
Lab 2

Hanz Cuevas Velásquez, Bob Fisher
Advanced Vision

School of Informatics, University of Edinburgh

Week 3, 2018

This lab will focus on learning simple image transformations and the Canny edge detector. The
lab will also go through a simple image segmentation technique, thresholding.

Before anything else, we need to go inside the folder where we downloaded the lab material
using the address bar of Matlab or using the terminal command cd in the Matlab command
window. Then, we will read the image ’hand.png’ and stored in a variable called rgb hand. We
will transform the variable to double, transform it to the HSV colour space and store the second
dimension (Saturation) in another variable:

rgb hand = imread (’Images/hand.png’) ;
rgb hand = im2double (rgb hand) ;
hsv hand = rgb2hsv (rgb hand) ;
s = hsv hand (: , : , 2) ;
%Now we show the rgb_hand and the s colour space

subplot (1 , 2 , 1) , imshow(rgb hand)
subplot (1 , 2 , 2) , imshow(s)

The colour space s will be useful for the next step of our lab.

1 Edge detection: Canny

Detecting the edges of an object is an important tool in many computer vision applications and it is
used to find the boundaries of the different objects in an image. There is a variety of edge detectors
which we encourage the student to learn and practice 1. However, in this lab we will only learn to
use the Canny edge detector. In Matlab, we can use the Canny detector in a gray scale image (2D
intensity image) using the following command BW = edge(I,’Canny’,threshold,sigma). This
command will return a binary image which contains the edges of the objects in the image. I is the
image from which we want to obtain the edges, instead of ’Canny’ we can specify another edge
detector, however, for this exercise we will stick with it. These two values are enough to use the
edge detector, however, we can also change the threshold of the detector which should be between
0 and 1; this will return all the edges that are stronger than threshold. Finally, we can also change
the standard deviation (sigma) of the Gaussian filter.

For our lab, we will observe how changing the threshold of the detector will affect the edges
of the output. We will use 5 different thresholds: 0.1, 0.15, 0.2, 0.25, and 0.3. Now, you should
write the code of the Canny detector using these thresholds and show them. You should use the
color space s as input and the function figure(’Name’, threshold #) to show the thresholds in
different windows, where threshold # should be replaced by the 5 thresholds we chose, as seen in
figure 1.

1https://uk.mathworks.com/discovery/edge-detection.html

1

Figure 1: Canny edge detector a) threshold: 0.1, b) threshold: 0.3.

2 Morphological operations

In this section we will learn how to use two morphological operations: erosion and dilation. Di-
lation is used to gradually enlarge the boundaries of regions of foreground pixels (white pixels);
erosion does the opposite2. In matlab these two operations have two inputs, a binary image, and a
structuring element object (or an array of structuring element objects). This structuring element
can have different shapes, like a line, square, or disk and it represents the number of pixels that
will be expanded or shrunk. To understand it better, we will do one experiment taken from the
Matlab documentation3:

First, we will create a binary image:

close all ;
BW = zeros (9 , 10) ;
BW(4 : 6 , 4 : 7) = 1

BW =

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

This will give us a square of ones of 3× 4. Now, we will create a square structuring element of size
3 × 3. Finally we will use imdilate to dilate the image using the created structuring element.

SE = s t r e l (’square ’ , 3) ;
BW2 = imd i l a t e (BW,SE)

2More information about morphological operations in the webpage: https://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm
3https://uk.mathworks.com/help/images/dilate-an-image.html

2

BW2 =

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

We can observe that our square of ones has increased its size to 5 × 6. This shows that the center
pixel of the structuring element is placed on the pixel of the image that is being processed and
the rest of the pixels of the structuring element are used in the morphological computation. The
student should do the same experiment using strel(’diamond’,2) and analize the output.

We can use the same principle in our image of the hand. First, we will use the Canny edge
detector to obtain the edges of the hand, then, we will use dilation and erosion and observe the
changes.

ed canny = edge (s , ’Canny’ , 0 . 2) ;

%Structuring element

SE = s t r e l (’square ’ , 3) ;
SE2 = s t r e l (’square ’ , 8) ;

%Morphological operation

e r o s i on = imerode (ed canny , SE) ;
d i l a t i o n = imd i l a t e (ed canny , SE2) ;
subplot (1 , 3 , 1) , imshow(ed canny)
subplot (1 , 3 , 2) , imshow(e r o s i on)
subplot (1 , 3 , 3) , imshow(d i l a t i o n)

You will see a window similar to figure 2

Figure 2: From left to right, Canny edge detector binary image, binary image after erosion, and
binary image after dilation.

We can observe that, because the lines of the edges are too thin, applying erosion to the image
makes the edges disappear. Unlike erosion, dilation makes the edges thick.

3 Colour thresholding

Colour thresholding is a basic operation that allows us to use the intensity values of our image to
create binary images or masks. We will use colour thresholding in the following task. Our goal is
to segment the five fingers of the hand. As a first step, we will use imfill(Img, ’holes’) to fill

3

the holes inside the boundaries created by our dilated version of the Canny detector, where Img

is a binary image. Then, we will use erosion to reduce the thickness of the fingers. The student
should write both functions in the code below:

f i l l e d f i n g e r s = %(Code: Fill the wholes inside the dilation image)

SE = s t r e l (’square ’ , 15) ;
e r o d e f i n g e r s = %(Code: Use erotion on the variable filled_fingers) We will

consider this as our mask

%We put the mask on the rgb image using the bsxfun command

masked hand = bsxfun (@times , rgb hand , ca s t (e r od e f i n g e r s , ’like’ , rgb hand)) ;
subplot (1 , 2 , 1) , imshow(e r o d e f i n g e r s) ;
subplot (1 , 2 , 2) , imshow(masked hand) ;

You will obtain a similar window to figure 3.

