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Recap: Hidden units extracting features
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Training deep networks: Backprop and gradient descent

Hidden units make training the weights more complicated,
since each hidden units affects the error function indirectly via
all the output units

The credit assignment problem: what is the “error” of a
hidden unit? how important is input-hidden weight vkd to
output unit j?

Solution: back-propagate the gradients through the network –
the gradient for a hidden unit output with respect to the error
can be computed as the weighted sum of the deltas of the
connected output units. (Propagate the g values backwards
through the network)

The back-propagation of error (backprop) algorithm thus
provides way to propagate the error graidents through a deep
network to allow gradient descent training to be performed
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Training DNNs using backprop
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Simple neural network for phone classification

1 hidden layer

~1000 hidden units

~61 phone classes

9x39 MFCC inputs

… …

P(phone | x)

xt-4 xt-3 xt xt+4
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Neural networks for phone classification

Phone recognition task – e.g. TIMIT corpus

630 speakers (462 train, 168 test) each reading 10 sentences
(usually use 8 sentences per speaker, since 2 sentences are the
same for all speakers)
Speech is labelled by hand at the phone level (time-aligned)
61-phone set, often reduced to 48/39 phones

Phone recognition tasks

Frame classification – classify each frame of data
Phone classification – classify each segment of data
(segmentation into unlabelled phones is given)
Phone recognition – segment the data and label each segment
(the usual speech recognition task)

Frame classification – straightforward with a neural network

train using labelled frames
test a frame at a time, assigning the label to the output with
the highest score

ASR Lecture 8 Neural Networks for Acoustic Modelling 2: HMM/DNN 7



Neural networks for phone recognition

Train a neural network to associate a phone-state label with a
frame of acoustic data (+ context)

Can interpret the output of the network as P(phone-state |
acoustic-frame)

Hybrid NN/HMM systems: in an HMM, replace the GMMs
used to estimate output pdfs with the outputs of neural
networks

One-state per phone HMM system:

Train an NN as a phone-state classifier (= phone-state
probability estimator)
Use NN to obtain output probabilities in Viterbi algorithm to
find most probable sequence of phones (words)
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Neural networks and posterior probabilities

Posterior probability estimation

Consider a neural network trained as a classifier – each output
corresponds to a class.

When applying a trained network to test data, it can be
shown that the value of output corresponding to class j given
an input xt , is an estimate of the posterior probability
P(qt = j |xt). (This is because we have softmax outputs and
use a cross-entropy loss function)

Using Bayes Rule we can relate the posterior P(qt = j |xt) to
the likelihood p(xt |qt = j) used as an output probability in an
HMM:

P(qt |xt) =
p(xt |qt = j)P(qt = j)

p(xt)
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Scaled likelihoods

If we would like to use NN outputs as output probabilities in
an HMM, then we would like probabilities (or densities) of the
form p(x|q) – likelihoods.
We can write scaled likelihoods as:

P(qt = j |xt)
p(qt = j)

=
p(xt |qt = j)

p(xt)

Scaled likelihoods can be obtained by “dividing by the priors”
– divide each network output P(qt = j |xt) by P(qt), the
relative frequency of class j in the training data

Using p(xt |qt = j)/p(xt) rather than p(xt |qt = j) is OK since
p(xt) does not depend on the class j

Use the scaled likelihoods obtained from a neural network in
place of the usual likelihoods obtained from a GMM
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Hybrid NN/HMM

Generally, if we have a J-state HMM system, then we train a
J-output NN to estimate the scaled likelihoods used in a
hybrid system.

For continuous speech recognition we can use:

1 state per phone (61 NN outputs, if we have 61 phone classes)
3 state context-independent (CI) models (61× 3 = 183 NN
outputs)
State-clustered context-dependent (CD) models, with one NN
output per tied state (this can lead to networks with many
outputs!)

Scaled likelihood and dividing by the priors

Computing the scaled likelihoods can be interpreted as
factoring out the prior estimates for each phone based on the
acoustic training data. The HMM can then integrate better
prior estimates based on the language model and lexicon.

