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End-to-end systems

End-to-end systems are systems which learn to directly map
from an input sequence X to an output sequence Y ,
estimating P(Y |X )

Y can be a sequence of words or subwords

ML trained HMMs are kind of end-to-end system – the HMM
estimates P(X |Y ), and when combined with a language
model gives an estimate of P(Y |X )

Sequence discriminative training of HMMs (using GMMs or
DNNs) can be regarded as end-to-end

But training is quite complicated – need to estimate the
denominator (total likelihood) using lattices, first train
conventionally (ML for GMMs, CE for NNs) then finetune
using sequence discriminative training
Lattice-free MMI is one way to address these issues
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Fully differentiable end-to-end systems

Approaches based purely on recurrent networks which directly map
input to output sequences

CTC – Connectionist Temporal Classification

Encoder-decoder approaches
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Fully differentiable end-to-end systems

Approaches based purely on recurrent networks which directly map
input to output sequences

CTC – Connectionist Temporal Classification

Encoder-decoder approaches (next lecture)
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Example: Deep Speech

h(f), and a set with backward recurrence h(b):
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Note that h(f) must be computed sequentially from t = 1 to t = T (i) for the i’th utterance, while
the units h(b) must be computed sequentially in reverse from t = T (i) to t = 1.

The fifth (non-recurrent) layer takes both the forward and backward units as inputs h
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that yields the predicted character probabilities for each time slice t and character k in the alphabet:
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Here W
(6)
k and b

(6)
k denote the k’th column of the weight matrix and k’th bias, respectively.

Once we have computed a prediction for P(ct|x), we compute the CTC loss [13] L(ŷ, y) to measure
the error in prediction. During training, we can evaluate the gradient rŷL(ŷ, y) with respect to
the network outputs given the ground-truth character sequence y. From this point, computing the
gradient with respect to all of the model parameters may be done via back-propagation through the
rest of the network. We use Nesterov’s Accelerated gradient method for training [41].3

Figure 1: Structure of our RNN model and notation.

The complete RNN model is illustrated in Figure 1. Note that its structure is considerably simpler
than related models from the literature [14]—we have limited ourselves to a single recurrent layer
(which is the hardest to parallelize) and we do not use Long-Short-Term-Memory (LSTM) circuits.
One disadvantage of LSTM cells is that they require computing and storing multiple gating neu-
ron responses at each step. Since the forward and backward recurrences are sequential, this small
additional cost can become a computational bottleneck. By using a homogeneous model we have
made the computation of the recurrent activations as efficient as possible: computing the ReLu out-
puts involves only a few highly optimized BLAS operations on the GPU and a single point-wise
nonlinearity.

3We use momentum of 0.99 and anneal the learning rate by a constant factor, chosen to yield the fastest
convergence, after each epoch through the data.

3

Input:  Filter bank features (spectrogram)

Output:  character probabilities (a-z, <apostrophe>, <space>, <blank>)
Trained using CTC

Softmax output layer

Bidirectional recurrent
hidden layer

3 feed-forward
hidden layers

Hannun et al (2014), “Deep Speech: Scaling up end-to-end speech

recognition”,
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Deep Speech: Results

Model SWB CH Full

Vesely et al. (GMM-HMM BMMI) [44] 18.6 33.0 25.8
Vesely et al. (DNN-HMM sMBR) [44] 12.6 24.1 18.4
Maas et al. (DNN-HMM SWB) [28] 14.6 26.3 20.5
Maas et al. (DNN-HMM FSH) [28] 16.0 23.7 19.9
Seide et al. (CD-DNN) [39] 16.1 n/a n/a
Kingsbury et al. (DNN-HMM sMBR HF) [22] 13.3 n/a n/a
Sainath et al. (CNN-HMM) [36] 11.5 n/a n/a
Soltau et al. (MLP/CNN+I-Vector) [40] 10.4 n/a n/a
Deep Speech SWB 20.0 31.8 25.9
Deep Speech SWB + FSH 12.6 19.3 16.0

Table 3: Published error rates (%WER) on Switchboard dataset splits. The columns labeled “SWB”
and “CH” are respectively the easy and hard subsets of Hub5’00.