Figure 3: On the left, mask created after the morphological operations. On the right colour image
with the mask.

In the figure, we can observe that our mask has segmented most of the fingers correctly. How-
ever, there is a green region from the background that was also segmented. If we click on the green
region using the data cursor tool and then on any part of the fingers, we will see that the intensity
of the pixels in the green colour space (G) is higher in the green region than in the fingers. We can
use this value to get rid of the green region. Your task is to find a sensible threshold in the green
colour space to eliminate the green region without affecting the colour of the fingers. The chosen
threshold should be able to separate the fingers similar to figure 4.

%Given that the green background has high intensity values in the green space , we

will threshold that space.

G = rgb hand (: , : , 2) ;
imshow (G) ; %Show the green space.

mask G = G.∗ e r o d e f i n g e r s ; %create a mask based on the green colour space and the

previous mask.

imshow (mask G) %Show the binary mask.

%(Code: Use the image mask_G to find the value of the threshold. Once you find it ,

replace the comment in "tr" with it.)

t r = %Threshold;

%We threshold the intensity value of our new mask. All values above "tr" will

become 0.

4

mask G(mask G>t r)=0;
mask G(mask G>0)=1; %we make our mask a binary image

%check if your threshold separated the fingers successfully

new masked hand = bsxfun (@times , rgb hand , ca s t (mask G , ’like’ , rgb hand)) ;
subplot (1 , 2 , 1) , imshow(masked hand)
subplot (1 , 2 , 2) , imshow(new masked hand)

Figure 4: On the left, the colour image with the first mask. On the right, the colour image after
the colour thresholding.

4 Labeling and bounding box

We are almost done with our objective, our next step is to create a bounding box around our five
fingers. Before doing that, we need to label them. In Matlab, we use the function bwlabel(BW)

to label all the separated objects in a binary image, this function will return an image where the
values of the pixels belonging to a connected region have the same number. You should write the
code to label the fingers, show the output of the function bwlabel and show each finger separately
using the code below.

%First , if there is a small area near the palm of the hand , we can eliminate it

using bwareopen.

mask G = bwareaopen (mask G , 50) ; % Only the objects with area (pixels) >50 will

remain.

l b l = %(Code: label the fingers using mask_G)

%(Code: Show the output of the bwlabel function and observe the values of the

fingers)

close all ;
%(Code: Show each finger separately. HINT: You can use (lbl==i) which will output a

binary image were the pixels with value i will become 1 and the others 0)

To draw a bounding box we will use the following function RGB = insertObjectAnnotation(I,

shape, position, label), where I is the image where we want to draw the bounding box, shape
is to select the type of bounding box, rectangle or circle. position is the location and size of the
bounding box, and label is the text that will show. We will use a rectangle as a shape, so we need

5

to provide four values, x, y, width, and height, to the function. The elements, x and y, indicate
the upper-left corner of the rectangle, and the width and height specify the size.

Before going any further, we will make a small comment on how are the pixel indices in Matlab.
First of all, we have to know that each image is divided in rows (y) and columns (x). They are
used to access to the values of each pixel in the image, as observed in 5. Unlike other programming
languages like Python, Matlab uses the number 1 as the first value of its arrays and matrices, so, if
we want to read the value of a pixel that is in the 2nd row and 3rd column, we will write Image(2,

3).

Figure 5: Pixel indices in Matlab using the Cartesian coordinates.

To obtain the dimensions of our bounding boxes, we need to obtain the minimum and the
maximum row and column indices where there is a pixel with value higher than 0. We do that
with the following code:

close all ;
%We will concatenate the positions of our 5 fingers , so we initialize the position

as empty.

po s i t i o n = [] ;
%Names for our fingers.

l a b e l s t r ={[’Pinky’] , [’Ring Finger ’] , [’Middle Finger ’] , [’Index Finger ’] , [’Thumb’
] } ;

%Go through all the 5 labels to find the maximum and minimum row (r) and column (c)

for i =1:5
[r , c]=find (l b l==i) ;
max r=max (r) ;
min r=min (r) ;
max c=max (c) ;
min c=min (c) ;
width = max c−min c+1; %obtaining the width of the bounding box

he ight = max r−min r+1; %obtaining the height of the bounding box

po s i t i o n = [po s i t i o n ; [min c , min r , width , he ight]] ; %concatenating the

positions of the fingers

end

rgb=inser tObjectAnnotat ion (rgb hand , ’rectangle ’ , po s i t i on , l a b e l s t r , ’Color’ , ’

red’ , ’FontSize ’ , 10) ;
imshow (rgb) ;

You should have the following image as a result, see figure 6.

6

Figure 6: RGB image with bounding boxes in each finger.

7

	Edge detection: Canny
	Morphological operations
	Colour thresholding
	Labeling and bounding box

