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Speaker recognition

@ Speaker identification — determine which of the set of enrolled speakers a test
speaker matches

@ Speaker verification — determine if a test speaker matches a specific speaker

@ Speaker diarization — “who spoke when" segment and label a continuous
recording by speaker
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Speaker recognition

@ Speaker identification — determine which of the set of enrolled speakers a test
speaker matches

o Speaker verification — determine if a test speaker matches a specific speaker

@ Speaker diarization — “who spoke when” segment and label a continuous
recording by speaker

e Text dependent (vs text independent) — for speaker identification and verification,
is the test speaker speaking a pre-defined utterance?

e text-dependent — e.g. spoken password
o text-independent — e.g. recognise a speaker from a law-enforcement recording

@ Closed set (vs open set) — is there a fixed set of speakers?
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Speaker verification
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Overview of a speaker verification system
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Evaluating speaker verification

@ Two types of error
o False acceptance — grant access to an imposter: False Acceptance Rate (FAR)
o False reject — refuse access to a genuine speaker: False Rejection Rate (FRR)
FAR = False Alarm Probability
_ Number of imposters accepted

~ Number of imposter attempts
FRR = Miss Probability
_ Number of legitimate speakers rejected

Number of legitimate attempts

@ Control the levels of these errors by setting decision threshold
@ Equal error rate — FAR and FRR values when they are equal

o DET (detection error tradeoff) curve — plots FRR (miss probability) against FAR
(false alarm probability)
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Speaker verification decision threshold
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DET curve
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Detection cost function

@ Detection cost function takes into account
Cost of miss (Cpiss) and false alarm (Cgp) errors
Prior probability of target speaker — Ptarget)

Miss probability at threshold 7 — Ppis5(7)

FA probability at threshold 7 — Ppa (7)
DCF(7) = CrissPmiss(7) Ptarget + CFAPFA(T)(1 — Prarget)
> Cpp if it is better to have false alarms than it is to miss the target

@ Set Cmiss

speaker
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Features for speaker verification

@ Frame-level — typically use MFCCs or other features used in ASR
o Utterance/speaker-level — since we require to make decisions at the utterance
level often aim to learn utterance level representations or embeddings

o GMM supervectors
e i-vectors
e DNN embeddings

e d-vectors
@ Xx-vectors
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GMM-based speaker verification

e UBM (Universal Background Model) — train a GMM with many Gaussians (eg
2048) on the speech of the general population
o NB: no sequence modelling (no HMM) - just a distribution over MFCCs

@ Then adapt the UBM to each target speaker using MAP adaptation

@ Directly use these GMMs to verify a target speaker using the log likelihood ratio
(LLR), where X is the observed test utterance, 05 is the target speaker model,
and 6 is the UBM. :

p(X16s)

LLR(X,s) =lo
(X.5) =l X 100)

= log p(X|05) — log p(X|fo)

For a threshold 7

o If LLR(X,s) > 7 then accept
o If LLR(X,s) < 7 then reject
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Recap: MAP adaptation

@ Basic idea MAP adaptation balances the parameters estimated on the universal
data with estimates from the target speaker
@ Consider the mean of the mth Gaussian,
e ML estimate of SI model:
2 Ym(M)Xn

= S ()

where v,(n) is the component occupation probability
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Recap: MAP adaptation

@ Basic idea MAP adaptation balances the parameters estimated on the universal
data with estimates from the target speaker
@ Consider the mean of the mth Gaussian,
e ML estimate of SI model:
2 Ym(M)Xn

l‘l’ =
T, m(n)
where v,(n) is the component occupation probability
e MAP estimate for the adapted model:

e+ X, ()
b e, ()

@ « controls balances the S| estimate and the adaptation data (typically 0 < a < 20)
@ X, is the adaptation vector at time n
@ (n) the probability of this Gaussian at this time

e As the amount of training data increases, MAP estimate converges to ML estimate
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GMM UBM system

Speaker Model

»
»

GMM Mean Supervector

(a) (b)

Source: Hansen and Hasan, 2015

ASR Lecture 17 12



@ Represent a speaker using the GMM (mean) parameters — concatenate the target
speaker mean parameters to form a GMM supervector m,. Typical dimension of
a UBM GMM is 2048, so with 39-dimension parameters, this can be a very high
dimension vector (~ 80,000 components)