5.2 Noisy speech

Few standards exist for testing noisy speech performance, so we constructed our own evaluation set
of 100 noisy and 100 noise-free utterances from 10 speakers. The noise environments included a
background radio or TV; washing dishes in a sink; a crowded cafeteria; a restaurant; and inside a car
driving in the rain. The utterance text came primarily from web search queries and text messages, as
well as news clippings, phone conversations, Internet comments, public speeches, and movie scripts.
We did not have precise control over the signal-to-noise ratio (SNR) of the noisy samples, but we
aimed for an SNR between 2 and 6 dB.

For the following experiments, we train our RNNs on all the datasets (more than 7000 hours) listed
in Table 2. Since we train for 15 to 20 epochs with newly synthesized noise in each pass, our model
learns from over 100,000 hours of novel data. We use an ensemble of 6 networks each with 5 hidden
layers of 2560 neurons. No form of speaker adaptation is applied to the training or evaluation sets.
We normalize training examples on a per utterance basis in order to make the total power of each
example consistent. The features are 160 linearly spaced log filter banks computed over windows
of 20ms strided by 10ms and an energy term. Audio files are resampled to 16kHz prior to the
featurization. Finally, from each frequency bin we remove the global mean over the training set
and divide by the global standard deviation, primarily so the inputs are well scaled during the early
stages of training.

As described in Section 2.2, we use a 5-gram language model for the decoding. We train the lan-
guage model on 220 million phrases of the Common Crawl6, selected such that at least 95% of the
characters of each phrase are in the alphabet. Only the most common 495,000 words are kept, the
rest remapped to an UNKNOWN token.

We compared the Deep Speech system to several commercial speech systems: (1) wit.ai, (2) Google
Speech API, (3) Bing Speech and (4) Apple Dictation.7

Our test is designed to benchmark performance in noisy environments. This situation creates chal-
lenges for evaluating the web speech APIs: these systems will give no result at all when the SNR is
too low or in some cases when the utterance is too long. Therefore we restrict our comparison to the
subset of utterances for which all systems returned a non-empty result.8 The results of evaluating
each system on our test files appear in Table 4.

To evaluate the efficacy of the noise synthesis techniques described in Section 4.1, we trained two
RNNs, one on 5000 hours of raw data and the other trained on the same 5000 hours plus noise. On
the 100 clean utterances both models perform about the same, 9.2% WER and 9.0% WER for the

6commoncrawl.org
7wit.ai and Google Speech each have HTTP-based APIs. To test Apple Dictation and Bing Speech, we used

a kernel extension to loop audio output back to audio input in conjunction with the OS X Dictation service and
the Windows 8 Bing speech recognition API.

8This leads to much higher accuracies than would be reported if we attributed 100% error in cases where an
API failed to respond.

8
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Deep Speech Training

Maps from acoustic frames X to subword sequences S , where
S is a sequence of characters (in some other CTC approaches,
S can be a sequence of phones)

CTC loss function

Makes good use of large training data

Synthetic additional training data by jittering the signal and
adding noise

Many computational optimisations

n-gram language model to impose word-level constraints

Competitive results on standard tasks
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Connectionist Temporal Classification (CTC)

Train a recurrent network to map from input sequence X to
output sequence S

sequences can be different lengths – for speech, input sequence
X (acoustic frames) is much longer than output sequence S
(characters or phonemes)
CTC does not require frame-level alignment (matching each
input frame to an output token)

CTC sums over all possible alignments (similar to
forward-backward algorithm) – “alignment free”

Possible to back-propagate gradients through CTC loss
function

Gopod overview of CTC: Awni Hannun, “Sequence Modeling with
CTC”, Distill. https://distill.pub/2017/ctc
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CTC: Alignment

Imagine mapping (x1, x2, x3, x4, x5, x6) to [a, b, c]
Possible alignments: aaabbc, aabbcc, abbbbc, . . .

