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Recap: the HMM

qt-1 qt qt+1

xt-1 xt xt+1

P(qt|qt-1) P(qt+1|qt)

P(xt-1|qt-1) P(xt|qt) P(xt+1|qt+1)

A generative model for the sequence X = (x1, . . . , xT )

Discrete states qt are unobserved

qt+1 is conditionally independent of q1, . . . , qt−1, given qt

Observations xt are conditionally independent of each other,
given qt .
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HMMs for ASR

The three-state left-to-right topology for phones:

r1 r2 r3 ai1 ai2 ai3r1 r2 r3 t1 t2 t3

x1 x2 x3 x4 ...
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Computing likelihoods with the HMM

Joint likelihood of X and Q = (q1, . . . , qT ):

P(X ,Q|λ) = P(q1)P(x1|q1)P(q2|q1)P(x2|q2) . . . (1)

= P(q1)P(x1|q1)
T∏
t=2

P(qt |qt−1)P(xt |qt) (2)

P(qt) denotes the initial occupancy probability of each state
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HMM parameters

The parameters of the model, λ, are given by:

Transition probabilities akj = P(qt+1 = j |qt = k)

Observation probabilities bj(x) = P(x|q = j)
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The three problems of HMMs

Working with HMMs requires the solution of three problems:

1 Likelihood Determine the overall likelihood of an observation
sequence X = (x1, . . . , xt , . . . , xT ) being generated by a
known HMM topology, M.
→ the forward algorithm

2 Decoding and alignment Given an observation sequence and
an HMM, determine the most probable hidden state sequence
→ the Viterbi algorithm

3 Training Given an observation sequence and an HMM, learn
the state occupation probabilities, in order to find the best
HMM parameters λ = {{ajk}, {bj()}}
→ the forward-backward and EM algorithms
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Notes on the HMM topology

By the HMM topology, M, we can mean:

A restricted left-to-right topology based on a known
word/sentence, leading to a “trellis-like” structure over time

A much less restricted topology based on a grammar or
language model – or something in between

The forward/backward algorithms are not (generally) suitable
for unrestricted topologies
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1. Likelihood

Goal: determine p(X |M)

Sum over all possible state sequences Q = (q1, . . . , qT ) that
could result in the observation sequence X

p(X|M) =
∑
Q∈Q

P(X,Q|M)

= P(q1)P(x1|q1)
T∏
t=2

P(qt |qt−1)P(xt |qt)

How many paths Q do we have to calculate?

∼ N × N × · · ·N︸ ︷︷ ︸
T times

= NT N : number of HMM states
T : length of observation

e.g. NT ≈ 1010 for N=3, T =20

Computation complexity of multiplication: O(2TNT )

ASR Lecture 3 HMM Algorithms 10



1. Likelihood

Goal: determine p(X |M)

Sum over all possible state sequences Q = (q1, . . . , qT ) that
could result in the observation sequence X

p(X|M) =
∑
Q∈Q

P(X,Q|M)

= P(q1)P(x1|q1)
T∏
t=2

P(qt |qt−1)P(xt |qt)

How many paths Q do we have to calculate?

∼ N × N × · · ·N︸ ︷︷ ︸
T times

= NT N : number of HMM states
T : length of observation

e.g. NT ≈ 1010 for N=3, T =20

Computation complexity of multiplication: O(2TNT )

ASR Lecture 3 HMM Algorithms 10



1. Likelihood

Goal: determine p(X |M)

Sum over all possible state sequences Q = (q1, . . . , qT ) that
could result in the observation sequence X

p(X|M) =
∑
Q∈Q

P(X,Q|M)

= P(q1)P(x1|q1)
T∏
t=2

P(qt |qt−1)P(xt |qt)

How many paths Q do we have to calculate?

