System 1 Overview

How to discriminate between these? How to estimate object positions?

Geometric model-based recognition

AV: 2D Geometric vision

Fisher lecture 3 slide 1

School of Informatics, University of Edinburgh

Introduction

Given:

Sets of model lines $\{m_i\}$ in a scene coordinate system Set of image lines $\{d_j\}$ in an image coordinate system Image to scene scale conversion factor σ (pixels to cm)

Do:

- 1. Match image and model lines $\{(m_i, d_i)\}$
- 2. Estimate transformation mapping model onto data: R, \vec{t}
- 3. Verify matching and pose estimate

Output: identity and position (R, \vec{t})

System 1 Overview

Geometric model-based recognition processes

Last Lecture: geometric description

This Lecture: model matching

pose estimation

Verification

AV: 2D Geometric vision

Fisher lecture 3 slide 2

Fisher lecture 3 slide 4

School of Informatics, University of Edinburgh

Interpretation Tree matching

Goal: Correspondence between subset of M model features $\{m_i\}$ and D data features $\{d_j\}$

Complete (exhaustive, depth-first) search - if a match exists, it will be found

Needs a 'wildcard' ('*') data feature to match model features with no corresponding data feature (occlusion, segmentation failure)

Can find multiple solutions

Result: $\{(m_i, d_{i_i})\}$ set of matched features

Search Tree

Expand by model feature at each new level

mM

Any given node in tree represents a set of matches $\{(m_i, d_{j_i})\}$

AV: 2D Geometric vision

Fisher lecture 3 slide 5

School of Informatics, University of Edinburgh

if new pair has incompatible properties with each previous pairing on this tree branch (as all parts of the same object are compatible).

- 3. Early success limit L can stop search when have $\{(m_i, d_{j_i})\}, i = 1..L$ compatible pairs
- 4. Early failure limit L can stop search when can never get L pairs on this path. If have t non-wildcard matches on this path out of k pairings, then fail if t + (M k) < L

Reducing Search Complexity

Do we need to consider all paths in search tree? No: Suppose current match state has these pairs matched: $\{(m_i, d_{j_i})\}, i = 1..k$ Given a new pair $(m_{k+1}, d_{j_{k+1}})$

- 1. $unary_test(m_{k+1}, d_{j_{k+1}})$ terminates extending search path if new pair has incompatible properties
- 2. $binary_test(m_{k+1}, d_{j_{k+1}}, m_x, d_{j_x})$ for all x = 1..k terminates extending search path

AV: 2D Geometric vision

Fisher lecture 3 slide 6

School of Informatics, University of Edinburgh

Midlecture Problem

What are good unary/binary properties to test if matching parts with sets of circular holes? Eg:

Computational Complexity

 ${\cal M}$ model feature tree levels. ${\cal D}$ data features on each level plus 1 wildcard

Worst case: $(D+1)^M$ nodes in tree to visit

 p_u - probability that any random model feature and any random data feature pass unary_test

 p_b - probability that any 2 random model features and any 2 random data features pass binary_test

Then, if $p_b MD < 2$, then the average case complexity of ITREE search is $O(LD^2)$

Much smaller, but can still be substantial

AV: 2D Geometric vision

Fisher lecture 3 slide 9

School of Informatics, University of Edinburgh

```
[theta,trans] = estimatepose(model,numpairs,pairs)
 for p = 1 : 4
   ok = verifymatch(theta(p),trans(p,:)',model,
              numpairs,pairs);
   if ok
                % successful verification
      return
    end
  end
                % failure to verify - continue search
 return
end
% never enough pairs
if numpairs + numM - mlevel < Limit
 ok=0:
 return
end
```

IT algorithm matlab code

```
% interpretation tree - match model and data lines until
% Limit are successfully paired or can never get Limit
% model - current model
% numM - number of lines in the model
% mlevel - last matched model feature
% Limit - early termination threshold
% pairs(:,2) - paired model-data features
% numpairs - number of paired features

function ok=itree(model,numM,mlevel,Limit,pairs,numpairs)

global Models numlines datalines

% check for termination conditions
if numpairs >= Limit  % enough pairs to verify
```

AV: 2D Geometric vision

Fisher lecture 3 slide 10

School of Informatics, University of Edinburgh

```
% normal case - see if we can extend pair list
mlevel = mlevel+1;
for d = 1 : numlines  % try all data lines

% do unary test
if unarytest(model,mlevel,d)

% do all binary tests
passed=1;
for p = 1 : numpairs
   if ~binarytest(model,mlevel,d,pairs(p,1),pairs(p,2))
      passed=0;
      break
   end
end
```


