
School of Informatics, University of Edinburgh

System 1 Overview

How to discriminate between these?
How to estimate object positions?

vs

Geometric model-based recognition

AV: 2D Geometric vision Fisher lecture 3 slide 1

School of Informatics, University of Edinburgh

System 1 Overview

Geometric model-based recognition processes

Last Lecture: geometric description

This Lecture: model matching

pose estimation

Verification

AV: 2D Geometric vision Fisher lecture 3 slide 2

School of Informatics, University of Edinburgh

Introduction

Given:

Sets of model lines {mi} in a scene coordinate system

Set of image lines {dj} in an image coordinate system

Image to scene scale conversion factor σ (pixels to cm)

Do:

1. Match image and model lines {(mi, dj)}

2. Estimate transformation mapping model onto data: R, ~t

3. Verify matching and pose estimate

Output: identity and position (R, ~t)

AV: 2D Geometric vision Fisher lecture 3 slide 3

School of Informatics, University of Edinburgh

Interpretation Tree matching

Goal: Correspondence between subset of M
model features {mi} and D data features {dj}

Complete (exhaustive, depth-first) search - if a
match exists, it will be found

Needs a ‘wildcard’ (‘*’) data feature to match
model features with no corresponding data
feature (occlusion, segmentation failure)

Can find multiple solutions

Result: {(mi, dji
)} set of matched features

AV: 2D Geometric vision Fisher lecture 3 slide 4

School of Informatics, University of Edinburgh

Search Tree

Expand by model feature at each new level

...

...

...

...

m1

m2

mM

dDd1 d2

d1

d1

d2

d2 dD

*

*

*

dD

Any given node in tree represents a set of
matches {(mi, dji

)}

AV: 2D Geometric vision Fisher lecture 3 slide 5

School of Informatics, University of Edinburgh

Reducing Search Complexity

Do we need to consider all paths in search tree?

No: Suppose current match state has these

pairs matched: {(mi, dji
)}, i = 1..k

Given a new pair (mk+1, djk+1
)

1. unary test(mk+1, djk+1
) - terminates

extending search path if new pair has

incompatible properties

2. binary test(mk+1, djk+1
, mx, djx

) for all

x = 1..k - terminates extending search path

AV: 2D Geometric vision Fisher lecture 3 slide 6

School of Informatics, University of Edinburgh

if new pair has incompatible properties with

each previous pairing on this tree branch (as

all parts of the same object are compatible).

3. Early success limit L - can stop search when

have {(mi, dji
)}, i = 1..L compatible pairs

4. Early failure limit L - can stop search when

can never get L pairs on this path. If have t

non-wildcard matches on this path out of k

pairings, then fail if t + (M − k) < L

AV: 2D Geometric vision Fisher lecture 3 slide 7

School of Informatics, University of Edinburgh

Midlecture Problem

What are good unary/binary properties
to test if matching parts with sets of
circular holes? Eg:

AV: 2D Geometric vision Fisher lecture 3 slide 8

School of Informatics, University of Edinburgh

Computational Complexity

M model feature tree levels. D data features on each level plus 1

wildcard

Worst case: (D + 1)M nodes in tree to visit

pu - probability that any random model feature and any

random data feature pass unary test

pb - probability that any 2 random model features and any 2

random data features pass binary test

Then, if pbMD < 2, then the average case complexity of ITREE

search is O(LD2)

Much smaller, but can still be substantial

AV: 2D Geometric vision Fisher lecture 3 slide 9

School of Informatics, University of Edinburgh

IT algorithm matlab code

% interpretation tree - match model and data lines until

% Limit are successfully paired or can never get Limit

% model - current model

% numM - number of lines in the model

% mlevel - last matched model feature

% Limit - early termination threshold

% pairs(:,2) - paired model-data features

% numpairs - number of paired features

function ok=itree(model,numM,mlevel,Limit,pairs,numpairs)

global Models numlines datalines

% check for termination conditions

if numpairs >= Limit % enough pairs to verify

AV: 2D Geometric vision Fisher lecture 3 slide 10

School of Informatics, University of Edinburgh

[theta,trans] = estimatepose(model,numpairs,pairs)

for p = 1 : 4

ok = verifymatch(theta(p),trans(p,:)’,model,

numpairs,pairs);

if ok

return % successful verification

end

end

return % failure to verify - continue search

end

% never enough pairs

if numpairs + numM - mlevel < Limit

ok=0;

return

end

AV: 2D Geometric vision Fisher lecture 3 slide 11

School of Informatics, University of Edinburgh

% normal case - see if we can extend pair list

mlevel = mlevel+1;

for d = 1 : numlines % try all data lines

% do unary test

if unarytest(model,mlevel,d)

