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Warning: the maths starts herel!
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Fundamental Equation of Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and
W denotes a word sequence, the most likely word sequence W* is

given by
W* = arg max P(W | X)
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Fundamental Equation of Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and
W denotes a word sequence, the most likely word sequence W* is

given by
W* = arg max P(W | X)

Applying Bayes' Theorem:
p(X|W) P(W)
P(W|X) =
WIX) =" 0m)
x p(X|W) P(W)
W* = argmax p(X|W) P(W)
W ~—— — ——

Acoustic Language
model model

NB: X is used hereafter to denote the output feature vectors from the
signal analysis module rather than DFT spectrum.

ASR Lecture 2 3



Acoustic Modelling

Recorded Speech Decoded Text

. (Transcription)
Hidden Markov model

Signal
Analysis

Acoustic
Model

Training

Language
Data

Model

ASR Lecture 2




Hierarchical modelling of speech

Generative "No right" Utterance W
Model \

NO RIGHT Word

Subword
] &@Q

Acoustics X

\i&

ASR Lecture 2 [



The Hidden Markov model

@ A statistical model for time series data with a set of discrete
states {1,...,J} (we index them by j or k)
@ At each time step t:

e the model is in a fixed state g;.
e the model generates an observation, x;, according to a
probability distribution that is specific to the state

@ We don't actually observe which state the model is in at each
time step — hence “hidden”.

@ Observations can be either continous or discrete (usually the
former)
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HMM probabilities

Gt-1 Gt Gt+1

|
®© 0 0

@ Imagine we know the state at a given time step t, q; = k

@ Then the probability of being in a new state, j at the next
time step, is dependent only on g;. This is the Markov
assumption.

o Alternatively: g:+1 is conditionally independent of
q1,---,Gt—1, given qx.

@ This means we can parametrise the model with parameters A:

e Transition probabilities ay; = P(qe+1 = j|q: = k)
o Observation probabilities b;j(x) = P(x|q =)
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HMM assumptions

P(qtht.1) P(qt+1 lqt)

\

At-1 B % At+1

Plx.1lap.4) P(xilay) P(ts110t,1)

Note that observation independence is an assumption that
naturally arises from the model: the probability of x; depends only
on the state that generated it, g;.
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HMM topologies

@ The HMM topology determines the set of allowed transitions
between states
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@ In principle any topology is possible
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HMM topologies
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HMM topologies

@ The HMM topology determines the set of allowed transitions
between states

@ In principle any topology is possible

Not all transition probabilities are shown
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Example topologies

485 Gepss UE

left—to-right model  parallel path left-to-right model  ergodic model

air a2 a3 0 O a1 ar a;z a4 as
a1 a2 O 0 ax ax an 0 a1 ax az ax ax
0 axn ax 0 O a3 axu ass as1 a3 a3 a4 as
0 0 as3 0 0 O as ass d41 842 aA43 Aa44 Aas
0 0 0 0 ass ds1 as2 as3 dsa dss

Speech recognition:  left-to-right HMM with 3 ~ 5 states
Speaker recognition: ergodic HMM
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HMMs for ASR

We generally model words or phones with a left-to-right topology
with self loops.
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HMMs for ASR

Traditional HMMs for ASR tend to model each phone with three
distinct states (this also enforces a minimum phone duration of
three frames of observations)
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Traditional HMMs for ASR tend to model each phone with three
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HMMs for ASR

Traditional HMMs for ASR tend to model each phone with three
distinct states (this also enforces a minimum phone duration of
three frames of observations)

ceoo000000

The phone model topologies can be concatenated to form a HMM
for the whole word
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HMMs for ASR

Traditional HMMs for ASR tend to model each phone with three
distinct states (this also enforces a minimum phone duration of
three frames of observations)

®eo000000
g

Xy Xy Xg X ..

