  for all i.

Extend data:  $\vec{y_i} = [\vec{x_i}, 1]$ 

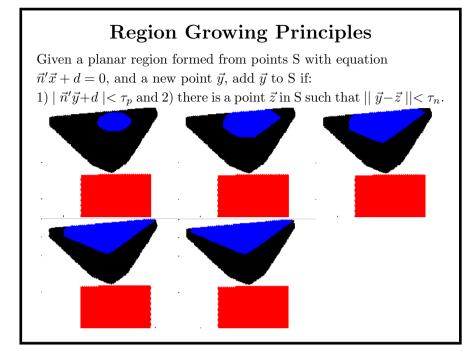
Extend parameters:  $\vec{p} = [\vec{n}, d]$ 

Plane equation is now:  $\vec{y}_i'\vec{p} = 0$ 

Least squared error:

$$\sum_{i} (\vec{y}'_{i}\vec{p})^{2} = \sum_{i} \vec{p}' \vec{y}_{i} \vec{y}'_{i} \vec{p} = \vec{p}' (\sum_{i} \vec{y}_{i} \vec{y}'_{i}) \vec{p} = \vec{p}' M \vec{p}'$$

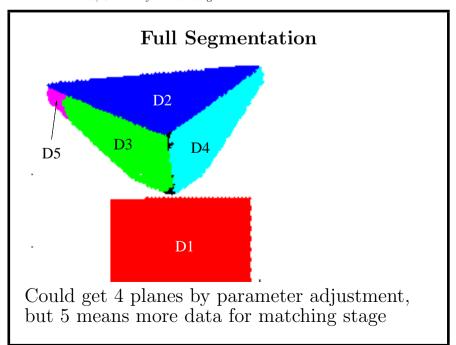
Eigenvector of smallest eigenvalue of M is desired parameter vector, provided eigenvalue is small.

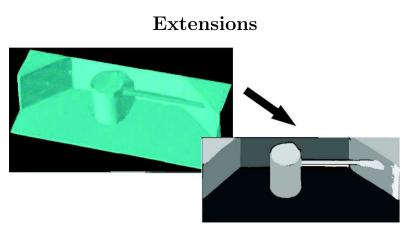


AV: 3D recognition from range data

Fisher lecture 5 slide 22

School of Informatics, University of Edinburgh





Extend fitting to additional surface types: cylinders, spheres, etc

Allows recognition of more complex objects

AV: 3D recognition from range data

Fisher lecture 5 slide 25

School of Informatics, University of Edinburgh

### 3D Coordinate Systems

Like 2D systems: for modelling and object pose

Need rotation and translation specification Translation easy - 3D vector  $\vec{t} = (t_x, t_y, t_z)'$ 

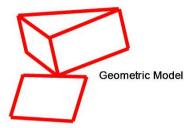
Rotation needs 3 values. Many different coding systems.

Altogether, 6 degrees of freedom = 6 position parameters.

#### 3D Geometric Modelling

Goal: model 3D objects for recognition





Data (from scanner)

Recognition requires some sort of model Easier matching if data and model use same representations

AV: 3D recognition from range data

Fisher lecture 5 slide 26

School of Informatics, University of Edinburgh

## Typical Rotation Specification

Arbitrary angle order, so specify rotation as:

$$R = R_x(\theta_x)R_y(\theta_y)R_z(\theta_z)$$

Where

$$\mathbf{R}_x(\theta_x) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_x) & -\sin(\theta_x) \\ 0 & \sin(\theta_x) & \cos(\theta_x) \end{bmatrix}$$

$$\mathbf{R}_y(\theta_y) = \begin{bmatrix} \cos(\theta_y) & 0 & -\sin(\theta_y) \\ 0 & 1 & 0 \\ \sin(\theta_y) & 0 & \cos(\theta_y) \end{bmatrix}$$

$$\mathbf{R}_{z}(\theta_{z}) = \begin{bmatrix} \cos(\theta_{z}) & -\sin(\theta_{z}) & 0\\ \sin(\theta_{z}) & \cos(\theta_{z}) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Rotation parameters are:  $\{\theta_x, \theta_y, \theta_z\}$ 

Other systems possible: yaw/pitch/roll, azimuth/elevation/twist Different parameter values, but always the same rotation, when encoded in matrix R.