% do all binary tests

passed=1;

for p = 1 : numpairs

if ~binarytest(model,mlevel,d,pairs(p,1),pairs(p,2))

passed=0;

break

end

end

AV: 2D Geometric vision Fisher lecture 3 slide 12

School of Informatics, University of Edinburgh

if passed

% passed all tests: add to matched pairs and recurse

pairs(numpairs+1,1)=mlevel;

pairs(numpairs+1,2)=d;

ok=itree(model,numM,mlevel,Limit,pairs,numpairs+1);

if ok

return % successful verification

end

end

end

end

% wildcard case - go to next model feature

ok = itree(model,numM,mlevel,Limit,pairs,numpairs);

AV: 2D Geometric vision Fisher lecture 3 slide 13

School of Informatics, University of Edinburgh

Algorithm Block Diagram

AV: 2D Geometric vision Fisher lecture 3 slide 14

School of Informatics, University of Edinburgh

Line matching unary test

DATA LINE MODEL LINE

l

l m

d

Pass test if σlm(1 − δu) ≤ ld ≤ σlm(1 + δu)

Allows for calibration and segmentation errors
Position independent property
(δu = 0.3 typical)

AV: 2D Geometric vision Fisher lecture 3 slide 15

School of Informatics, University of Edinburgh

Line matching binary tests

β
α

DATA LINES MODEL LINES

Pass test if | α−β |≤ δb

Allows for calibration and segmentation errors
Position independent property
(δb = 0.2 radians typical)

Also: don’t allow duplicate use of model or
data lines

AV: 2D Geometric vision Fisher lecture 3 slide 16

School of Informatics, University of Edinburgh

Matching performance

Limit L = number of model lines - 1
Tries all models
Stops at first verified model instance for each
model

AV: 2D Geometric vision Fisher lecture 3 slide 17

School of Informatics, University of Edinburgh

Different Matched Models & Instances
Image True Model Tee Thin L Thick L

1 Tee 4 0 12

2 Tee 4 0 12

3 Tee 21 0 12

4 Tee 21 0 12

5 Thin L 0 15 2

6 Thin L 0 15 2

7 Thin L 0 15 2

8 Thin L 0 24 2

9 Thick L 0 2 3

10 Thick L 0 2 3

11 Thick L 0 2 3

12 Thick L 0 2 3

AV: 2D Geometric vision Fisher lecture 3 slide 18

School of Informatics, University of Edinburgh

Pose Estimation

Goal: eliminate invalid matches & find object pose

Given a set {(mi, dji
)}, i = 1..L of compatible pairs

Find the rotation R and translation ~t that transforms the model

onto the data features.

This is the ‘pose’ or ‘position’

Let R =





cos(θ) −sin(θ)

sin(θ) cos(θ)



 be the rotation matrix

If ~p is a model point, then R~p + ~t is the transformed model point

Usually estimate rotation R first and then translation ~t

AV: 2D Geometric vision Fisher lecture 3 slide 19

School of Informatics, University of Edinburgh

Estimating Rotation

Given model line i endpoints {(~mi1, ~mi2)}

Corresponding data line endpoints {(~di1, ~di2)}

m

m

u

i1

i2

i

Model line direction unit vector:

~ui =
~mi2 − ~mi1

|| ~mi2 − ~mi1 ||

Data line direction unit vector:

~vi =
~di2 − ~di1

|| ~di2 − ~di1 ||

AV: 2D Geometric vision Fisher lecture 3 slide 20

School of Informatics, University of Edinburgh

If no data errors, want R such that

~vi = ±R~ui

(± as don’t know if endpoints are in same order)

But, as we have errors → least squares solution

Step 1: compute vectors perpendicular to ~vi

If ~vi = (vx1, vy1), then perpendicular is (−vyi, vxi)

Step 2: compute error between ~vi and R~ui

Use dot product of R~ui and perpendicular, which equals sin() of

angular error, which is small, so sin(error)
.
= error

ǫi = (−vyi, vxi)R(uxi, uyi)
′

AV: 2D Geometric vision Fisher lecture 3 slide 21

School of Informatics, University of Edinburgh

Step 3: Reformulate error

Let R =





cos(θ) −sin(θ)

sin(θ) cos(θ)





Multiplying out and grouping terms:

ǫi = (vxiuyi − vyiuxi,−vyiuyi − vxiuxi)(cos(θ), sin(θ))′

Make a matrix equation

~ǫ = D(cos(θ), sin(θ))′

Each row of L vector ~ǫ is ǫi and each row of L × 2 matrix D is

(vxiuyi − vyiuxi,−vyiuyi − vxiuxi)

