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System 1 Overview

How to discriminate between these?
How to estimate object positions?

vs

Geometric model-based recognition
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System 1 Overview

Geometric model-based recognition processes

Last Lecture: geometric description

This Lecture: model matching

pose estimation

Verification
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Introduction

Given:

Sets of model lines {mi} in a scene coordinate system

Set of image lines {dj} in an image coordinate system

Image to scene scale conversion factor σ (pixels to cm)

Do:

1. Match image and model lines {(mi, dj)}

2. Estimate transformation mapping model onto data: R, ~t

3. Verify matching and pose estimate

Output: identity and position (R, ~t)
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Interpretation Tree matching

Goal: Correspondence between subset of M
model features {mi} and D data features {dj}

Complete (exhaustive, depth-first) search - if a
match exists, it will be found

Needs a ‘wildcard’ (‘*’) data feature to match
model features with no corresponding data
feature (occlusion, segmentation failure)

Can find multiple solutions

Result: {(mi, dji
)} set of matched features
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Search Tree

Expand by model feature at each new level

...

...

...

...

m1

m2

mM

dDd1 d2

d1

d1

d2

d2 dD

*

*

*

dD

Any given node in tree represents a set of
matches {(mi, dji

)}
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Reducing Search Complexity

Do we need to consider all paths in search tree?

No: Suppose current match state has these

pairs matched: {(mi, dji
)}, i = 1..k

Given a new pair (mk+1, djk+1
)

1. unary test(mk+1, djk+1
) - terminates

extending search path if new pair has

incompatible properties

2. binary test(mk+1, djk+1
, mx, djx

) for all

x = 1..k - terminates extending search path
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if new pair has incompatible properties with

each previous pairing on this tree branch (as

all parts of the same object are compatible).

3. Early success limit L - can stop search when

have {(mi, dji
)}, i = 1..L compatible pairs

4. Early failure limit L - can stop search when

can never get L pairs on this path. If have t

non-wildcard matches on this path out of k

pairings, then fail if t + (M − k) < L
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Midlecture Problem

What are good unary/binary properties
to test if matching parts with sets of
circular holes? Eg:
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Computational Complexity

M model feature tree levels. D data features on each level plus 1

wildcard

Worst case: (D + 1)M nodes in tree to visit

pu - probability that any random model feature and any

random data feature pass unary test

pb - probability that any 2 random model features and any 2

random data features pass binary test

Then, if pbMD < 2, then the average case complexity of ITREE

search is O(LD2)

Much smaller, but can still be substantial

AV: 2D Geometric vision Fisher lecture 3 slide 9

School of Informatics, University of Edinburgh

IT algorithm matlab code

% interpretation tree - match model and data lines until

% Limit are successfully paired or can never get Limit

% model - current model

% numM - number of lines in the model

% mlevel - last matched model feature

% Limit - early termination threshold

% pairs(:,2) - paired model-data features

% numpairs - number of paired features

function ok=itree(model,numM,mlevel,Limit,pairs,numpairs)

global Models numlines datalines

% check for termination conditions

if numpairs >= Limit % enough pairs to verify
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[theta,trans] = estimatepose(model,numpairs,pairs)

for p = 1 : 4

ok = verifymatch(theta(p),trans(p,:)’,model,

numpairs,pairs);

if ok

return % successful verification

end

end

return % failure to verify - continue search

end

% never enough pairs

if numpairs + numM - mlevel < Limit

ok=0;

return

end
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% normal case - see if we can extend pair list

mlevel = mlevel+1;

for d = 1 : numlines % try all data lines

% do unary test

if unarytest(model,mlevel,d)

% do all binary tests

passed=1;

for p = 1 : numpairs

if ~binarytest(model,mlevel,d,pairs(p,1),pairs(p,2))

passed=0;

break

end

end
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if passed

% passed all tests: add to matched pairs and recurse

pairs(numpairs+1,1)=mlevel;

pairs(numpairs+1,2)=d;

ok=itree(model,numM,mlevel,Limit,pairs,numpairs+1);

if ok

return % successful verification

end

end

end

end

% wildcard case - go to next model feature

ok = itree(model,numM,mlevel,Limit,pairs,numpairs);
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Algorithm Block Diagram
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Line matching unary test

DATA LINE MODEL LINE

l

l m

d

Pass test if σlm(1 − δu) ≤ ld ≤ σlm(1 + δu)

Allows for calibration and segmentation errors
Position independent property
(δu = 0.3 typical)
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Line matching binary tests

β
α

DATA LINES MODEL LINES

Pass test if | α−β |≤ δb

Allows for calibration and segmentation errors
Position independent property
(δb = 0.2 radians typical)

Also: don’t allow duplicate use of model or
data lines
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Matching performance

Limit L = number of model lines - 1
Tries all models
Stops at first verified model instance for each
model
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Different Matched Models & Instances
Image True Model Tee Thin L Thick L

1 Tee 4 0 12

2 Tee 4 0 12

3 Tee 21 0 12

4 Tee 21 0 12

5 Thin L 0 15 2

6 Thin L 0 15 2

7 Thin L 0 15 2

8 Thin L 0 24 2

9 Thick L 0 2 3

10 Thick L 0 2 3

11 Thick L 0 2 3

12 Thick L 0 2 3
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Pose Estimation

Goal: eliminate invalid matches & find object pose

Given a set {(mi, dji
)}, i = 1..L of compatible pairs

Find the rotation R and translation ~t that transforms the model

onto the data features.