ASR Lecture 8 Neural Networks for Acoustic Modelling 2: HMM/DNN 11



Hybrid NN/HMM

"No right"

NO RIGHT

ohn r ai t

… …

183 outputs
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Monophone HMM/NN hybrid system (1993)
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Monophone HMM/NN hybrid system (1998)

Utterance
Hypothesis

Speech

CI RNN

CI MLP

CD RNN

Decoder
Chronos

Chronos
Decoder

Chronos
Decoder

ROVER
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Perceptual
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Spectrogram
Modulation

Broadcast news transcription (1998) – 20.8% WER

(best GMM-based system, 13.5%)

Cook et al, DARPA, 1999
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HMM/NN vs HMM/GMM

Advantages of NN:
Can easily model correlated features

Correlated feature vector components (eg spectral features)
Input context – multiple frames of data at input

More flexible than GMMs – not made of (nearly) local
components); GMMs inefficient for non-linear class boundaries
NNs can model multiple events in the input simultaneously –
different sets of hidden units modelling each event; GMMs
assume each frame generated by a single mixture component.
NNs can learn richer representations and learn ‘higher-level’
features (tandem, posteriorgrams, bottleneck features)

Disadvantages of NNs in the 1990s:
Context-independent (monophone) models, weak speaker
adaptation algorithms
NN systems less complex than GMMs (fewer parameters):
RNN – < 100k parameters, MLP – ∼ 1M parameters
Computationally expensive - more difficult to parallelise
training than GMM systems
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State of the art in the year 2000
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Features of the Cambridge system

CU-HTK 2000

Base model HMM-GMM
Acoustic context ∆, ∆∆ features, HLDA projection
Phonetic context Tied state triphones & quinphones
Speaker adaptation Gender-dependent models, VTLN, MLLR
Training criterion ML + MMI sequence training
System architecture 6-pass system
Other features Multi-system combination

Hub 2000 WER 19.3%

No neural networks!
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Why were neural networks
uncompetitive in 2000?
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Ten years later
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Features of the Microsoft NN system

Microsoft 2011

Base model HMM-DNN
Acoustic context 11 frames directly modelled
Phonetic context Tied state triphones
Speaker adaptation None
Training criteria Frame-level cross-entropy
System architecture Single pass
Other features Deep network architecture

Hub 2000 WER 16.1%
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DNN acoustic Models
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Deep neural networks for TIMIT

3-8 hidden layers

~2000 hidden units

3x61 = 183 state outputs

~2000 hidden units

9x39 MFCC inputs

Deeper: Deep neural network
architecture – multiple hidden
layers

Wider: Use HMM state
alignment as outputs rather than
hand-labelled phones – 3-state
HMMs, so 3×61 states

Training many hidden layers is
computationally expensive – use
GPUs to provide the
computational power
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Hybrid HMM/DNN phone recognition (TIMIT)

Train a ‘baseline’ three state monophone HMM/GMM system
(61 phones, 3 state HMMs) and Viterbi align to provide DNN
training targets (time state alignment)

The HMM/DNN system uses the same set of states as the
HMM/GMM system — DNN has 183 (61*3) outputs

Hidden layers — many experiments, exact sizes not highly
critical

3–8 hidden layers
1024–3072 units per hidden layer

Multiple hidden layers always work better than one hidden
layer

Best systems have lower phone error rate than best
HMM/GMM systems (using state-of-the-art techniques such
as discriminative training, speaker adaptive training)
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Acoustic features for NN acoustic models

GMMs: filter bank features (spectral domain) not used as they
are strongly correlated with each other – would either require

full covariance matrix Gaussians
many diagonal covariance Gaussians

DNNs do not require the components of the feature vector to
be uncorrelated

Can directly use multiple frames of input context (this has
been done in NN/HMM systems since 1990, and is crucial to
make them work well)
Can potentially use feature vectors with correlated components
(e.g. filter banks)

Experiments indicate that mel-scaled filter bank features
(FBANK) result in greater accuracy than MFCCs
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TIMIT phone error rates: effect of depth and feature type

continuous features. A very important feature of neural networks
is their ”distributed representation” of the input, i.e., many neurons
are active simultaneously to represent each input vector. This makes
neural networks exponentially more compact than GMMs. Suppose,
for example, that N significantly different patterns can occur in one
sub-band andM significantly different patterns can occur in another.
Suppose also the patterns occur in each sub-band roughly indepen-
dently. A GMM model requires NM components to model this
structure because each component of the mixture must generate both
sub-bands; each piece of data has only a single latent cause. On the
other hand, a model that explains the data using multiple causes only
requiresN+M components, each of which is specific to a particular
sub-band. This property allows neural networks to model a diversity
of speaking styles and background conditions with much less train-
ing data because each neural network parameter is constrained by a
much larger fraction of the training data than a GMM parameter.