This model naturally generates an alignment between states and
observations (and hence words/phones).
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A note on HMM observation probabilities

388

b(x b(xT/v\b(x

emission pdfs

Observation prob.
Continuous (density) HMM | continuous | GMM, DNN
Discrete (probability) HMM | discrete Vector quantisation
Semi-continuous HMM continuous | tied mixture
(tied-mixture HMM)
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Computing likelihoods with the HMM

Suppose we have a sequence of observations of length T,

X =(x1,...,x7), and Q is a known state sequence, (q1,...,qT).
Then we can use the HMM to compute the joint likelihood of X
and Q:
P(X, Q; A) = P(q1)P(x1]q1) P(q2|q1) P(x2q2) - . . (1)
T
= P(q1)P(x1lq1) [ P(aelge-1)P(xelar)  (2)
t=2

P(q1) denotes the initial occupancy probability of each state
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Background: cdf

Consider a real valued random variable X

e Cumulative distribution function (cdf) F(x) for X:
F(x) = P(X < x)

@ To obtain the probability of falling in an interval we can do
the following:

Pla< X <b)=P(X <b)—P(X<a)
= F(b) - F(2)
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Background: pdf

@ The rate of change of the cdf gives us the probability density
function (pdf), p(x):

p) = S F(x) = F'(x)

F(x) = / " p(x)dx

—00

@ p(x) is not the probability that X has value x. But the pdfis
proportional to the probability that X lies in a small interval
centred on x.

e Notation: p for pdf, P for probability
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The Gaussian distribution (univariate)

@ The Gaussian (or Normal) distribution is the most common
(and easily analysed) continuous distribution

@ It is also a reasonable model in many situations (the famous
“bell curve™)

o If a (scalar) variable has a Gaussian distribution, then it has a
probability density function with this form:

C(x — )2
P(X\M,g2):/\/’(x;u,g2):\/%exp( ( M))

202

@ The Gaussian is described by two parameters:

o the mean p (location)
o the variance o2 (dispersion)
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Plot of Gaussian distribution

@ Gaussians have the same shape, with the location controlled
by the mean, and the spread controlled by the variance

@ One-dimensional Gaussian with zero mean and unit variance
(p=0,0%=1):

pdf of Gaussian Distribution

mean=0
variance=1

0.4

0.351

03

0.251

0.2

p(xIm,s)

0.151

01

0.05

ASR Lecture 2 18



Properties of the Gaussian distribution

) = g ()

pdfs of Gaussian distributions
T T

04 T
variance=1
035
mean=0
0.3 variance=2
025
a
E o2
a
0.15
0.1
0.05
/ L
-8 -6 -4 -2 [ 2 4 6 8
x

ASR Lecture 2 19



Parameter estimation

@ Estimate mean and variance parameters of a Gaussian from
data x1,x0, ..., xT

@ Use the following as the estimates:

1 T
= T th (mean)
t=1
1 T
52 = = (x¢ — f1)? (variance)
t=1
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Exercise — maximum likelihood estimation (MLE)

Consider the log likelihood of a set of T training data points
{x1,...,x7} being generated by a Gaussian with mean p and
variance o2

T o — 2
L=Inp({x1,...,x7}|p 0%) = —%Z <w —Ino? - |n(27r)>
t=1

T
:—M;(Xt—,u) —EInO' —§|n(27'r)

By maximising the the log likelihood function with respect to u
show that the maximum likelihood estimate for the mean is indeed
the sample mean:
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The multivariate Gaussian distribution

@ The D-dimensional vector x = (xq,...,xp)" follows a
multivariate Gaussian (or normal) distribution if it has a
probability density function of the following form:

p(x|p, X) = (27r)D/12]2|1/2 exp (—;(X —p) = (x - u))

The pdf is parameterised by the mean vector o = (1, ..., up)"
J11 e g1D

and the covariance matrix X =

OpD1 OpD
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The multivariate Gaussian distribution

@ The D-dimensional vector x = (xq,...,xp)" follows a
multivariate Gaussian (or normal) distribution if it has a
probability density function of the following form:

p(x|p, X) = (27r)D/12]2|1/2 exp (—;(X —p) = (x - u))

The pdf is parameterised by the mean vector o = (1, ..., up)"
J11 e g1D

and the covariance matrix X =
Jp1 . JpD

@ The 1-dimensional Gaussian is a special case of this pdf
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The multivariate Gaussian distribution