∼ N × N × · · ·N︸ ︷︷ ︸
T times

= NT N : number of HMM states
T : length of observation

e.g. NT ≈ 1010 for N=3, T =20

Computation complexity of multiplication: O(2TNT )

ASR Lecture 3 HMM Algorithms 10



1. Likelihood

Goal: determine p(X |M)

Sum over all possible state sequences Q = (q1, . . . , qT ) that
could result in the observation sequence X

p(X|M) =
∑
Q∈Q

P(X,Q|M)

= P(q1)P(x1|q1)
T∏
t=2

P(qt |qt−1)P(xt |qt)

How many paths Q do we have to calculate?

∼ N × N × · · ·N︸ ︷︷ ︸
T times

= NT N : number of HMM states
T : length of observation

e.g. NT ≈ 1010 for N=3, T =20

Computation complexity of multiplication: O(2TNT )

ASR Lecture 3 HMM Algorithms 10



Likelihood: The Forward algorithm

The Forward algorithm:

Rather than enumerating each sequence, compute the
probabilities recursively (exploiting the Markov assumption)

Reduces the computational complexity to O(TN2)

Visualise the problem as a state-time trellis

i i i

j j j

k k k

t-1 t t+1
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The forward probability

Define the Forward probability, αt( j ): the probability of observing
the observation sequence x1 . . . xt and being in state j at time t:

αj(t) = p(x1, . . . , xt , qt = j |M)

We can recursively compute this probability
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Initial and final state probabilities

It what follows it is convenient to define:

an additional single initial state SI = 0, with transition
probabilities

a0j = P(q1 = j)

denoting the probability of starting in state j

a single final state, SE , with transition probabilities ajE
denoting the probability of the model terminating in state j .

SI and SE are both non-emitting
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1. Likelihood: The Forward recursion

Initialisation

αj(0) = 1 j = 0

αj(0) = 0 j 6= 0

Recursion

αj(t) =
J∑

i=1

αi (t − 1)aijbj(xt) 1 ≤ j ≤ J, 1 ≤ t ≤ T

Termination

p(X |M) = αE =
J∑

i=1

αi (T )aiE

sI : initial state, sE : final state
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1. Likelihood: Forward Recursion

αj(t) = p(x1, . . . , xt , qt = j |M) =
J∑

i=1

αi (t − 1)aijbj(xt)

i i i

j j j

k k k

t-1 t t+1

aij

akj

ajj

αj (t - 1) 

αi (t - 1) 

αk (t - 1) 

∑

αj (t ) 
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Viterbi algorithm

Instead of summing over all possible state sequences, just
consider just the most probable path:

P∗(X |M) = max
Q∈Q

P(X ,Q|M)

Achieve this by changing the summation to a maximisation in
the forward algorithm recursion:

Vj(t) = max
i

Vi (t − 1)aijbj(xt)

If we are performing decoding or forced alignment, then only
the most likely path is needed

In training, it can be used as an approximation

We need to keep track of the states that make up this path by
keeping a sequence of backpointers to enable a Viterbi
backtrace: the backpointer for each state at each time
indicates the previous state on the most probable path
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Viterbi Recursion

Vj(t) = max
i

Vi (t − 1)aijbj(xt)

Likelihood of the most probable path

i i i

j j j

k k k

t-1 t t+1

aij

akj

ajj

Vj (t - 1) 

Vi (t - 1) 

Vk (t - 1) 

max

Vj (t )
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Viterbi Recursion

Backpointers to the previous state on the most probable path

i i i

j j j

k k k

t-1 t t+1

aij

akj

ajj

Vj (t - 1) 

Vi (t - 1) 

Vk (t - 1) 

Vj (t )

Bj (t ) = i

ASR Lecture 3 HMM Algorithms 18



2. Decoding: The Viterbi algorithm

Initialisation

V0(0) = 1

Vj(0) = 0 if j 6= 0

Bj(0) = 0

Recursion

Vj(t) =
J

max
i=1

Vi (t − 1)aijbj(xt)

Bj(t) = arg
J

max
i=1

Vi (t − 1)aijbj(xt)

Termination

P∗ = VE =
J

max
i=1

VT ( i )aiE

s∗T = BE = arg
J

max
i=1

Vi (T )aiE
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Viterbi Backtrace

