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Recap: Hidden units extracting features
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Recap: Hidden Units
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Training deep networks: Backprop and gradient descent

@ Hidden units make training the weights more complicated,
since each hidden units affects the error function indirectly via
all the output units

@ The credit assignment problem: what is the “error” of a
hidden unit? how important is input-hidden weight vi4 to
output unit j7

@ Solution: back-propagate the gradients through the network —
the gradient for a hidden unit output with respect to the error
can be computed as the weighted sum of the deltas of the
connected output units. (Propagate the g values backwards
through the network)

e The back-propagation of error (backprop) algorithm thus
provides way to propagate the error graidents through a deep
network to allow gradient descent training to be performed
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Training DNNs using backprop
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Simple neural network for phone classification
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Neural networks for phone classification

@ Phone recognition task — e.g. TIMIT corpus

o 630 speakers (462 train, 168 test) each reading 10 sentences
(usually use 8 sentences per speaker, since 2 sentences are the
same for all speakers)

e Speech is labelled by hand at the phone level (time-aligned)

e 61-phone set, often reduced to 48/39 phones

@ Phone recognition tasks

e Frame classification — classify each frame of data

e Phone classification — classify each segment of data
(segmentation into unlabelled phones is given)

e Phone recognition — segment the data and label each segment
(the usual speech recognition task)

@ Frame classification — straightforward with a neural network

e train using labelled frames

e test a frame at a time, assigning the label to the output with
the highest score
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Neural networks for phone recognition

@ Train a neural network to associate a phone-state label with a
frame of acoustic data (4 context)

e Can interpret the output of the network as P(phone-state |
acoustic-frame)

@ Hybrid NN/HMM systems: in an HMM, replace the GMMs
used to estimate output pdfs with the outputs of neural
networks

@ One-state per phone HMM system:

e Train an NN as a phone-state classifier (= phone-state
probability estimator)

e Use NN to obtain output probabilities in Viterbi algorithm to
find most probable sequence of phones (words)
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Neural networks and posterior probabilities

Posterior probability estimation

o Consider a neural network trained as a classifier — each output
corresponds to a class.

@ When applying a trained network to test data, it can be
shown that the value of output corresponding to class j given
an input x;, is an estimate of the posterior probability
P(q: = j|x¢). (This is because we have softmax outputs and
use a cross-entropy loss function)

e Using Bayes Rule we can relate the posterior P(q: = j|x;) to
the likelihood p(x¢|q: = j) used as an output probability in an
HMM:

p(x¢|ge = j)P(qe =)

p(xt)

P(qe[x¢) =
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Scaled likelihoods

o If we would like to use NN outputs as output probabilities in
an HMM, then we would like probabilities (or densities) of the
form p(x|q) — likelihoods.

We can write scaled likelihoods as:
P(q: = j|xt) i p(xt|q: = j)

p(q: = J) p(x¢)

@ Scaled likelihoods can be obtained by “dividing by the priors”
— divide each network output P(q: = j|x¢) by P(q:), the
relative frequency of class j in the training data

e Using p(xt|q: = j)/p(x¢) rather than p(x¢|g: = j) is OK since
p(x:) does not depend on the class j

@ Use the scaled likelihoods obtained from a neural network in
place of the usual likelihoods obtained from a GMM
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Hybrid NN/HMM

o Generally, if we have a J-state HMM system, then we train a
J-output NN to estimate the scaled likelihoods used in a
hybrid system.

@ For continuous speech recognition we can use:

o 1 state per phone (61 NN outputs, if we have 61 phone classes)

o 3 state context-independent (Cl) models (61 x 3 =183 NN
outputs)

o State-clustered context-dependent (CD) models, with one NN
output per tied state (this can lead to networks with many
outputs!)