However
Don’t always want to map every input frame to an output
symbol (e.g. if there is “inter-symbol silence”)
Want to be able to have two identical symbols adjacent to
each other – keep the difference between

Solve this using an additional blank symbol (ε)
CTC output compression

1 Merge repeating characters
2 Remove blanks

Thus to model the same character successively, separate with
a blank
Some possible alignments for [h, e, l , l , o] and [h, e, l , o] given
a 10-element input sequence

[h, e, l , l , o]: hεεeεllεlo; heεllεlεoo
[h, e, l , o]: hεεeεllllo; hhεeεlεεoε
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CTC: Alignment example

First, merge repeat 
characters.

Then, remove any ϵ 
tokens.

The remaining characters 
are the output.

h e l l o

h e l l o

h e ϵ l ϵ l o

h h e ϵ ϵ l l l ϵ l l o
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CTC: Valid and invalid alignments

Consider an output [c, a, t] with an input of length six

c a ϵ ϵ tϵ

c c a tta

c c ϵ tϵ a

c tϵϵ tϵ

c c a a t

c c ϵ taϵ

Valid Alignments Invalid Alignments

corresponds to
Y = [c, c, a, t]

has length 5

missing the 'a'
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CTC: Alignment properties

Monotonic – Alignments are monotonic (left-to-right model);
no re-ordering (unlike neural machine translation)

Many-to-one – Alignments are many-to-one; many inputs can
map to the same output

But a single input cannot map to many outputs – could be a
problem for sounds like “th”

CTC doesn’t find a single alignment: it sums over all possible
alignments
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CTC: Loss function (1)

Let C be an output label sequence, including blanks and
repetitions – same length as input sequence X
Posterior probability of output labels C = (c1, . . . ct , . . . cT )
given the input sequence X = (x1, . . . xt , . . . xT ):

P(C |X ) =
T∏

t=1

Pt(ct |X )

where y(ct , t) is the output for label ct at time t

This is the probability of a single alignment – we need to sum
over all alignments consistent with S

ASR Lecture 15 End-to-end systems 1: CTC 12



CTC: Loss function (2)

Let S be the compressed target output sequence

Compute the posterior probability of the target sequence
S = (s1, . . . sm, . . . sM) (M ≤ T ) given X by summing over
the possible CTC alignments:

P(S |X ) =
∑

c∈A(S)

P(C |X )

where A is the set of possible output label sequences c that
can be mapped to S using the CTC compression rules (merge
repeated labels, then remove blanks)

The CTC loss function LCTC is given by the negative log
likelihood of the sum of CTC alignments:

LCTC = − logP(S |X )

Various NN architectures can be used for CTC – usually use a
deep bidirectional LSTM RNN
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CTC: Distribution over alignments

We start with an input sequence, 
like a spectrogram of audio.

The input is fed into an RNN, 
for example.

The network gives pt (a | X ), 
a distribution over the outputs 
{h, e, l, o, ϵ} for each input step.

With the per time-step output 
distribution, we compute the 
probability of different sequences

By marginalizing over alignments, 
we get a distribution over outputs.
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CTC: Dynamic programming

Perform the sum over alignments, A(S), using dynamic
programming – very similar to the forward algorithm for classic
HMMs.

We first define the expanded symbol sequence,
Z = (z1, . . . , zi , . . . , zJ) = (ε, s1, ε, s2, ε, . . . , ε, sM , ε)
(where J = 2M + 1)

The forward probability is:

αj(t) = P(z1, . . . zj |X )

=
∑

(c1,...,ct)∈A(z1,...,zj )

P(c1, . . . , ct |X )

This computes the probability over all label sequences up to time t
that are consistent with (z1, . . . zj).
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CTC: HMM topology

We can encode the valid transitions of Z over time using an HMM.