Backtrace to find the state sequence of the most probable path

Bi (t ) = j
i i i

j j j

k k k

t-1 t t+1

Vj (t - 1) 

Vi (t - 1) 

Vk (t - 1) 

Vj (t )

Bk (t + 1) = i
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3. Training: Forward-Backward algorithm

Goal: Efficiently estimate the parameters of an HMM M from
an observation sequence

Assume single Gaussian output probability distribution

bj(x) = p(x | j ) = N (x;µj ,Σj)

Parameters M:

Transition probabilities aij :∑
j

aij = 1

Gaussian parameters for state j :
mean vector µj ; covariance matrix Σj
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Viterbi Training

If we knew the state-time alignment, then each observation
feature vector could be assigned to a specific state

A state-time alignment can be obtained using the most
probable path obtained by Viterbi decoding
Maximum likelihood estimate of aij , if C ( i → j ) is the count
of transitions from i to j

âij =
C ( i → j )∑
k C ( i → k )

Likewise if Zj is the set of observed acoustic feature vectors
assigned to state j , we can use the standard maximum
likelihood estimates for the mean and the covariance:

µ̂j =

∑
x∈Zj

x

|Zj |

Σ̂j =

∑
x∈Zj

(x − µ̂j)(x − µ̂j)
T

|Zj |
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Viterbi Training

If we knew the state-time alignment, then each observation
feature vector could be assigned to a specific state
A state-time alignment can be obtained using the most
probable path obtained by Viterbi decoding

Maximum likelihood estimate of aij , if C ( i → j ) is the count
of transitions from i to j
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EM Algorithm

Viterbi training is an approximation—we would like to
consider all possible paths

In this case rather than having a hard state-time alignment we
estimate a probability

State occupation probability: The probability γj(t) of
occupying state j at time t given the sequence of
observations.
Compare with component occupation probability in a GMM

We can use this for an iterative algorithm for HMM training:
the EM algorithm (whose adaption to HMM is called ’Baum-Welch algorithm’)

Each iteration has two steps:

E-step estimate the state occupation probabilities
(Expectation)

M-step re-estimate the HMM parameters based on the
estimated state occupation probabilities
(Maximisation)

ASR Lecture 3 HMM Algorithms 23
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Backward probabilities

To estimate the state occupation probabilities it is useful to
define (recursively) another set of probabilities—the Backward
probabilities

βj(t) = p(xt+1, . . . , xT |qt = j ,M)

The probability of future observations given a the HMM is in
state j at time t

These can be recursively computed (going backwards in time)

Initialisation
βi (T ) = aiE

Recursion

βi (t) =
J∑

j=1

aijbj(xt+1)βj(t + 1) for t = T−1, . . . , 1

Termination

p(X |M) = β0(0) =
J∑

j=1

a0jbj(x1)βj(1) = αE
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a0jbj(x1)βj(1) = αE
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Backward Recursion

βj(t) = p(xt+1, . . . , xT |qt = j ,M) =
J∑

j=1

aijbj(xt+1)βj(t + 1)

βj (t ) 

i i i

j j j

k k k

t-1 t t+1

aji

ajk

ajj

βi (t + 1) ∑

βj (t + 1) 

βk (t + 1) 
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State Occupation Probability

The state occupation probability γj(t) is the probability of
occupying state j at time t given the sequence of observations
Express in terms of the forward and backward probabilities:

γj(t) = P(qt = j |X,M) =
1

αE
αj( t )βj( t )

recalling that p(X |M) = αE

Since

αj(t)βj(t) = p(x1, . . . , xt , qt = j |M)

p(xt+1, . . . , xT |qt = j ,M)

= p(x1, . . . , xt , xt+1, . . . , xT , qt = j |M)

= p(X, qt = j |M)

P(qt = j |X,M) =
p(X, qt = j |M)

p(X |M)
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Re-estimation of Gaussian parameters

The sum of state occupation probabilities through time for a
state, may be regarded as a “soft” count