@ The D-dimensional vector x = (xq,...,xp)" follows a
multivariate Gaussian (or normal) distribution if it has a
probability density function of the following form:

p(x|p, X) = (27r)D/12]2|1/2 exp (—;(X —p) = (x - u))

The pdf is parameterised by the mean vector o = (1, ..., up)"
J11 e g1D

and the covariance matrix X =
Jp1 . JpD

@ The 1-dimensional Gaussian is a special case of this pdf

@ The argument to the exponential 0.5(x — p) "7 (x — p) is
referred to as a quadratic form.
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Covariance matrix

@ The mean vector p is the expectation of x:
p = E[x]

@ The covariance matrix X is the expectation of the deviation of
x from the mean:

% = E[(x — p)(x — ) ]

@ X isa D x D symmetric matrix:

oj = E[(xi = 1) 05 — )] = El(x — w)(xi = pi)] = o3

@ The sign of the covariance helps to determine the relationship
between two components:
o If x; is large when x; is large, then (x; — pi)(xj — ;) will tend
to be positive;
o If x; is small when x; is large, then (x; — ;)(x; — ;) will tend
to be negative.
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Spherical Gaussian

Contour plot of p(x,, X,)

Surtace plot of p(x,, x,) 4

0 10
(3) =(3) e

NB: Correlation coefficient p; = /. (—1<p;j<1)
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Diagonal Covariance Gaussian

Contour plot of p(x,, X,)

Surtace plot of p(x,, x,) 4

0 10
(3) = (38) e

NB: Correlation coefficient p; = i (—1<p;j<1)
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Full covariance Gaussian

Contour plot of p(x,, X,)

Surtace plot of p(x,, x,) 4

0 1 -1
(3) =(1) e

NB: Correlation coefficient p; = /. (—1<p;j<1)
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Parameter estimation of a multivariate Gaussian

distribution

@ It is possible to show that the mean vector f1 and covariance
matrix X that maximise the likelihood of the training data are

given by:
L1
= — Xt
2
L 17 -
= 237 (e~ )(xe — )
t=1
where x; = (x¢1,...,x0) "

NB: T denotes either the number of samples or vector
transpose depending on context.
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Maximum likelihood fit to a Gaussian

5 L L L L L
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Data in clusters (example 1)
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Example 1 fit by a Gaussian

25¢
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1 =(0,00" p=(1,1)T X;=3,=02I
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k-means clustering

@ k-means is an automatic procedure for clustering unlabelled
data

Requires a prespecified number of clusters

Clustering algorithm chooses a set of clusters with the
minimum within-cluster variance

Guaranteed to converge (eventually)

Clustering solution is dependent on the initialisation
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k-means example: data set

A
*@4.13)
10
*@9)
L]
(7.8)
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k-means example: initialisation

A
* 413
10
e
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k-means example: iteration 1 (assign points to clusters)

A
4,13)
10
29
(7.8)
7.6)
5 (10,5)
8,4)
0 \(100) .
0 5 10
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k-means example: iteration 1 (recompute centres)

®@4.13)
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k-means example: iteration 2 (assign points to clusters)

A
10
(7.8)
5 (10,5)
0 (10,0) .
0 5 10
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k-means example: iteration 2 (recompute centres)

A
®@4.13)
10 *
(4.33,10)
‘29
L]
(7.8)
©8°  °06)
5 °45) ® (10,5
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k-means example: iteration 3 (assign points to clusters)

A
10
(7.8)
5 (10,5)
0 (10,0) .
0 5 10

No changes, so converged
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Mixture model

A more flexible form of density estimation is made up of a
linear combination of component densities:

M
p(x) = > P(m)p(x| m)
m=1
This is called a mixture model or a mixture density
p(x|m) : component densities

P(m) : mixing parameters

Generative model:

© Choose a mixture component based on P(m)
@ Generate a data point x from the chosen component using

p(x|m)
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Gaussian mixture model

