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Recall: Maximum likelihood estimation of HMMs

Maximum likelihood estimation (MLE) sets the parameters so
as to maximize an objective function FMLE:

FMLE =
U∑

u=1

logPλ(Xu | M(Wu))

for training utterances X1 . . .XU where Wu is the word
sequence given by the transcription of the uth utterance,
M(Wu) is the corresponding HMM, and λ is the set of HMM
parameters
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MLE – Updating the mean

Update equation for the mean vector µjm for Gaussian
component m of GMM associated with state j is:

µ̂jm =

∑U
u=1

∑T
t=1 γ

u
jm(t)xu

t∑U
u=1

∑T
t=1 γ

u
jm(t)

where γujm(t) is the probability of the model occupying mixture
component m of state j at time t given training sentence Xu.

Some extra notation:

Θu
jm(M) =

T∑
t=1

γujm(t)xu
t Γu

jm(M) =
T∑
t=1

γujm(t)

µ̂jm =

∑U
u=1 Θu

jm(M(Wu))∑U
u=1 Γu

jm(M(Wu))
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Problems with MLE

Maximum likelihood is only optimal under model correctness
assumptions, BUT:

Observations are absolutely not conditionally independent,
given the hidden state

When states are phone-based, observations are not
independent of past/future phone states, given the current
state

... even when we incorporate phonetic context in the state
space, or augment the feature vector
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A quote

“[O]ur knowledge about speech is at such a
primitive stage that if we are not to be completely
devastated by the problem of having too many free
parameters then any model of an informative
observation sequence will have to be based on some
invalid assumptions. This led us to an investigation
of an alternative to MLE, MMIE, which does not
derive its raison d’etre from an implicit assumption
of model correctness.”

Peter Brown, 1987
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Maximum mutual information estimation

Maximum mutual information estimation (MMIE) aims to
directly maximise the posterior probability (sometimes called
conditional maximum likelihood). Using the same notation as
before, with P(W ) representing the language model
probability of word sequence W :

FMMIE =
U∑

u=1

logPλ(M(Wu) | Xu)

=
U∑

u=1

log
Pλ(Xu | M(Wu))P(Wu)∑
w ′ Pλ(Xu | M(W ′))P(W ′)
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Full covariance Gaussian with MLE
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Diagonal covariance Gaussian with MLE
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Diagonal covariance Gaussian with MMIE
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Maximum mutual information estimation

FMMIE =
U∑

u=1

log
Pλ(Xu | M(Wu))P(Wu)∑
W ′ Pλ(Xu | M(W ′))P(W ′)

Numerator: likelihood of data given correct word sequence
(“clamped” to reference alignment)

Denominator: total likelihood of the data given all possible
word sequences – equivalent to summing over all possible
word sequences estimated by the full acoustic and language
models in recognition. (“free”)

The objective function FMMIE is optimised by making the
correct word sequence likely (maximise the numerator), and
all other word sequences unlikely (minimise the denominator)
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Extended Baum-Welch (EBW)

No EM-based optimization approach for FMMIE

Gradient-based approaches are straightforward but slow

Approximation: Extended Baum-Welch (EBW) algorithm
provides update formulae similar to forward-backward
recursions used in MLE.

Extended Baum-Welch – Updating the mean:

µ̂jm =

∑U
u=1

[
Θu

jm(Mnum)−Θu
jm(Mden)

]
+ Dµjm∑U

u=1

[
Γu
jm(Mnum)− Γu

jm(Mden)
]

+ D

Can interpret D as a weight between old and new estimates;
in practice D estimated for each Gaussian to ensure variance
updates are positive
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Lattice-based sequence training

Computing the denominator involves summing over all
possible word sequences – this is hard!

