Lab 4

Hanz Cuevas Velasquez, Bob Fisher
Advanced Vision
School of Informatics, University of Edinburgh

Week 4, 2018

Today’s lab will teach you how to read and write point-cloud data. a point-cloud data is a
set of points in the tridemensional coordinate system, x, y, and z and represent the surface of an
object; it can also encode the color information R,G, and B of the object.

1 Reading and writing point-cloud data

The two most used formats of a point-cloud file are Polygon file format (.ply) and Point Cloud
Data (.pcd). We will start the lab by reading and showing the point-cloud file bottles .plyﬂ

pc = pcread (’Images/bottles.ply’); %Reading the point-cloud
showPointCloud (pc) %Showing the point-cloud
% For version of matlab > R2015a the command can be replaced by pcshow(pc)

Figure 1: Plot of the point-cloud data.

We will observe an image similar to figure [l We can rotate the point-cloud using the rotate
3D button. Each point in the plot has an x, y, and z which indicates where in the space is that
point. Each point also has 3 other values assigned to it, the RGB dimensions. To describe this
relation more in depth, first we will observe what is the data stored in the point-cloud, for that we
will write pc in the command window.

%Write pc without semiclon
pc

Tmage taken from the Point Cloud Library dataset: https://github.com/PointCloudLibrary/pcl/tree/master /test

%0utput
pointCloud with properties:

Location: [307200x3 single]
Color: [307200x3 uint8]

Normal: []
Intensity: []
Count: 307200
XLimits: [—1.0608 1.1525]
YLimits: [—0.8692 0.2197]

ZLimits: [0.5010 2.0630]

Here we can observe two important properties, the location and color. Location stores the
X, y, and z coordinates of each point in the point-cloud and Color stores the color (r,g, and b)
assigned to those points, E.g. a point p with coordinates (1,1,1) may have the following color
values (255,23, 52). Both properties encode the data in a list of size [n x 3] where n is the number
of points our data has, and 3 represents the x, y, and z coordinates for Location or r, g, and b
for Color. We can access to the content of these properties using the following code pc.Color
and pc.Location. We can also observe that our point-cloud has 307200 points. Usually, when we
collect some 3D data with color, we know the resolution or size of the image; these points are the
flat version of the total number of pixels in the image. In our case, it has a size of 480x 640 = 307200.

Your task is to reconstruct the color image using the color property in the pointcloud. For
that, you have to do the following:

e Get the r, g, and b color from the list pc.Color.

e Reshape the 3 lists into a matrix of size [480 x 640]. Use the command reshape(list,
[row, col]) where 1list is the variable you want to reshape, and row and col represent the
dimensions of the new shape.

color_pc = pc.Color;
r %(Code: get the r color)
g %(Code: get the g color)
b %(Code: get the b color)
rec_r %(reshape r)
rec_g %(reshape g)
rec_b = % (reshape b)

new_rgb (:,:,1) = rec_r;
new_rgb (:,:,2) = rec_g;
new_rgb (:,:,3) = rec_-b;

imshow (new._rghb)

Now that we have our image reconstructed, we want to find in which position (location) is the
third bottle from left in figure [, and segment it in the point-cloud. The first step is to segment
the bottle in the Colour space (2D space or color matrix) and find a mask. After we segmented the
bottle, we have to relate the pixels of the bottle in our 2D image to the points in our point-cloud.
We can reshape the mask and use it on the pc.Color list. We can also use the different notations
Matlab has to index a matrix to find the relationship between the 2D space and the point-cloud;
we will implement the second. Matlab, apart from allowing us to access to a matrix using the rows
and columns as indices, it lets us access to the values of the matrix using linear indices. These
linear indices are numbers from 1 to the total number of pixels, starting from the top left of the
matrix, going down to the end of the first column and so on until it reaches the bottom right of
the matrix. See figure [2| for a better description of this relation.

Linear index

12/3'--640

Red colour space

! 2 307200
raC b)) 1|/
° 2 (| 2]]482
B 3

pc.Color [307200x3] 311\3/1(483

1 2 3 . . . 307200
x 1
y 2
= 480 | 480 307200

pc.Location [307200x3]
rec_r [480x640]

Figure 2: Showing the relation between the color and location matrix index and the linear index
of a matrix of an image. On the left, the color and location matrix of the pointcloud, on the right
the red color matrix we reshaped.

For this part of the lab, we will use the find command to find the linear indices of our matrix
that have the pixels of our bottle. These linear indices are the same indices of our flat Color and
Location matrices, as seen in the previous figure. In other words, the indices we get with this
command are also the indices we can use in the pc.Location variable. In this exercise we will also
learn how to create and save a new point-cloud data with pointCloud and pcwrite. Your task is
the following:

e Segment and show the third bottle from figure 1| (white bottle with blue bottle cap).

e use find to find the pixels that do not belong to the bottle. E.g find(x<=t) finds all the
linear indices of the matrix x that are less or equal to a threshold t. HINT: Use the mask
you found to segment the bottle.

%(Code: Segment the third bottle and name the mask "threshold")

indx_-xyz_-no=J(Code: find the indices of the pixels where our bottle is not located)
xyz_-pc = pc.Location;

%Eliminating the indices where our bottle is not located.

xyz-pc (indx_xyz-no ,:) =[];

color_pc(indx_xyz_no ,:) =[];

%Creating a new point-cloud
new_pc = pointCloud (xyz_-pc, ’Color’, color_pc);

%Saving the new point-cloud
pcwrite (new_pc,’single_bottle.ply’);
showPointCloud (new_pc)

We will have the following result (figure [3):

015 02 025 03 035 o4

S
05 ’—‘ o
o7
0.5 oe
0.4
035

<)

Figure 3: a) 2D image, b) Segmented bottle, ¢) Point-cloud plot of the segmented bottle.

In figure[3k, we can observe that we do not have a complete image of the bottle. This is because
the depth sensor was not capable of detecting the depth values of those regions. If we go to the
Workspace window, on the right of the main window, and double click on the variable xyz_pc,
we can observe that there are several NaN, values. These values indicate that there is no depth
information in those regions, as seen in [d] The student should think about the reasons why the
sensor did not get the depth information in some parts of the image.

HYZ_pC
1 13209%3 single

1 2 3

0.1338 -0.0235 0.8500
0.1332 -0.0218 0.2480

1 -0.0235 0.8500
2 0.13200 -0.0218 0.8500
3 0.1320 -0.0202 0.8500
4 0.1214 -0.0171 0.7820
5 0.1214 -0.0156 0.7820
6 NE=1 MaM Mal
7 MaM MNaM Mal
8

9

Figure 4: Values inside xyz_pc variable.

	Reading and writing point-cloud data