@ Represent the supervector for an utterance X, as the combination of the UBM
supervector and the utterance i-vector (Dehak et al, 2011):

m,=mg+ Tw,

e my, and myg are D-dimension supervectors for the utterance u and the UBM

o w, is the i-vector (‘“identity vector’) — a reduced dimension (d) representation for
utterance u (d ~ 400)

o Tisa D x d matrix (sometimes called the “total variability matrix") which projects
the supervector down to the i-vector representation

o Estimate T for the development corpus using an EM algorithm, estimate the i-vector
w,, for an utterance as the mean of the (Gaussian) posterior distribution of w, given
X,and T.
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Speaker verification scoring using i-vectors

@ Speaker verification involves computing a score f(Wtargeta Wiest) between the
target and test i-vectors

@ Cosine score

Wiarget - Wtest

‘WtargetH ||Wiest|

fcos(Wtarget; Wtest) = |

@ Probabilistic linear discriminant analysis (PLDA) — probabilistic model that
accounts for speaker variability and channel variability. Can be used to compute
the log likelihood ratio, so

fplda(Wtargeb Wtest) = log P(Wtargeb Wtest|H1)—log P(Wtarget|HO)P(Wtest’HO)]

where Hj is the hypothesis that the test and target speakers are the same, Hp is
the hypothesis they are different

@ PLDA is current-state of the art for scoring i-vectors
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Neural network approaches

@ Current state-of-the-art neural network approaches use NNs to extract
embeddings, which are then scored by PLDA

e d-vectors (Variani et al, 2014)
e Development — train a DNN to recognise speakers
e Enrolment — extract speaker-specific features from last hidden layer
o d-vector — average speaker-specific features across frames of an utterance (pooling)

@ x-vectors (Snyder et al, 2018)
e Similarly to d-vectors extract an utterance level feature as an embedding
e Train TDNN with frame-level input and utterance-level output
o Architecture includes a “stats pooling” layer which computes mean and SD across

the utterance of the highest frame-level hidden layer
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d-vector extraction

Stacked filterbank . L
energy features. d-vector is the averaged activations
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Source: Variani et al, 2014
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x-vector extraction
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Speaker diarization
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Dealing with multiple speakers

@ Speaker diarization is the “who spoken when" task: given a recording, divide it
into segments, where each segment corresponds to speech of a single speaker

@ Each recording contains multiple speakers — unlike what we have assumed so far
for speech recognition and speaker verification

o Multiple speakers in a recording is realistic — many possible domains, e.g.:

Broadcast media

Telephone conversations

Call centres

Meeting recordings
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Dealing with multiple speakers

@ Speaker diarization is the “who spoken when" task: given a recording, divide it
into segments, where each segment corresponds to speech of a single speaker

@ Each recording contains multiple speakers — unlike what we have assumed so far
for speech recognition and speaker verification
o Multiple speakers in a recording is realistic — many possible domains, e.g.:

e Broadcast media

e Telephone conversations
o Call centres

o Meeting recordings

@ A basic approach to diarization:
Segment the recording into a sequence of short pieces, each assumed to be a
single speaker. Then treat as a speaker verification task between all pairs of
segmented utterances

e Guaranteed to fail on segments with overlapping speakers!
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Measuring speaker diarization — Diarization error rate

@ There are three main type of error to consider in speaker diarization:

o Missed speech (Eiss): system labels a segment as non-speech, but segment is
attributed to a speaker in the reference
o False-alarm speech (Ef,): system attributes segment to a speaker, but segment is
labelled as non-speech in the reference
e Speaker error (Espkr): system attributes segment to a speaker different to the
reference attribution
@ These errors are computed in a time-based way: each is expressed as a fraction of

the scored time in the reference

@ The diarization error rate (DER) is computed as a sum of these errors
DER = Epjss + Efy + Espkr

o Note that Eics and Eg, arise from the speech activity detection
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Framework for speaker diarization

(=) ( oun Segment a recording, and attach a speaker label
to each segment.

Speech Activity
Detection
(LSTM, TDNN, ...)

Segmentation
(short segments)

Embedding
extraction
(i-vector, x-vector...)

Scoring
(PLDA, Cosine, ...)

Clustering
(AHC, Spectral, ...)

@ Split the recording into segments

@ Speech activity detection: identify whether
each segment is speech or non-speech,
discard non-speech

© Represent the speech segments using some
form of fixed length embedding: i-vector,
x-vector, d-vector...