This is the ‘pose’ or ‘position’

Let R =





cos(θ) −sin(θ)

sin(θ) cos(θ)



 be the rotation matrix

If ~p is a model point, then R~p + ~t is the transformed model point

Usually estimate rotation R first and then translation ~t
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Estimating Rotation

Given model line i endpoints {(~mi1, ~mi2)}

Corresponding data line endpoints {(~di1, ~di2)}

m

m

u

i1

i2

i

Model line direction unit vector:

~ui =
~mi2 − ~mi1

|| ~mi2 − ~mi1 ||

Data line direction unit vector:

~vi =
~di2 − ~di1

|| ~di2 − ~di1 ||
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If no data errors, want R such that

~vi = ±R~ui

(± as don’t know if endpoints are in same order)

But, as we have errors → least squares solution

Step 1: compute vectors perpendicular to ~vi

If ~vi = (vx1, vy1), then perpendicular is (−vyi, vxi)

Step 2: compute error between ~vi and R~ui

Use dot product of R~ui and perpendicular, which equals sin() of

angular error, which is small, so sin(error)
.
= error

ǫi = (−vyi, vxi)R(uxi, uyi)
′
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Step 3: Reformulate error

Let R =





cos(θ) −sin(θ)

sin(θ) cos(θ)





Multiplying out and grouping terms:

ǫi = (vxiuyi − vyiuxi,−vyiuyi − vxiuxi)(cos(θ), sin(θ))′

Make a matrix equation

~ǫ = D(cos(θ), sin(θ))′

Each row of L vector ~ǫ is ǫi and each row of L × 2 matrix D is

(vxiuyi − vyiuxi,−vyiuyi − vxiuxi)

The least square error is ~ǫ′~ǫ = (cos(θ), sin(θ))D′
D(cos(θ), sin(θ))′

AV: 2D Geometric vision Fisher lecture 3 slide 22

School of Informatics, University of Edinburgh

Step 4: Finding rotation that minimizes least square error

Let D
′
D =





e f

g h





Then, we minimize (cos(θ), sin(θ))





e f

g h



 (cos(θ), sin(θ))′ =

ecos(θ)2 + (f + g)cos(θ)sin(θ) + hsin(θ)2

Differentiate wrt θ and set equal to 0 gives:

(f + g)cos(θ)2 + 2(h − e)cos(θ)sin(θ) − (f + g)sin(θ)2 = 0

Divide by −cos(θ)2 (if cos(θ) = 0 then use special case) gives:

(f + g)tan(θ)2 + 2(e − h)tan(θ) − (f + g) = 0
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Solving gives:

tan(θ) =
(h − e) ±

√

(e − h)2 + (f + g)2

(f + g)

Four θ solutions (2 for ±, 2 for tan(θ) = tan(π + θ)).

Try to verify all 4.
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Estimating Translation By Least Squares

v

ε

Rm  + ti2

d i2

d i1

i

i

Rm  + ti1

σ

σ
~vi is perpendicular to rotated model line i

Offset error ǫi = (~di1 − σR~mi1 − ~t)′~vi

Differentiate
∑

i ǫ2i wrt ~t, set equal to ~0 and solve for ~t gives:

~t = (
∑

~vi~v
′

i)
−1

∑

~vi~v
′

i(di1 − σR~mi1)
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Verification

Transform model lines into place: for each ~mi compute σR~mi + ~t

For each model-data line pair, do 3 tests:

Test 1: Are model and data lines parallel?

(For simplicity, use ~mi in notation instead of σR~mi + ~t)

m

d i2

d i1

m i1

i2

If

|
~mi1 − ~mi2

|| ~mi1 − ~mi2 ||
·

~di1 − ~di2

|| ~di1 − ~di2 ||
|> threshold

then OK (threshold = 0.9?)
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Test 2: Are model and data lines close?

v i

ε

m

d i2

d i1

i

m i1

i2

Let (r, s) = ~mi1−~mi2

||~mi1−~mi2||
and ~vi = (−s, r)

For k = i1, i2, compute ǫi = (~dk − ~mi1)
′~vi

If | ǫi |< threshold then OK (threshold = 15
pixels?)
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Test 3: Do model and data lines overlap?

d i2

m

d i1

m i1

i2

λ i

v i

For k = i1, i2, compute λk = (~dk − ~mi1)
′~vi

If −tolerance || ~mi1 − ~mi2 ||≤ λk ≤ (1 + tolerance) || ~mi1 − ~mi2 ||,

then OK (tolerance = 0.3?)
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Verified Position Result Examples

Limit = number of model lines - 1
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Confusion Matrix

Est Est Est No

Tee Thin L Thick L Est

True Tee 4 0 0 0

True Thin L 0 3 0 1

True Thick L 0 0 4 0

Image 8 had Thin L model flipped over.
Matching process can be extended to allow this.
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Discussion

• Efficient if good unary/binary tests

• Suitable for 50% (estimated) flat parts

• Similar techniques for shapes other than

straight lines: circular arcs, corners, holes, ...

• Extendable to 3D (future lectures)

• Extensions for perspective projection
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What Have We Learned?

Introduction to

• Geometric Model-based Object Recognition

• General Feature Matching Algorithm

• 2D Least Squares rotation and translation

estimation algorithms

• 2D Geometric Verification Algorithm
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