3.2. The advantage of being deep

The second key idea of DBNs is “being deep.” Deep acoustic mod-
els are important because the low level, local, characteristics are
taken care of using the lower layers while higher-order and highly
non-linear statistical structure in the input is modeled by the higher
layers. This fits with human speech recognition which appears to
use many layers of feature extractors and event detectors [7]. The
state-of-the-art ASR systems use a sequence of feature transforma-
tions (e.g., LDA, STC, fMLLR, fBMMI), cross model adaptation,
and lattice-rescoring which could be seen as carefully hand-designed
deep models. Table 1 compares the PERs of a shallow network with
one hidden layer of 2048 units modelling 11 frames of MFCCs to a
deep network with four hidden layers each containing 512 units. The
comparison shows that, for a fixed number of trainable parameters,
a deep model is clearly better than a shallow one.

Table 1. The PER of a shallow and a deep network.

Model 1 layer of 2048 4 layers of 512
dev 23% 21.9%
core 24.5% 23.6%

3.3. The advantage of generative pre-training

One of the major motivations for generative training is the belief
that the discriminations we want to perform are more directly related
to the underlying causes of the acoustic data than to the individual
elements of the data itself. Assuming that representations that are
good for modeling p(data) are likely to use latent variables that are
more closely related to the true underlying causes of the data, these
representations should also be good for modeling p(label|data).
DBNs initialize their weights generatively by layerwise training of
each hidden layer to maximize the likelihood of the input from the
layer below. Exact maximum likelihood learning is infeasible in net-
works with large hidden layers because it is exponentially expen-
sive to compute the derivative of the log probability of the training
data. Nevertheless, each layer can be trained efficiently using an
approximate training procedure called “contrastive divergence” [8].
Training a DBN without the generative pre-training step to model 15
frames of fbank coefficients caused the PER to jump by about 1%
as shown in figure(1). We can think of the generative pre-training
phase as a strong regularizer that keeps the final parameters close to
a good generative model. We can also think of the pre-training as

an optimization trick that initializes the parameters near a good local
maximum of p(label|data).
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Fig. 1. PER as a function of the number of layers.

4. WHICH FEATURES TO USE WITH DBNS

State-of-the-art ASR systems do not use fbank coefficients as the in-
put representation because they are strongly correlated so modeling
themwell requires either full covariance Gaussians or a huge number
of diagonal Gaussians which is computationally expensive at decod-
ing time. MFCCs offer a more suitable alternative as their individual
components tend to be independent so they are much easier to model
using a mixture of diagonal covariance Gaussians. DBNs do not
require uncorrelated data so we compared the PER of the best per-
forming DBNs trained with MFCCs (using 17 frames as input and
3072 hidden units per layer) and the best performing DBNs trained
with fbank features (using 15 frames as input and 2048 hidden units
per layer) as in figure 2. The performance of fbank features is about
1.7% better than MFCCs which might be wrongly attributed to the
fact that fbank features have more dimensions than MFCCs. Dimen-
sionality of the input is not the crucial property (see p. 3).
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Fig. 2. PER as a function of the number of layers.
To understand this result we need to visualize the input vectors

(i.e. a complete window of say 15 frames) as well as the learned hid-
den activity vectors in each layer for the two systems (DBNs with
8 hidden layers plus a softmax output layer were used for both sys-
tems). A recently introduced visualization method called “t-SNE”
[9] was used for producing 2-D embeddings of the input vectors
or the hidden activity vectors. t-SNE produces 2-D embeddings
in which points that are close in the high-dimensional vector space

