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The Search Problem in ASR

@ Find the most probable word sequence W = wy, ws, ..., wy
given the acoustic observations X = x3,Xp,...,X7:

~

W = arg max P(WI|X)
=argmaxp(X | W) P(W)
W e — N~

acoustic model language model

@ Use pronuniciation knowledge to construct HMMs for all
possible words

@ Finding the most probable state sequence allows us to recover
the most probable word sequence

e Viterbi decoding is an efficient way of finding the most
probable state sequence, but even this is infeasible as the
vocabulary gets very large or when a stronger language model
is used
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Recap: the word HMM
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HMM naturally generates an alignment between hidden states and
observation sequence
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Viterbi algorithm for state alignment
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Viterbi algorithm finds the best path through the trellis — giving
the highest p(X, Q).
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Simplified version with one state per phone
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Isolated word recognition
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Viterbi algorithm: isolated word recognition
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Connected word recognition

@ Even worse when recognising connected words...
@ The number of words in the utterance is not known

@ Word boundaries are not known: any of the V words may
potentially start at each frame.
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Connected word recognition
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Viterbi algorithm: connected word recognition
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Connected word recognition
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Viterbi decoding finds the
best word sequence

BUT: have to consider
|V|? inter-word transitions
at every time step



Connected word recognition
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Integrating the language model

@ So far we've estimated HMM transition probabilities from
audio data, as part of the acoustic model

Transitions between words rightarrow use a language model

n-gram language model:

p(wilhi) = p(wi|Wi_p, ... wj_1)

Integrate the language model directly in the Viterbi search
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Incorporating a bigram language model

in)

ASR Lecture 9 15

P(pin | right)



Incorporating a bigram language model
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Incorporating a trigram language model
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Computational Issues

o Viterbi decoding performs an exact search in an efficient
manner

@ But exact search is not possible for large vocabulary tasks

e Long-span language models and the use of cross-word
triphones greatly increase the size of the search space

@ Solutions:

o Beam search (prune low probability hypotheses)
o Tree structured lexicons

o Language model look-ahead

e Dynamic search structures

o Multipass search (— two-stage decoding)

o Best-first search (— stack decoding / A* search)
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Computational Issues

o Viterbi decoding performs an exact search in an efficient
manner
@ But exact search is not possible for large vocabulary tasks
e Long-span language models and the use of cross-word
triphones greatly increase the size of the search space
@ Solutions:

o Beam search (prune low probability hypotheses)
o Tree structured lexicons

o Language model look-ahead

e Dynamic search structures

o Multipass search (— two-stage decoding)

o Best-first search (— stack decoding / A* search)

@ An alternative approach: Weighted Finite State Transducers
(WFST)
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During Viterbi decoding,
don’t propagate tokens
whose probability falls a
certain amount below the
current best path

Result is only an
approximation to the best
path
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Figure adapted from Ortmans & Ney, “The time-conditioned approach in dynamic programming search for LVCSR”
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Tree-structured lexicon
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For clarity, not all the connections are shown
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Language model look-ahead

@ Aim to make pruning more efficient

@ In tree-structured decoding, look ahead to find out the best
LM score for any words further down the tree

@ This information can be pre-computed and stored at each
node in the tree

@ States in the tree are pruned early if we know that none of the
possibilities will receive good enough probabilities from the
LM.
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Weighted Finite State Transducers

Weighted finite state automaton that transduces an input
sequence to an output sequence (Mohri et al 2008)
States connected by transitions. Each transition has

e input label
e output label
e weight

@ Weights use the log semi-ring or tropical semi-ring — with
operations that correspond to multiplication and addition of
probabilities

There is a single start state. Any state can optionally be a
final state (with a weight)

Used by Kaldi
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Weighted Finite State Acceptors
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Weighted Finite State Transducers
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Weighted Finite State Transducers
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The HMM as a WFST
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WEST Algorithms

Composition Combine transducers T; and T, into a single
transducer acting as if the output of T; was passed
into T».

Determinisation Ensure that each state has no more than a single
output transition for a given input label

Minimisation transforms a transducer to an equivalent transducer
with the fewest possible states and transitions
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Applying WFSTs to speech recognition

@ Represent the following components as WFSTs

‘ transducer ‘ input sequence ‘ output sequence
G | word-level grammar | words words
L | pronunciation lexicon | phones words
C | context-dependency | CD phones phones
H | HMM HMM states CD phones

@ Composing L and G results in a transducer L o G that maps a
phone sequence to a word sequence

@ Ho Co Lo G results in a transducer that maps from HMM
states to a word sequence
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@ Ortmanns and Ney (2000). “The time-conditioned approach in
dynamic programming search for LVCSR". In IEEE Transactions on
Speech and Audio Processing, Vol. 8, No. 6.

@ Mohri et al (2008). “Speech recognition with weighted finite-state
transducers.” In Springer Handbook of Speech Processing, pp.
559-584. Springer.
http://www.cs.nyu.edu/~mohri/pub/hbka.pdf

@ WFSTs in Kaldi. http://danielpovey.com/files/Lecture4.pdf
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