AV: 2D Geometric vision

Fisher lecture 3 slide 13

School of Informatics, University of Edinburgh

Line matching unary test

DATA LINE MODEL LINE

Pass test if $\sigma l_m (1 - \delta_u) \le l_d \le \sigma l_m (1 + \delta_u)$

Allows for calibration and segmentation errors Position independent property ($\delta_u = 0.3$ typical)

AV: 2D Geometric vision

Fisher lecture 3 slide 14

School of Informatics, University of Edinburgh

Pass test if $|\alpha - \beta| \leq \delta_b$

Allows for calibration and segmentation errors Position independent property ($\delta_b = 0.2$ radians typical)

Also: don't allow duplicate use of model or data lines

Matching performance

Limit L= number of model lines - 1 Tries all models Stops at first verified model instance for each model

AV: 2D Geometric vision

Fisher lecture 3 slide 17

School of Informatics, University of Edinburgh

Pose Estimation

Goal: eliminate invalid matches & find object pose

Given a set $\{(m_i, d_{j_i})\}, i = 1..L$ of compatible pairs

Find the rotation \mathbf{R} and translation \vec{t} that transforms the model onto the data features.

This is the 'pose' or 'position'

Let
$$\mathbf{R} = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}$$
 be the rotation matrix

If \vec{p} is a model point, then $\mathbf{R}\vec{p} + \vec{t}$ is the transformed model point

Usually estimate rotation **R** first and then translation \vec{t}

Different Matched Models & Instances

Image	True Model	Tee	Thin L	Thick L
1	Tee	4	0	12
2	Tee	4	0	12
3	Tee	21	0	12
4	Tee	21	0	12
5	Thin L	0	15	2
6	Thin L	0	15	2
7	Thin L	0	15	2
8	Thin L	0	24	2
9	Thick L	0	2	3
10	Thick L	0	2	3
11	Thick L	0	2	3
12	Thick L	0	2	3

AV: 2D Geometric vision

Fisher lecture 3 slide 18

School of Informatics, University of Edinburgh

Estimating Rotation

Given model line i endpoints $\{(\vec{m}_{i1}, \vec{m}_{i2})\}$ Corresponding data line endpoints $\{(\vec{d}_{i1}, \vec{d}_{i2})\}$

Model line direction unit vector:

$$\vec{u}_i = \frac{\vec{m}_{i2} - \vec{m}_{i1}}{||\vec{m}_{i2} - \vec{m}_{i1}||}$$

Data line direction unit vector:

$$ec{v}_i = rac{ec{d}_{i2} - ec{d}_{i1}}{||ec{d}_{i2} - ec{d}_{i1}||}$$

School of Informatics, University of Edinburgh

If no data errors, want \mathbf{R} such that

$$\vec{v}_i = \pm R \vec{u}_i$$

(\pm as don't know if endpoints are in same order)

But, as we have errors \rightarrow least squares solution

Step 1: compute vectors perpendicular to \vec{v}_i If $\vec{v}_i = (v_{x1}, v_{y1})$, then perpendicular is $(-v_{yi}, v_{xi})$

Step 2: compute error between \vec{v}_i and $R\vec{u}_i$ Use dot product of $R\vec{u}_i$ and perpendicular, which equals $\sin()$ of angular error, which is small, so $\sin(\text{error}) \doteq \text{error}$

$$\epsilon_i = (-v_{yi}, v_{xi}) \mathbf{R}(u_{xi}, u_{yi})'$$

AV: 2D Geometric vision

Fisher lecture 3 slide 21

School of Informatics, University of Edinburgh

Step 4: Finding rotation that minimizes least square error

Let
$$\mathbf{D}'\mathbf{D} = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

Then, we minimize $(cos(\theta), sin(\theta)) \begin{bmatrix} e & f \\ g & h \end{bmatrix} (cos(\theta), sin(\theta))' = ecos(\theta)^2 + (f+g)cos(\theta)sin(\theta) + hsin(\theta)^2$

Differentiate wrt θ and set equal to 0 gives:

$$(f+g)cos(\theta)^2 + 2(h-e)cos(\theta)sin(\theta) - (f+g)sin(\theta)^2 = 0$$

Divide by $-\cos(\theta)^2$ (if $\cos(\theta) = 0$ then use special case) gives:

$$(f+g)tan(\theta)^2 + 2(e-h)tan(\theta) - (f+g) = 0$$

Step 3: Reformulate error

Let
$$\mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Multiplying out and grouping terms:

$$\epsilon_i = (v_{xi}u_{yi} - v_{yi}u_{xi}, -v_{yi}u_{yi} - v_{xi}u_{xi})(\cos(\theta), \sin(\theta))'$$