(Mohamed et al (2012))
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Visualising neural networks

Visualise NN hidden layers to better understand the effect of
different speech features (MFCC vs FBANK)

How to visualise NN layers? “t-SNE” (stochastic neighbour
embedding using t-distribution) projects high dimension
vectors (e.g. the values of all the units in a layer) into 2
dimensions

t-SNE projection aims to keep points that are close in high
dimensions close in 2 dimensions by comparing distributions
over pairwise distances between the high dimensional and 2
dimensional spaces – the optimisation is over the positions of
points in the 2-d space
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Feature vector (input layer): t-SNE visualisation

are also close in the 2-D space. It starts by converting the pairwise
distances, dij in the high-dimensional space to joint probabilities
pij ∝ exp(−d2

ij). It then performs an iterative search for corre-
sponding points in the 2-D space which give rise to a similar set of
joint probabilities. To cope with the fact that there is much more vol-
ume near to a high dimensional point than a low dimensional one,
t-SNE computes the joint probability in the 2-D space by using a
heavy tailed probability distribution qij ∝ (1 + d2

ij)
−1. This leads

to 2-D maps that exhibit structure at many scales [9].
For visualization only (they were not used for training or test-

ing), we used SA utterances from the TIMIT core test set speakers.
These are the two utterances that were spoken by all 24 different
speakers. Figures 3 and 4 show visualizations of fbank and MFCC
features for 6 speakers. Crosses refer to one utterance and circles re-
fer to the other one, while different colours refer to different speak-
ers. We removed the data points of the other 18 speakers to make the
map less cluttered.
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Fig. 3. t-SNE 2-D map of fbank feature vectors
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Fig. 4. t-SNE 2-D map of MFCC feature vectors
MFCC vectors tend to be scattered all over the space as they have

decorrelated elements while fbank feature vectors have stronger sim-
ilarities and are often aligned between different speakers for some

voiceless sounds (e.g. /s/, /sh/). This suggests that the fbank feature
vectors are easier to model generatively as the data have stronger
local structure than MFCC vectors. We can also see that DBNs are
doing some implicit normalization of feature vectors across different
speakers when fbank features are used because they contain both the
spoken content and style of the utterance which allows the DBN (be-
cause of its distributed representations) to partially separate content
and style aspects of the input during the pre-training phase. This
makes it easier for the discriminative fine-tuning phase to enhance
the propagation of content aspects to higher layers. Figures 5, 6, 7
and 8 show the 1st and 8th layer features of fine-tuned DBNs trained
with fbank and MFCC respectively. As we go higher in the network,
hidden activity vectors from different speakers for the same segment
align in both theMFCC and fbank cases but the alignment is stronger
in the fbank case.
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Fig. 5. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using fbank inputs.
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Fig. 6. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using fbank inputs.

To refute the hypothesis that fbank features yield lower PER
because of their higher dimensionality, we consider dct features,
which are the same as fbank features except that they are trans-
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ij). It then performs an iterative search for corre-
sponding points in the 2-D space which give rise to a similar set of
joint probabilities. To cope with the fact that there is much more vol-
ume near to a high dimensional point than a low dimensional one,
t-SNE computes the joint probability in the 2-D space by using a
heavy tailed probability distribution qij ∝ (1 + d2

ij)
−1. This leads

to 2-D maps that exhibit structure at many scales [9].
For visualization only (they were not used for training or test-

ing), we used SA utterances from the TIMIT core test set speakers.
These are the two utterances that were spoken by all 24 different
speakers. Figures 3 and 4 show visualizations of fbank and MFCC
features for 6 speakers. Crosses refer to one utterance and circles re-
fer to the other one, while different colours refer to different speak-
ers. We removed the data points of the other 18 speakers to make the
map less cluttered.
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Fig. 3. t-SNE 2-D map of fbank feature vectors
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Fig. 4. t-SNE 2-D map of MFCC feature vectors
MFCC vectors tend to be scattered all over the space as they have

decorrelated elements while fbank feature vectors have stronger sim-
ilarities and are often aligned between different speakers for some