@ Scaled likelihood and dividing by the priors

e Computing the scaled likelihoods can be interpreted as
factoring out the prior estimates for each phone based on the
acoustic training data. The HMM can then integrate better
prior estimates based on the language model and lexicon.
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Hybrid NN/HMM
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Monophone HMM /NN hybrid system (1993)
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Renals, Morgan, Cohen & Franco, ICASSP 1992
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Monophone HMM /NN hybrid system (1998)
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@ Broadcast news transcription (1998) — 20.8% WER
o (best GMM-based system, 13.5%)
e Cook et al, DARPA, 1999
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HMM /NN vs HMM/GMM

@ Advantages of NN:
o Can easily model correlated features
o Correlated feature vector components (eg spectral features)
o Input context — multiple frames of data at input
o More flexible than GMMs — not made of (nearly) local
components); GMMs inefficient for non-linear class boundaries
e NNs can model multiple events in the input simultaneously —
different sets of hidden units modelling each event; GMMs
assume each frame generated by a single mixture component.
e NNs can learn richer representations and learn ‘higher-level’
features (tandem, posteriorgrams, bottleneck features)
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HMM /NN vs HMM/GMM

@ Advantages of NN:
o Can easily model correlated features
o Correlated feature vector components (eg spectral features)
o Input context — multiple frames of data at input
o More flexible than GMMs — not made of (nearly) local
components); GMMs inefficient for non-linear class boundaries
e NNs can model multiple events in the input simultaneously —
different sets of hidden units modelling each event; GMMs
assume each frame generated by a single mixture component.
e NNs can learn richer representations and learn ‘higher-level’
features (tandem, posteriorgrams, bottleneck features)
@ Disadvantages of NNs in the 1990s:
o Context-independent (monophone) models, weak speaker
adaptation algorithms
o NN systems less complex than GMMs (fewer parameters):
RNN — < 100k parameters, MLP — ~ 1M parameters
e Computationally expensive - more difficult to parallelise
training than GMM systems
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NEW FEATURES IN THE CU-HTK SYS

State of the art in the year 2000
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Features of the Cambridge system

CU-HTK 2000
Base model HMM-GMM
Acoustic context A, AA features, HLDA projection
Phonetic context Tied state triphones & quinphones

Speaker adaptation | Gender-dependent models, VTLN, MLLR
Training criterion ML + MMI sequence training

System architecture | 6-pass system

Other features Multi-system combination

Hub 2000 WER 19.3%
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Features of the Cambridge system

CU-HTK 2000
Base model HMM-GMM
Acoustic context A, AA features, HLDA projection
Phonetic context Tied state triphones & quinphones

Speaker adaptation | Gender-dependent models, VTLN, MLLR
Training criterion ML + MMI sequence training

System architecture | 6-pass system

Other features Multi-system combination

Hub 2000 WER 19.3%

No neural networks!
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Why were neural networks
uncompetitive in 20007
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Ten years later

Conversational Speech Transcription
| Using Context-Dependent Deep Neural Networks

| Frank Seide', Gang Li," and Dong Yu®
| IMicrosoft Research Asia, Beijing, PR.C.
| 2Microsoft Research, Redmond, USA

| {£seide, ganl, dongyu}@microsoft . com
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Features of the Microsoft NN system

Microsoft 2011
Base model HMM-DNN
Acoustic context 11 frames directly modelled
Phonetic context Tied state triphones
Speaker adaptation | None
Training criteria Frame-level cross-entropy
System architecture | Single pass
Other features Deep network architecture
Hub 2000 WER 16.1%
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DNN acoustic Models
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Deep neural networks for TIMIT

3x61 = 183 state outputs
@ Deeper: Deep neural network
>< architecture — multiple hidden

©~2ooo hidden units O layers

@ Wider: Use HMM state
alignment as outputs rather than
hand-labelled phones — 3-state
HMMs, so 3x61 states

2000 hidden units @ Training many hidden layers is
Q - @ computationally expensive — use
= GPUs to provide the
O 9x39 MFCC inputs Q computational power

3-8 hidden layers
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Hybrid HMM /DNN phone recognition (TIMIT)