@ Compare all pairs of segments using a
scoring metric such as PLDA

© Cluster the segments using an algorithm
such as agglomerative hierarchical clustering

Segmented and
labelled

Test Data
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Segmentation and Speech Activity Detection

@ Speech activity detection (SAD) typically carried out using an LSTM or TDNN
neural network trained on a large amount of diverse data

e Binary output: speech vs. non-speech
e Possibly with data augmentation — noise, reverb, etc.
e Following SAD, segment into short fixed-length segments (typically 2s)

e Assumes each segment contains speech from a single speaker
o In practice can use overlapping segments (overlap by 0.5s at start and end)
o Relatively short segment duration for embedding computation
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Speaker Embeddings and Clustering

@ Compute a speaker representation for each segment
e i-vector - typically 64-128 dimension
e x-vector / d-vector - typically 128-256 dimension
e can reduce the dimension by performing PCA on the set of embeddings for a
recording
@ Score all segment pairs — typically use PLDA
@ Cluster segments — many possible clustering algorithms: Agglomerative
hierarchical clustering can work well
e Only need to compute pairwise segment scores once
e Score for a cluster pair is obtained by averaging the pairwise scores between the
segments in each cluster
@ Determine the number of clusters
o Clustering stopping criterion determines the number of clusters
o Define a prior distribution on the number of speakers, and apply to clustering
o Bayesian models with a prior on number of clusters — Variational Bayes (VB) HMM,
Hierarchical Dirichlet Process (HDP) HMM, distance-dependent Chinese Restaurant
Process (ddCRP), ...
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DIHARD

@ R&D in speaker diarization has been very domain-dependent

e 1990s — broadcast news (Hub4)
e 2000s — multi-microphone meeting recordings (AMI, NIST RT)
e 2010s — conversational telephone speech (CallHome)

@ Had the effect of fragmenting the field

@ Since 2018 the DIHARD Challenge (https://coml.lscp.ens.fr/dihard/) has
focused on “speaker diarization for challenging recordings where there is an
expectation that the current state-of-the-art will fare poorly” — diverse set of data
sets used

ASR Lecture 17 24


https://coml.lscp.ens.fr/dihard/

Some hot topics in diarization

@ Overlapping speech — most systems do not explicitly deal with this
Speech activity detection is still a significant cause of error
Development of end-to-end systems

Bayesian approaches (learning the number of speakers/clusters from the data)

Use of supervised learning

ASR Lecture 17 25



@ i-vectors are the state-of-the-art speaker representation, used in

e speaker recognition
o speaker diarization
o speaker adaptation in ASR

@ NN speaker representations such as d-vectors and x-vectors are now competitive
with i-vectors

@ PLDA is the state-of-the-art scoring approach

@ Current challenges include development of end-to-end NN approaches
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Reading — speaker verification

e JHL Hansen and T Hasan (2015), “Speaker Recognition by Machines and
Humans: A tutorial review”, IEEE Signal Processing Magazine, 32(6):74-99,
https://ieeexplore.ieee.org/document/7298570

e MW Mak and JT Chien (2016), “Tutorial on Machine Learning for Speaker
Recognition”, Interspeech,
http://www.eie.polyu.edu.hk/~mwmak/papers/IS2016-tutorial.pdf

o N Dehak et al (2011), “Front-End Factor Analysis for Speaker Verification”, |IEEE
Trans Audio, Speech, and Language Processing, 19(4):788-798,
https://ieeexplore.ieee.org/document/5545402

e E Variani et al (2014), “Deep neural networks for small footprint text-dependent
speaker verification”, ICASSP,
https://ieeexplore.ieee.org/document/6854363

@ D Snyder et al (2018), “X-Vectors: Robust DNN Embeddings for Speaker
Recognition”, ICASSP,
https://ieeexplore.ieee.org/document/8461375
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Reading — speaker diarization

e D Garcia-Romero et al (2017), “Speaker diarization using deep neural network
embeddings”, ICASSP.
https://ieeexplore.ieee.org/document/7953094

@ G Sell et al (2018), “Diarization is Hard: Some Experiences and Lessons Learned
for the JHU Team in the Inaugural DIHARD Challenge”, Interspeech.
https://www.isca-speech.org/archive/Interspeech_2018/abstracts/
1893.html

@ K Church et al (2017), “Speaker diarization: A perspective on challenges and
opportunities from theory to practice”, ICASSP.
https://ieeexplore.ieee.org/abstract/document/7953098
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