voiceless sounds (e.g. /s/, /sh/). This suggests that the fbank feature
vectors are easier to model generatively as the data have stronger
local structure than MFCC vectors. We can also see that DBNs are
doing some implicit normalization of feature vectors across different
speakers when fbank features are used because they contain both the
spoken content and style of the utterance which allows the DBN (be-
cause of its distributed representations) to partially separate content
and style aspects of the input during the pre-training phase. This
makes it easier for the discriminative fine-tuning phase to enhance
the propagation of content aspects to higher layers. Figures 5, 6, 7
and 8 show the 1st and 8th layer features of fine-tuned DBNs trained
with fbank and MFCC respectively. As we go higher in the network,
hidden activity vectors from different speakers for the same segment
align in both theMFCC and fbank cases but the alignment is stronger
in the fbank case.
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Fig. 5. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using fbank inputs.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

 

 

Fig. 6. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using fbank inputs.

To refute the hypothesis that fbank features yield lower PER
because of their higher dimensionality, we consider dct features,
which are the same as fbank features except that they are trans-

MFCC FBANK
(Mohamed et al (2012))

Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)
MFCCs are more scattered than FBANK
FBANK has more local structure than MFCCs
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First hidden layer: t-SNE visualisation
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Fig. 7. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using MFCC inputs.
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Fig. 8. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using MFCC inputs.

formed using the discrete cosine transform, which encourages decor-
related elements. We rank-order the dct features from lower-order
(slow-moving) features to higher-order ones. For the generative pre-
training phase, the dct features are disadvantaged because they are
not as strongly structured as the fbank features. To avoid a con-
founding effect, we skipped pre-training and performed the compar-
ison using only the fine-tuning from random initial weights. Table 2
shows PER for fbank, dct, and MFCC inputs (11 input frames and
1024 hidden units per layer) in 1, 2, and 3 hidden-layer neural net-
works. dct features are worse than both fbank features and MFCC
features. This prompts us to ask why a lossless transformation causes
the input representation to perform worse (even when we skip a gen-
erative pre-training step that favours more structured input), and how
dct features can be worse than MFCC features, which are a subset
of them. We believe the answer is that higher-order dct features are
useless and distracting because all the important information is con-
centrated in the first few features. In the fbank case the discriminant
information is distributed across all coefficients. We conclude that
the DBN has difficulty ignoring irrelevant input features. To test

this claim, we padded the MFCC vector with random noise to be of
the same dimensionality as the dct features and then used them for
network training (MFCC+noise row in table 2). The MFCC perfor-
mance was degraded by padding with noise. So it is not the higher
dimensionality that matters but rather how the discriminant informa-
tion is distributed over these dimensions.

Table 2. The PER deep nets using different features

Feature Dim 1lay 2lay 3lay
fbank 123 23.5% 22.6% 22.7%
dct 123 26.0% 23.8% 24.6%

MFCC 39 24.3% 23.7% 23.8%
MFCC+noise 123 26.3% 24.3% 25.1%

5. CONCLUSIONS

A DBN acoustic model has three main properties: It is a neural
network, it has many layers of non-linear features, and it is pre-
trained as a generative model. In this paper we investigated how
each of these three properties contributes to good phone recognition
on TIMIT. Additionally, we examined different types of input rep-
resentation for DBNs by comparing recognition rates and also by
visualising the similarity structure of the input vectors and the hid-
den activity vectors. We concluded that log filter-bank features are
the most suitable for DBNs because they better utilize the ability of
the neural net to discover higher-order structure in the input data.
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are also close in the 2-D space. It starts by converting the pairwise
distances, dij in the high-dimensional space to joint probabilities
pij ∝ exp(−d2

ij). It then performs an iterative search for corre-
sponding points in the 2-D space which give rise to a similar set of
joint probabilities. To cope with the fact that there is much more vol-
ume near to a high dimensional point than a low dimensional one,
t-SNE computes the joint probability in the 2-D space by using a
heavy tailed probability distribution qij ∝ (1 + d2

ij)
−1. This leads

to 2-D maps that exhibit structure at many scales [9].
For visualization only (they were not used for training or test-