Estimate by generating word lattices, and summing over all
words in the lattice

Generate numerator and denominator lattices for every
training utterance

Denominator lattice uses recognition setup (with a weaker
language model)

Each word in the lattice is decoded to give a phone
segmentation, and forward-backward is then used to compute
the state occupation probabilities

Lattices not usually re-computed during training
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Forward-backward over lattices

After decoding, states in the lattice have known start and end
times
Compute a log likelihood over each arc
Use the forward-backward algorithm over the arcs in the
lattice
Within each arc, compute the state occupancy probabilities
using forward-backward with a linear HMM

Lattice from www.cs.nyu.edu/~mohri/asr12/lecture_12.pdf

Define forward and backward probabilities over phone arcs r with known start
and end times

αr =
∑
r′→r

αr′ar′rp(r)

βr =
∑
r→r′

arr′p(r ′)β(r ′)

γr = αrβr

Where p(r) denotes the log likelihood over the arc
Use standard FB algorithm within arcs to compute state occupancies for time t
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MMIE is sequence discriminative training

Sequence: like forward-backward (MLE) training, the overall
objective function is at the sequence level – maximise the
posterior probability of the word sequence given the acoustics
Pλ(M(Wu) | Xu)

Discriminative: unlike forward-backward (MLE) training the
overall objective function for MMIE is discriminative – to
maximise MMI:

Maximise the numerator by increasing the likelihood of data
given the correct word sequence
Minimise the denominator by decreasing the total likelihood of
the data given all possible word sequences

This results in “pushing up” the correct word sequence, while
“pulling down” the rest
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MPE: Minimum phone error

Basic idea adjust the optimization criterion so it is directly
related to word error rate

Minimum phone error (MPE) criterion

A(W ,Wu) is the phone transcription accuracy of the sentence
W given the reference Wu

FMPE is a weighted average over all possible sentences w of
the raw phone accuracy

Although MPE optimizes a phone accuracy level, it does so in
the context of a word-level system: it is optimized by finding
probable sentences with low phone error rates
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HMM/DNN systems

DNN-based systems are discriminative – the cross-entropy
(CE) training criterion with softmax output layer “pushes up”
the correct label, and “pulls down” competing labels

CE is a frame-based criterion – we would like a sequence level
training criterion for DNNs, operating at the word sequence
level

Can we train DNN systems with an MMI-type objective
function?

ASR Lecture 13 Sequence training 17



HMM/DNN systems

DNN-based systems are discriminative – the cross-entropy
(CE) training criterion with softmax output layer “pushes up”
the correct label, and “pulls down” competing labels

CE is a frame-based criterion – we would like a sequence level
training criterion for DNNs, operating at the word sequence
level

Can we train DNN systems with an MMI-type objective
function? – Yes

ASR Lecture 13 Sequence training 17



Sequence training of hybrid HMM/DNN systems

Forward- and back-propagation equations are structurally
similar to forward and backward recursions in HMM training

Initially train DNN framewise using cross-entropy (CE) error
function

Use CE-trained model to generate alignments and lattices for
sequence training
Use CE-trained weights to initialise weights for sequence
training

Train using back-propagation with sequence training objective
function (e.g. MMI)
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Sequence training of hybrid HMM/DNN systems

∂FMMIE

∂ log p(xt |qt = j)
= γnumj (t)− γdenj (t)

∂FMMIE

∂ logwik
=

∑
j

∂FMMIE

∂ log p(xt |qt = j)

∂ log p(xt |qt = j)

∂wik

=
∑
j

(γnumj (t)− γdenj (t))
∂ log p(xt |qt = j)

∂wik

ASR Lecture 13 Sequence training 19



Sequence training results on Switchboard (Kaldi)

Results on Switchboard “Hub 5 ’00” test set, trained on 300h training
set, comparing maximum likelihood (ML) and discriminative (BMMI)
trained GMMs with framewise cross-entropy (CE) and sequence trained
(MMI) DNNs. GMM systems use speaker adaptive training (SAT).
All systems had 8859 tied triphone states.
GMMs – 200k Gaussians
DNNs – 6 hidden layers each with 2048 hidden units

SWB CHE Total

GMM ML (+SAT) 21.2 36.4 28.8
GMM BMMI (+SAT) 18.6 33.0 25.8

DNN CE 14.2 25.7 20.0
DNN MMI 12.9 24.6 18.8

Veseley et al, 2013.
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Lattice-Free MMI (LF-MMI

Lattice-based sequence training of requires initially training an
initial model to give a (very good) weight initialisation and to
generate lattices for the denominator computation

Lattice-free MMI (Povey et al, 2016) (sometimes called the
’Chain’ model)

Avoids the need to pre-compute lattices for the denominator
Avoids the requirement to train using frame-based CE loss
function, before sequence training
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The core method