Object position/translation: vector in  $\mathbb{R}^3$ 

AV: 3D recognition from range data

Fisher lecture 5 slide 29

School of Informatics, University of Edinburgh

#### Representation Scheme

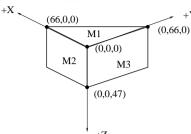
Model: set of polygons (object faces)

Polygons: set of edges (polyhedron edges)

Edge: 2 points in  $\mathbb{R}^3$  (edge endpoints)

### 3D Shape Modelling

Similar to 2D Modelling Needs 3D coordinate system + 3D shape primitives



Our primitives: polyhedra, defined by polygonal patches, defined by lists of edges

Wireframe modelling

AV: 3D recognition from range data

Fisher lecture 5 slide 30

School of Informatics, University of Edinburgh

# Wedge Model

```
planenorm(1,:) = [0,0,-1]; % tri face 1 surf normal
                            % # of boundary lines
facelines(1) = 3;
model(1,1,:) = [0,0,0,66,0,0]; % Edge 1
model(1,2,:) = [0,0,0,0,66,0];
                            % edge 2
model(1,3,:) = [0,66,0,66,0,0]; % edge 3
planenorm(2,:) = [0, -1, 0];
                            % rect face 2 surf normal
facelines(2) = 4;
model(2,1,:) = [0,0,0,0,0,47];
model(2,2,:) = [0,0,0,66,0,0];
model(2,3,:) = [66,0,0,66,0,47];
model(2,4,:) = [0,0,47,66,0,47];
facelines(3) = 4;
model(3,1,:) = [0,0,0,0,0,47];
```

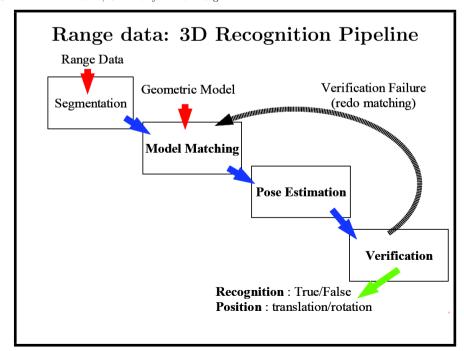
#### Midlecture Problem

How would you model the visible portion of a cube?

AV: 3D recognition from range data

Fisher lecture 5 slide 33

School of Informatics, University of Edinburgh



#### 3D Recognition

Is there a wedge in the scene?



- Have geometric model: 3D *a priori* knowledge
- D2 D3 D4 D4
- Data from laser scanner Planar region segments
- Geometric transformations

AV: 3D recognition from range data

Fisher lecture 5 slide 34

School of Informatics, University of Edinburgh

### Recognition: Model Matching

Use Interpretation Tree

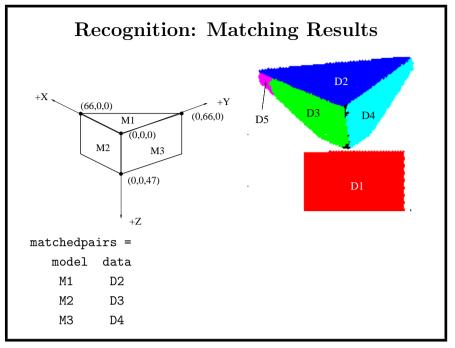
Unary constraint: eg. surface area

Binary constraint: eg. angle between

vectors, like surface normals

Trinary constraint: sign of vector triple product  $\vec{a} \cdot (\vec{b} \times \vec{c})$ , eg. on surface normals