ing), we used SA utterances from the TIMIT core test set speakers.
These are the two utterances that were spoken by all 24 different
speakers. Figures 3 and 4 show visualizations of fbank and MFCC
features for 6 speakers. Crosses refer to one utterance and circles re-
fer to the other one, while different colours refer to different speak-
ers. We removed the data points of the other 18 speakers to make the
map less cluttered.
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Fig. 3. t-SNE 2-D map of fbank feature vectors
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Fig. 4. t-SNE 2-D map of MFCC feature vectors
MFCC vectors tend to be scattered all over the space as they have

decorrelated elements while fbank feature vectors have stronger sim-
ilarities and are often aligned between different speakers for some

voiceless sounds (e.g. /s/, /sh/). This suggests that the fbank feature
vectors are easier to model generatively as the data have stronger
local structure than MFCC vectors. We can also see that DBNs are
doing some implicit normalization of feature vectors across different
speakers when fbank features are used because they contain both the
spoken content and style of the utterance which allows the DBN (be-
cause of its distributed representations) to partially separate content
and style aspects of the input during the pre-training phase. This
makes it easier for the discriminative fine-tuning phase to enhance
the propagation of content aspects to higher layers. Figures 5, 6, 7
and 8 show the 1st and 8th layer features of fine-tuned DBNs trained
with fbank and MFCC respectively. As we go higher in the network,
hidden activity vectors from different speakers for the same segment
align in both theMFCC and fbank cases but the alignment is stronger
in the fbank case.
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Fig. 5. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using fbank inputs.
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Fig. 6. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using fbank inputs.

To refute the hypothesis that fbank features yield lower PER
because of their higher dimensionality, we consider dct features,
which are the same as fbank features except that they are trans-

MFCC FBANK
(Mohamed et al (2012))

Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)
Hidden layer vectors start to align more between speakers for
FBANK

ASR Lecture 8 Neural Networks for Acoustic Modelling 2: HMM/DNN 28



Eighth hidden layer: t-SNE visualisation

−150 −100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

 

 

Fig. 7. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using MFCC inputs.
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Fig. 8. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using MFCC inputs.

formed using the discrete cosine transform, which encourages decor-
related elements. We rank-order the dct features from lower-order
(slow-moving) features to higher-order ones. For the generative pre-
training phase, the dct features are disadvantaged because they are
not as strongly structured as the fbank features. To avoid a con-
founding effect, we skipped pre-training and performed the compar-
ison using only the fine-tuning from random initial weights. Table 2
shows PER for fbank, dct, and MFCC inputs (11 input frames and
1024 hidden units per layer) in 1, 2, and 3 hidden-layer neural net-
works. dct features are worse than both fbank features and MFCC
features. This prompts us to ask why a lossless transformation causes
the input representation to perform worse (even when we skip a gen-
erative pre-training step that favours more structured input), and how
dct features can be worse than MFCC features, which are a subset
of them. We believe the answer is that higher-order dct features are
useless and distracting because all the important information is con-
centrated in the first few features. In the fbank case the discriminant
information is distributed across all coefficients. We conclude that
the DBN has difficulty ignoring irrelevant input features. To test

this claim, we padded the MFCC vector with random noise to be of
the same dimensionality as the dct features and then used them for
network training (MFCC+noise row in table 2). The MFCC perfor-
mance was degraded by padding with noise. So it is not the higher
dimensionality that matters but rather how the discriminant informa-
tion is distributed over these dimensions.

Table 2. The PER deep nets using different features

Feature Dim 1lay 2lay 3lay
fbank 123 23.5% 22.6% 22.7%
dct 123 26.0% 23.8% 24.6%

MFCC 39 24.3% 23.7% 23.8%
MFCC+noise 123 26.3% 24.3% 25.1%

5. CONCLUSIONS

A DBN acoustic model has three main properties: It is a neural
network, it has many layers of non-linear features, and it is pre-
trained as a generative model. In this paper we investigated how
each of these three properties contributes to good phone recognition
on TIMIT. Additionally, we examined different types of input rep-
resentation for DBNs by comparing recognition rates and also by
visualising the similarity structure of the input vectors and the hid-
den activity vectors. We concluded that log filter-bank features are
the most suitable for DBNs because they better utilize the ability of
the neural net to discover higher-order structure in the input data.
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are also close in the 2-D space. It starts by converting the pairwise
distances, dij in the high-dimensional space to joint probabilities
pij ∝ exp(−d2