@ Train a ‘baseline’ three state monophone HMM/GMM system
(61 phones, 3 state HMMs) and Viterbi align to provide DNN
training targets (time state alignment)

@ The HMM/DNN system uses the same set of states as the
HMM/GMM system — DNN has 183 (61*3) outputs

@ Hidden layers — many experiments, exact sizes not highly
critical

e 3-8 hidden layers
e 1024-3072 units per hidden layer
@ Multiple hidden layers always work better than one hidden
layer
@ Best systems have lower phone error rate than best
HMM/GMM systems (using state-of-the-art techniques such
as discriminative training, speaker adaptive training)
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Acoustic features for NN acoustic models

e GMMs: filter bank features (spectral domain) not used as they
are strongly correlated with each other — would either require
o full covariance matrix Gaussians
e many diagonal covariance Gaussians
@ DNNs do not require the components of the feature vector to
be uncorrelated
o Can directly use multiple frames of input context (this has
been done in NN/HMM systems since 1990, and is crucial to
make them work well)
e Can potentially use feature vectors with correlated components
(e.g. filter banks)

@ Experiments indicate that mel-scaled filter bank features
(FBANK) result in greater accuracy than MFCCs
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TIMIT phone error rates: effect of depth and feature type

24

Phone error rate (PER)
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4 5
Number of layers

(Mohamed et al (2012))
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Visualising neural networks

@ Visualise NN hidden layers to better understand the effect of
different speech features (MFCC vs FBANK)

@ How to visualise NN layers? “t-SNE” (stochastic neighbour
embedding using t-distribution) projects high dimension
vectors (e.g. the values of all the units in a layer) into 2
dimensions

@ t-SNE projection aims to keep points that are close in high
dimensions close in 2 dimensions by comparing distributions
over pairwise distances between the high dimensional and 2
dimensional spaces — the optimisation is over the positions of
points in the 2-d space
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SNE visualisation
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(Mohamed et al (2012))
Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)
MFCCs are more scattered than FBANK
FBANK has more local structure than MFCCs
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First hidden layer: t-SNE visualisation

(Mohamed et al (2012))
Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)

Hidden layer vectors start to align more between speakers for
FBANK
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Eighth hidden layer: t-SNE visualisation
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MFCC

(Mohamed et al (2012))

Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)

In the final hidden layer, the hidden layer outputs for the same

phone are well-aligned across speakers for both MFCC and FBANK
— but stronger for FBANK
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Visualising neural networks

@ How to visualise NN layers? “t-SNE" (stochastic neighbour
embedding using t-distribution) projects high dimension
vectors (e.g. the values of all the units in a layer) into 2
dimensions

@ t-SNE projection aims to keep points that are close in high
dimensions close in 2 dimensions by comparing distributions
over pairwise distances between the high dimensional and 2
dimensional spaces — the optimisation is over the positions of
points in the 2-d space

Are the differences due to FBANK being higher dimension
(41 x 3 =123) than MFCC (13 x 3 = 39)?
@ No — Using higher dimension MFCCs, or just adding noisy
dimmensions to MFCCs results in higher error rate

@ Why? — In FBANK the useful information is distributed over
all the features; in MFCC it is concentrated in_the first few.
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e DNN/HMM systems (hybrid systems) give a significant
improvement over GMM/HMM systems

e Compared with 1990s NN/HMM systems, DNN/HMM
systems

e model context-dependent tied states with a much wider output
layer

e are deeper — more hidden layers

e can use correlated features (e.g. FBANK)

@ Background reading:

o N Morgan and H Bourlard (May 1995). “Continuous speech
recognition: Introduction to the hybrid HMM /connectionist
approach”, IEEE Signal Processing Mag., 12(3), 24-42.
http://ieeexplore.ieee.org/document/382443

o A Mohamed et al (2012). “Understanding how deep belief
networks perform acoustic modelling”, Proc ICASSP-2012.
http://www.cs.toronto.edu/~asamir/papers/icasspl2_
dbn.pdf
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