@ The most important mixture model is the Gaussian Mixture Model
(GMM), where the component densities are Gaussians

o Consider a GMM, where each component Gaussian N(x; By Xm)

has mean ., and a spherical covariance 3, = 0,2,7I

p(x) = 3 P(m) x| m) = >~ P(m) Ax: s 0% 1)

px)
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GMM Parameter estimation when we know which

component generated the data

@ Define the indicator variable z,,; = 1 if component m
generated data point x; (and 0 otherwise)

@ If z,;+ wasn't hidden then we could count the number of
observed data points generated by m:

.
Ny = szt
t=1
@ And estimate the mean, variance and mixing parameters as:
= Dt ZmeXe
m =
N,
A2
s2 _ 2ae ZmtlXe—fom|
O =
Nim

A 1 N,
P(m) = 722mt =7
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GMM Parameter estimation when we don’t know which

component generated the data

@ Problem: we don't know z,,; - which mixture component a
data point comes from...

ASR Lecture 2 43



GMM Parameter estimation when we don’t know which

component generated the data

@ Problem: we don't know z,,; - which mixture component a
data point comes from...

@ Idea: use the posterior probability P(m|x), which gives the
probability that component m was responsible for generating
data point x.

Pl — PV P(m) _p(x m) P(m)
p(x) S p(x|m)P(m)

@ The P(m|x)s are called the component occupation

probabilities (or sometimes called the responsibilities)

@ Since they are posterior probabilities:
M
Z P(m|x) =1
m=1
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Soft assignment

@ Estimate “soft counts’ based on the component occupation
probabilities P(m|x;):

T

Ny = > P(m[x:)

t=1
@ We can imagine assigning data points to component m
weighted by the component occupation probability P(m|x;)

@ So we could imagine estimating the mean, variance and prior
probabilities as:

2 PUmlxe)xe 2, P(m|xe)x:

An = 5= P(mixe) N,
52 _ L P(mlxdllxe—fiml® _ X, P(mxe) lIxe— fm]?
" Zt P(m|xt) /V,’;7
N Nm
P( TZP m‘xt) T
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EM algorithm

@ Problem! Recall that:
p(mlx) — PEIMPm) (x| m)P(m)
p(x) > =1 P(x| m')P(m)
We need to know p(x| m) and P(m) to estimate the
parameters of P(m|x), and to estimate P(m)....
@ Solution: an iterative algorithm where each iteration has two
parts:

o Compute the component occupation probabilities P(m|x)
using the current estimates of the GMM parameters (means,
variances, mixing parameters) (E-step)

o Computer the GMM parameters using the current estimates of
the component occupation probabilities (M-step)

e Starting from some initialisation (e.g. using k-means for the
means) these steps are alternated until convergence

@ This is called the EM Algorithm and can be shown to
maximise the likelihood. (NB: local maximum rather than global)
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Maximum likelihood parameter estimation

@ The likelihood of a data set X = {x1,x2,...,x7} is given by:
T T M
£ =TLp(xe) =[] 3 p(xe|m) P(m)
t=1 t=1 m=1
@ We can regard the negative log likelihood as an error function:

o Considering the derivatives of E with respect to the
parameters, gives expressions like the previous slide
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Example 1 fit using a GMM
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Example 1 fit using a GMM

251
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Fitted with a two component GMM using EM
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Peakily distributed data (Example 2)
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Example 2 fit by a Gaussian

pr=p2=1[00 07 ;=01 X=2I
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Example 2 fit by a GMM
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Example 2 fit by a GMM

Fitted with a two component GMM using EM
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Example 2: component Gaussians
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Comments on GMMs

o GMMs trained using the EM algorithm are able to self
organise to fit a data set

@ Individual components take responsibility for parts of the data
set (probabilistically)

@ Soft assignment to components not hard assignment — “soft
clustering”

@ GMMs scale very well, e.g.: large speech recognition systems
can have 30,000 GMMs, each with 32 components:
sometimes 1 million Gaussian components!! And the
parameters all estimated from (a lot of) data by EM
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Back to HMMs:
o Likelihood computation with the Forward algorithm
@ Finding the most likely path with the Viterbi algorithm
@ Parameter estimation with the Forward-Backward algorithm
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