ij). It then performs an iterative search for corre-
sponding points in the 2-D space which give rise to a similar set of
joint probabilities. To cope with the fact that there is much more vol-
ume near to a high dimensional point than a low dimensional one,
t-SNE computes the joint probability in the 2-D space by using a
heavy tailed probability distribution qij ∝ (1 + d2

ij)
−1. This leads

to 2-D maps that exhibit structure at many scales [9].
For visualization only (they were not used for training or test-

ing), we used SA utterances from the TIMIT core test set speakers.
These are the two utterances that were spoken by all 24 different
speakers. Figures 3 and 4 show visualizations of fbank and MFCC
features for 6 speakers. Crosses refer to one utterance and circles re-
fer to the other one, while different colours refer to different speak-
ers. We removed the data points of the other 18 speakers to make the
map less cluttered.
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Fig. 3. t-SNE 2-D map of fbank feature vectors
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Fig. 4. t-SNE 2-D map of MFCC feature vectors
MFCC vectors tend to be scattered all over the space as they have

decorrelated elements while fbank feature vectors have stronger sim-
ilarities and are often aligned between different speakers for some

voiceless sounds (e.g. /s/, /sh/). This suggests that the fbank feature
vectors are easier to model generatively as the data have stronger
local structure than MFCC vectors. We can also see that DBNs are
doing some implicit normalization of feature vectors across different
speakers when fbank features are used because they contain both the
spoken content and style of the utterance which allows the DBN (be-
cause of its distributed representations) to partially separate content
and style aspects of the input during the pre-training phase. This
makes it easier for the discriminative fine-tuning phase to enhance
the propagation of content aspects to higher layers. Figures 5, 6, 7
and 8 show the 1st and 8th layer features of fine-tuned DBNs trained
with fbank and MFCC respectively. As we go higher in the network,
hidden activity vectors from different speakers for the same segment
align in both theMFCC and fbank cases but the alignment is stronger
in the fbank case.
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Fig. 5. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using fbank inputs.
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Fig. 6. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using fbank inputs.

To refute the hypothesis that fbank features yield lower PER
because of their higher dimensionality, we consider dct features,
which are the same as fbank features except that they are trans-

MFCC FBANK
(Mohamed et al (2012))

Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)
In the final hidden layer, the hidden layer outputs for the same
phone are well-aligned across speakers for both MFCC and FBANK
– but stronger for FBANK
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Visualising neural networks

How to visualise NN layers? “t-SNE” (stochastic neighbour
embedding using t-distribution) projects high dimension
vectors (e.g. the values of all the units in a layer) into 2
dimensions

t-SNE projection aims to keep points that are close in high
dimensions close in 2 dimensions by comparing distributions
over pairwise distances between the high dimensional and 2
dimensional spaces – the optimisation is over the positions of
points in the 2-d space

Are the differences due to FBANK being higher dimension
(41× 3 = 123) than MFCC (13× 3 = 39)?

No – Using higher dimension MFCCs, or just adding noisy
dimmensions to MFCCs results in higher error rate

Why? – In FBANK the useful information is distributed over
all the features; in MFCC it is concentrated in the first few.
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Summary

DNN/HMM systems (hybrid systems) give a significant
improvement over GMM/HMM systems

Compared with 1990s NN/HMM systems, DNN/HMM
systems

model context-dependent tied states with a much wider output
layer
are deeper – more hidden layers
can use correlated features (e.g. FBANK)

Background reading:
N Morgan and H Bourlard (May 1995). “Continuous speech
recognition: Introduction to the hybrid HMM/connectionist
approach”, IEEE Signal Processing Mag., 12(3), 24–42.
http://ieeexplore.ieee.org/document/382443

A Mohamed et al (2012). “Understanding how deep belief
networks perform acoustic modelling”, Proc ICASSP-2012.
http://www.cs.toronto.edu/~asamir/papers/icassp12_

dbn.pdf
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