Result: paired model and data planes



AV: 3D recognition from range data

Fisher lecture 5 slide 37

School of Informatics, University of Edinburgh

#### **Rotation Estimation**

Want R such that  $R\vec{m}_i \doteq \vec{d}_i$ 

A least square problem, minimizing

$$\sum_{i} || \mathbf{R} \vec{m}_i - \vec{d}_i ||^2$$

Form matrix  $M = [\vec{m}_1 \vec{m}_2 \dots \vec{m}_N]$ 

Form matrix  $D = [\vec{d_1} \vec{d_2} \dots \vec{d_N}]$ 

Compute singular value decomposition (SVD):

svd(DM') = U\*S\*V'

Compute rotation matrix:  $R = V^*U$ 

Assumes at least 3 non-coplaner vectors (caution 1 special case)

#### Pose Estimation

Like 2D case, estimate rotation first, then translation

#### Assume:

- N paired planes  $\{(M_i, D_i)\}_{i=1}^N$
- model and data normals  $\{\vec{m}_i\}$  and  $\{\vec{d}_i\}$
- a point on each model patch  $\{\vec{a}_i\}$
- a point on each data patch  $\{\vec{b}_i\}$  (need not correspond to  $\vec{a}_i$ )

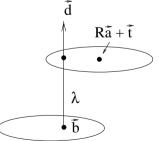
AV: 3D recognition from range data

Fisher lecture 5 slide 38

School of Informatics, University of Edinburgh

#### **Translation Estimation**

Minimize the perpendicular separation  $\lambda_i$  between rotated model patch and data patch:



Goal: find  $\vec{t}$  that minimizes  $\sum_i \lambda_i^2$ 

Form matrix:  $L = \sum_i \vec{d_i} \vec{d'_i}$ 

AV: 3D recognition from range data

Form vector:  $\vec{n} = \sum_i \vec{d_i} \vec{d'_i} (R\vec{a_i} - \vec{b_i})$ Compute translation  $\vec{t} = -(L)^{-1} \vec{n}$ 

School of Informatics, University of Edinburgh

#### Verification

Multiple possible matching solutions globally invalid pairings, alternative pose hypotheses Use verification to find correct one

- 1. Rotated model normals  $\vec{m}_i$  close to data normals  $\vec{d}_i$ :  $acos(\vec{d}_i R \vec{m}_i) < \tau_1$
- 2. Transformed model vertices  $\vec{e_i}$  lie on the data plane  $\vec{n}'\vec{x} + d = 0$ :  $|\vec{n}'\vec{e_i} + d| < \tau_2$

AV: 3D recognition from range data

Fisher lecture 5 slide 41

School of Informatics, University of Edinburgh

### Range data: edges

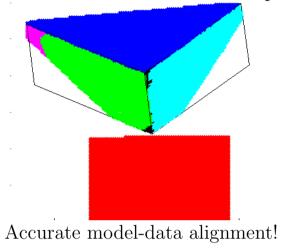
Edges originate in range data from:

- Changes in depth: blade edge
- Changes in surface orientation: fold edge
- Changes in surface curvature properties

Blade and fold edges also usable for recognition Similar to 2D case. See more later with stereo

# **Matching Results**

Object recognized but three pose solutions as verification didn't check overlap areas



AV: 3D recognition from range data

Fisher lecture 5 slide 42

School of Informatics, University of Edinburgh

#### Discussion

- Range sensors now commercially available: we designed a £50 sensor, commercial starts at a few 1000 pounds.
- Accuracy can be amazing: our commercial sensor has 10  $\mu$ m accuracy.
- Range data unambiguous and very useful: gives 3D info directly rather than needing inference from other data

School of Informatics, University of Edinburgh

- Many different ways to segment data patches, many sensitive to data noise and slow.
- Much more efficient to segment if data is in image array rather than a set of points
- Techniques presented here particularly useful in an industrial or robot navigation context

AV: 3D recognition from range data

Fisher lecture 5 slide 45

School of Informatics, University of Edinburgh

#### What We Have Learned

- Range image and 3D point cloud data
- Triangulation range sensor technology
- Least square planar surface fitting
- Region growing
- 3D coordinate systems and transformation specification
- 3D wire frame shape modelling
- 3D pose estimation

AV: 3D recognition from range data

Fisher lecture 5 slide 46