We can use this “soft” alignment to re-estimate the HMM
parameters:

µ̂j =

∑T
t=1 γj(t)x t∑T
t=1 γj(t)

Σ̂j =

∑T
t=1 γj(t)(x t − µ̂j)(x − µ̂j)

T∑T
t=1 γj(t)
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Re-estimation of transition probabilities

Similarly to the state occupation probability, we can estimate
ξi ,j(t), the probability of being in i at time t and j at t + 1,
given the observations:

ξt( i , j ) = P(qt = i , qt+1 = j |X,M)

=
p(qt = i , qt+1 = j ,X |M)

p(X |M)

=
αi (t)aijbj(xt+1)βj(t + 1)

αE

We can use this to re-estimate the transition probabilities

âij =

∑T
t=1 ξi ,j(t)∑J

k=1

∑T
t=1 ξi ,k(t)
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Pulling it all together

Iterative estimation of HMM parameters using the EM
algorithm. At each iteration

E step For all time-state pairs
1 Recursively compute the forward probabilities
αj(t) and backward probabilities βj( t )

2 Compute the state occupation probabilities
γj(t) and ξi,j(t)

M step Based on the estimated state occupation
probabilities re-estimate the HMM parameters:
mean vectors µj , covariance matrices Σj and
transition probabilities aij

The application of the EM algorithm to HMM training is
sometimes called the Forward-Backward algorithm or
Baum-Welch algorithm
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Extension to a corpus of utterances

We usually train from a large corpus of R utterances

If xrt is the t th frame of the r th utterance Xr then we can
compute the probabilities αr

j ( t ), βrj ( t ), γrj (t) and ξri ,j(t) as
before

The re-estimates are as before, except we must sum over the
R utterances, eg:

µ̂j =

∑R
r=1

∑T
t=1 γ

r
j (t)x r

t∑R
r=1

∑T
t=1 γ

r
j (t)

In addition, we usually employ “embedded training”, in which
fine tuning of phone labelling with “forced Viterbi alignment”
or forced alignment is involved. (For details see Section 9.7 in
Jurafsky and Martin’s SLP)
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Extension to Gaussian mixture model (GMM)

The assumption of a Gaussian distribution at each state is
very strong; in practice the acoustic feature vectors associated
with a state may be strongly non-Gaussian

In this case an M-component Gaussian mixture model is an
appropriate density function:

bj(x) = p(x |q = j) =
M∑

m=1

cjmN (x;µjm,Σjm)

Given enough components, this family of functions can model
any distribution.

Train using the EM algorithm, in which the component
estimation probabilities are estimated in the E-step
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EM training of HMM/GMM

Rather than estimating the state-time alignment, we estimate
the component/state-time alignment, and component-state
occupation probabilities γjm(t): the probability of occupying
mixture component m of state j at time t.
(ξtm(j) in Jurafsky and Martin’s SLP)

We can thus re-estimate the mean of mixture component m
of state j as follows

µ̂jm =

∑T
t=1 γjm(t)x t∑T
t=1 γjm(t)

And likewise for the covariance matrices (mixture models
often use diagonal covariance matrices)
The mixture coefficients are re-estimated in a similar way to
transition probabilities:

ĉjm =

∑T
t=1 γjm(t)∑M

m′=1

∑T
t=1 γjm′(t)
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Doing the computation

The forward, backward and Viterbi recursions result in a long
sequence of probabilities being multiplied

This can cause floating point underflow problems

In practice computations are performed in the log domain (in
which multiplies become adds)

Working in the log domain also avoids needing to perform the
exponentiation when computing Gaussians
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Summary: HMMs

HMMs provide a generative model for statistical speech
recognition

Three key problems
1 Computing the overall likelihood: the Forward algorithm
2 Decoding the most likely state sequence: the Viterbi algorithm
3 Estimating the most likely parameters: the EM

(Forward-Backward) algorithm

Solutions to these problems are tractable due to the two key
HMM assumptions

1 Conditional independence of observations given the current
state

2 Markov assumption on the states
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