Both numerator and denominator state sequences are
represented as HCLG FSTs

Parallelise denominator forward-backward computation on a
GPU

Replace word-level LM with a 4-gram phone LM for efficiency

Reduce the frame rate to 30ms

Use a simpler HMM topology motivated by CTC (see Lecture
15)
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Extra tricks

Train on small fixed-size chunks (1.5s)

enough to overcome the incorrectness of the conditional
independence assumption

Careful optimisation of denominator FST to minimise the size

Various types of regularisation
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HMM topologies

Replace standard 3-state HMM with topology that can be
traversed in a single frame

Standard topology

1 2 3

x1 x4x2 x3 x5 x6

E0

LF-MMI topology

x4

0 1 E

x1 x2 x3

0
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Denominator FST

LM is essentially a 3-gram phone LM

No pruning and no backoff to minimise the size

Use of unpruned 3-grams means that there is always a 2-word
history.
Minimises the size of the recognition graph when phonetic
context is incorporated

Addition of a fixed number of the most common 4-grams

Conversion to HCLG FST in the normal way

HCLG size reduced by a series of FST reversal, weight pushing
and minimisation operations, followed by epsilon removal
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Specialised forward-backward algorithm

Work with probabilities rather than log-probabilities to avoid
expensive log/exp operations

Numeric overflow and underflow is a big problem

Two specialisations:

re-normalise probabilities at every time step
the “leaky HMM” - gradual forgetting of context by assigning
a small probability to transitions between any pair of states
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Regularisation

Use standard Cross-Entropy objective as a secondary task
all but the final hidden layer shared between tasks
use numerator posteriors for convenience

3-8 hidden layers

~2000 hidden units

LF-MMI objective

~2000 hidden units

9x39 MFCC inputs

CE objective

L2 regularisation on the main output to prevent
over-confident likelihood estimations

Leaky HMM (mentioned earlier)
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Benefits of LF-MMI

Models are typically faster during training and decoding than
standard models

Word error rates are generally lower

Ability to properly compute state posterior probabilities over
arbitrary state sequences also opens possibilities for

Semi-supervised training
Cross-model student-teacher training

where sequence information is critical

But – difficulties when training transcripts are unreliable
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LF-MMI results on Switchboard

Results on SWB portion of the Hub 5 2000 test set, trained on
300h training set. Results use speed perturbation and i-vector
based speaker adaptation.

Objective Model (size) WER (%)

CE TDNN-A (16.6M) 12.5
CE → sMBR TDNN-A (16.6M) 11.4

TDNN-A (9.8M) 10.7
LF-MMI TDNN-B (9.9M) 10.4

TDNN-C (11.2M) 10.2

LF-MMI → sMBR TDNN-C (11.2M) 10.0

See Povey et al (2016) for more results
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Summary

Sequence training: discriminatively optimise GMM or DNN to
a sentence (sequence) level criterion rather than a frame level
criterion

ML training of HMM/GMM – sequence-level, not
discriminative
CE training of HMM/NN – discriminative at the frame level
MMI training of HMM/GMM or HMM/NN – discriminative at
the sequence level

Usually initialise sequence discriminative training

HMM/GMM – first train using ML, followed by MMI
HMM/NN – first train at frame level (CE), followed by MMI

Sequence discriminative training is computationally costly –
need to compute the “denominator lattices”

Lattice-free MMI for HMM/DNN systems:

avoids the need to compute denominator lattices
avoids the need to first apply CE training
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Reading

HMM discriminative training: Sec 27.3.1 of: S Young (2008), “HMMs
and Related Speech Recognition Technologies”, in Springer Handbook of
Speech Processing, Benesty, Sondhi and Huang (eds), chapter 27,
539–557. http://www.inf.ed.ac.uk/teaching/courses/asr/

2010-11/restrict/Young.pdf

NN sequence training: K Vesely et al (2013), “Sequence-discriminative
training of deep neural networks”, Interspeech-2013,
http://www.fit.vutbr.cz/research/groups/speech/publi/2013/

vesely_interspeech2013_IS131333.pdf

Lattice-free MMI: D Povey et al (2016), “Purely sequence-trained neural
networks for ASR based on lattice-free MMI”, Interspeech-2016.
http://www.danielpovey.com/files/2016_interspeech_mmi.pdf;
slides – http://www.danielpovey.com/files/2016_interspeech_

mmi_presentation.pptx (covered in lecture 12)
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