This is a standard left-to-right HMM topogy, with the addition of
a skip zi−2 → zi if zi 6= ε and zi 6= zi−2

Example for original sequence S = [a, b, b]:

r1 r2 r3 b ε bε a ε ε0 E

z1 z2 z3 z4 z5 z6 z7
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CTC: Forward recursion

Initialisation:

αi (0) = 1 i = 1

= 0 otherwise

Recursion:
If zi = ε or zi = zi−2:

αi (t) =
[
αi−1(t − 1) + αi (t − 1)

]
pt(zi |X )

Otherwise:

αi (t) =
[
αi−2(t − 1) + αi−1(t − 1) + αi (t − 1)

]
pt(zi |X )

Termination:

P(Z |X ) = αJ−1(t) + αJ(t)

ASR Lecture 15 End-to-end systems 1: CTC 17



Example

Example alignments for [a, b, b] to an utterance of six frames:

a ε b

a

a

aa

a a ε

ε

ε

ε b

b
b

bb
b

b
b b

ε

ε

ε

ε

ε

ε

b b

… … …
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Forward recursion

x1 x2

state

time

x3 x4 x5 x6

ε
a

ε
ε

b
b

ε
E

0

z1

z2

z3

z4

z5

z6

z7
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Forward recursion

x1 x2

state

time

x3 x4 x5 x6

∑
αj (t )   j = 4, t = 3 
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One alignment...

ε
a

ε

x1 x2

state

time

x3 x4 x5 x6

ε
b

b
ε

E
0

z1

z2

z3

z4

z5

z6

z7

[ ε, a, b, ε, b, b ]
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CTC: Decoding

Need to solve
S∗ = arg max

S
P(S |X )

Find best alignment:

C ∗ = arg max
C

T∏

t

P(ct |X )

Solve using beam search
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CTC: Decoding with beam search
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Merge hypotheses
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Understanding CTC: Conditional independence assumption

Each output is dependent on the entire input sequence (in
Deep Speech this is achieved using a bidirectional recurrent
layer)

Given the inputs, each output is independent of the other
outputs (conditional independence)

CTC does not learn a language model over the outputs,
although a language model can be applied later

Graphical model showing dependences in CTC:

a1 a2 aT

X
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Applying language models to CTC

Direct interpolation of a language model with the CTC
acoustic model:

Ŵ = arg max
W

(logP(S |X ) + λ logP(W )) + ηβL(W ))

Only consider word sequences W which correspond to the
subword sequence S (using a lexicon)

λ,η are empirically determined scaling factor/insertion bonus

Lexicon-free CTC: use a “subword language model” P(S)
(Maas et al, 2015)

WFST implementation: create an FST T which transforms a
framewise label sequence c into the subword sequence S , then
compose with L and G : T ◦min(det(L ◦ G )) (Miao et al,
2015)
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Mozilla Deep Speech

Mozilla have released an Open Source TensorFlow
implementation of the Deep Speech architecture:

https://hacks.mozilla.org/2017/11/

a-journey-to-10-word-error-rate/

https://github.com/mozilla/DeepSpeech

Close to state-of-the-art results on librispeech

Mozilla Common Voice project: https://voice.mozilla.org/en
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Summary and reading

CTC is an alternative approach to sequence discriminative
training, typically applied to RNN systems
Used in “Deep Speech” architecture for end-to-end speech
recognition
Reading

A Hannun et al (2014), “Deep Speech: Scaling up end-to-end
speech recognition”, ArXiV:1412.5567.
https://arxiv.org/abs/1412.5567

A Hannun (2017), “Sequence Modeling with CTC”, Distill.
https://distill.pub/2017/ctc

Background reading
Y Miao et al (2015), “EESEN: End-to-end speech recognition
using deep RNN models and WFST-based decoding”,
ASRU-2105. https:

//ieeexplore.ieee.org/abstract/document/7404790

A Maas et al (2015). “Lexicon-free conversational speech
recognition with neural networks”, NAACL HLT 2015,
http://www.aclweb.org/anthology/N15-1038
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