The least square error is ~ǫ′~ǫ = (cos(θ), sin(θ))D′
D(cos(θ), sin(θ))′

AV: 2D Geometric vision Fisher lecture 3 slide 22

School of Informatics, University of Edinburgh

Step 4: Finding rotation that minimizes least square error

Let D
′
D =





e f

g h





Then, we minimize (cos(θ), sin(θ))





e f

g h



 (cos(θ), sin(θ))′ =

ecos(θ)2 + (f + g)cos(θ)sin(θ) + hsin(θ)2

Differentiate wrt θ and set equal to 0 gives:

(f + g)cos(θ)2 + 2(h − e)cos(θ)sin(θ) − (f + g)sin(θ)2 = 0

Divide by −cos(θ)2 (if cos(θ) = 0 then use special case) gives:

(f + g)tan(θ)2 + 2(e − h)tan(θ) − (f + g) = 0

AV: 2D Geometric vision Fisher lecture 3 slide 23

School of Informatics, University of Edinburgh

Solving gives:

tan(θ) =
(h − e) ±

√

(e − h)2 + (f + g)2

(f + g)

Four θ solutions (2 for ±, 2 for tan(θ) = tan(π + θ)).

Try to verify all 4.

AV: 2D Geometric vision Fisher lecture 3 slide 24

School of Informatics, University of Edinburgh

Estimating Translation By Least Squares

v

ε

Rm + ti2

d i2

d i1

i

i

Rm + ti1

σ

σ
~vi is perpendicular to rotated model line i

Offset error ǫi = (~di1 − σR~mi1 − ~t)′~vi

Differentiate
∑

i ǫ2i wrt ~t, set equal to ~0 and solve for ~t gives:

~t = (
∑

~vi~v
′

i)
−1

∑

~vi~v
′

i(di1 − σR~mi1)

AV: 2D Geometric vision Fisher lecture 3 slide 25

School of Informatics, University of Edinburgh

Verification

Transform model lines into place: for each ~mi compute σR~mi + ~t

For each model-data line pair, do 3 tests:

Test 1: Are model and data lines parallel?

(For simplicity, use ~mi in notation instead of σR~mi + ~t)

m

d i2

d i1

m i1

i2

If

|
~mi1 − ~mi2

|| ~mi1 − ~mi2 ||
·

~di1 − ~di2

|| ~di1 − ~di2 ||
|> threshold

then OK (threshold = 0.9?)

AV: 2D Geometric vision Fisher lecture 3 slide 26

School of Informatics, University of Edinburgh

Test 2: Are model and data lines close?

v i

ε

m

d i2

d i1

i

m i1

i2

Let (r, s) = ~mi1−~mi2

||~mi1−~mi2||
and ~vi = (−s, r)

For k = i1, i2, compute ǫi = (~dk − ~mi1)
′~vi

If | ǫi |< threshold then OK (threshold = 15
pixels?)

AV: 2D Geometric vision Fisher lecture 3 slide 27

School of Informatics, University of Edinburgh

Test 3: Do model and data lines overlap?

d i2

m

d i1

m i1

i2

λ i

v i

For k = i1, i2, compute λk = (~dk − ~mi1)
′~vi

If −tolerance || ~mi1 − ~mi2 ||≤ λk ≤ (1 + tolerance) || ~mi1 − ~mi2 ||,

then OK (tolerance = 0.3?)

AV: 2D Geometric vision Fisher lecture 3 slide 28

School of Informatics, University of Edinburgh

Verified Position Result Examples

Limit = number of model lines - 1

AV: 2D Geometric vision Fisher lecture 3 slide 29

School of Informatics, University of Edinburgh

Confusion Matrix

Est Est Est No

Tee Thin L Thick L Est

True Tee 4 0 0 0

True Thin L 0 3 0 1

True Thick L 0 0 4 0

Image 8 had Thin L model flipped over.
Matching process can be extended to allow this.

AV: 2D Geometric vision Fisher lecture 3 slide 30

School of Informatics, University of Edinburgh

Discussion

• Efficient if good unary/binary tests

• Suitable for 50% (estimated) flat parts

• Similar techniques for shapes other than

straight lines: circular arcs, corners, holes, ...

• Extendable to 3D (future lectures)

• Extensions for perspective projection

AV: 2D Geometric vision Fisher lecture 3 slide 31

School of Informatics, University of Edinburgh

What Have We Learned?

Introduction to

• Geometric Model-based Object Recognition

• General Feature Matching Algorithm

• 2D Least Squares rotation and translation

estimation algorithms

• 2D Geometric Verification Algorithm

AV: 2D Geometric vision Fisher lecture 3 slide 32