Make a matrix equation

$$\vec{\epsilon} = D(\cos(\theta), \sin(\theta))'$$

Each row of L vector $\vec{\epsilon}$ is ϵ_i and each row of $L \times 2$ matrix \mathbf{D} is $(v_{xi}u_{yi} - v_{yi}u_{xi}, -v_{yi}u_{yi} - v_{xi}u_{xi})$

The least square error is $\vec{\epsilon}' \vec{\epsilon} = (cos(\theta), sin(\theta)) \mathbf{D}' \mathbf{D}(cos(\theta), sin(\theta))'$

AV: 2D Geometric vision

Fisher lecture 3 slide 22

School of Informatics, University of Edinburgh

Solving gives:

$$tan(\theta) = \frac{(h-e) \pm \sqrt{(e-h)^2 + (f+g)^2}}{(f+g)}$$

Four θ solutions (2 for \pm , 2 for $tan(\theta) = tan(\pi + \theta)$).

Try to verify all 4.

Estimating Translation By Least Squares

 \vec{v}_i is perpendicular to rotated model line i

Offset error $\epsilon_i = (\vec{d}_{i1} - \sigma \mathbf{R} \vec{m}_{i1} - \vec{t})' \vec{v}_i$

Differentiate $\sum_{i} \epsilon_{i}^{2}$ wrt \vec{t} , set equal to $\vec{0}$ and solve for \vec{t} gives:

$$\vec{t} = (\sum \vec{v}_i \vec{v}_i')^{-1} \sum \vec{v}_i \vec{v}_i' (d_{i1} - \sigma \mathbf{R} \vec{m}_{i1})$$

AV: 2D Geometric vision

Fisher lecture 3 slide 25

School of Informatics, University of Edinburgh

Test 2: Are model and data lines close?

Let $(r,s) = \frac{\vec{m}_{i1} - \vec{m}_{i2}}{||\vec{m}_{i1} - \vec{m}_{i2}||}$ and $\vec{v}_i = (-s,r)$

For k = i1, i2, compute $\epsilon_i = (\vec{d_k} - \vec{m}_{i1})'\vec{v_i}$ If $|\epsilon_i| < threshold$ then OK (threshold = 15 pixels?)

Verification

Transform model lines into place: for each \vec{m}_i compute $\sigma R \vec{m}_i + \vec{t}$

For each model-data line pair, do 3 tests:

Test 1: Are model and data lines parallel? (For simplicity, use \vec{m}_i in notation instead of $\sigma R \vec{m}_i + \vec{t}$)

$$\mid \frac{\vec{m}_{i1} - \vec{m}_{i2}}{\mid\mid \vec{m}_{i1} - \vec{m}_{i2}\mid\mid} \cdot \frac{\vec{d}_{i1} - \vec{d}_{i2}}{\mid\mid \vec{d}_{i1} - \vec{d}_{i2}\mid\mid} \mid > threshold$$

then OK (threshold = 0.9?)

AV: 2D Geometric vision

Fisher lecture 3 slide 26

School of Informatics, University of Edinburgh

Test 3: Do model and data lines overlap?

For k = i1, i2, compute $\lambda_k = (\vec{d_k} - \vec{m}_{i1})'\vec{v_i}$

If $-tolerance \mid \mid \vec{m}_{i1} - \vec{m}_{i2} \mid \mid \leq \lambda_k \leq (1 + tolerance) \mid \mid \vec{m}_{i1} - \vec{m}_{i2} \mid \mid$, then OK (tolerance = 0.3?)

Verified Position Result Examples

Limit = number of model lines - 1

AV: 2D Geometric vision

Fisher lecture 3 slide 29

School of Informatics, University of Edinburgh

Discussion

- Efficient if good unary/binary tests
- Suitable for 50% (estimated) flat parts
- Similar techniques for shapes other than straight lines: circular arcs, corners, holes, ...
- Extendable to 3D (future lectures)
- Extensions for perspective projection

Confusion Matrix

	Est	Est	Est	No
	Tee	Thin L	Thick L	Est
True Tee	4	0	0	0
True Thin L	0	3	0	1
True Thick L	0	0	4	0

Image 8 had Thin L model flipped over. Matching process can be extended to allow this.

AV: 2D Geometric vision

Fisher lecture 3 slide 30

School of Informatics, University of Edinburgh

What Have We Learned?

Introduction to

- Geometric Model-based Object Recognition
- General Feature Matching Algorithm
- 2D Least Squares rotation and translation estimation algorithms
- 2D Geometric Verification Algorithm

AV: 2D Geometric vision Fisher lecture 3 slide 31 AV: 2D Geometric vision Fisher lecture 3 slide 32