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Fundamental Equation of Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and
W denotes a word sequence, the most likely word sequence W∗ is
given by

W∗ = arg max
W

P(W |X)

Applying Bayes’ Theorem:

P(W |X) =
p(X |W)P(W)

p(X)

∝ p(X |W)P(W)

W∗ = arg max
W

p(X |W)︸ ︷︷ ︸
Acoustic

model

P(W)︸ ︷︷ ︸
Language

model

NB: X is used hereafter to denote the output feature vectors from the

signal analysis module rather than DFT spectrum.
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Acoustic Modelling

Acoustic
Model

Language
Model

Recorded Speech Decoded Text 
(Transcription)

Training
Data

Signal
Analysis

Search
Space

Hidden Markov model

ASR Lecture 2 Hidden Markov Models and Gaussian Mixture Models 4



Hierarchical modelling of speech

"No right"

NO RIGHT

ohn r ai t

Utterance

Word

Subword

HMM

Acoustics

Generative
Model

W

X
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The Hidden Markov model

A statistical model for time series data with a set of discrete
states {1, . . . , J} (we index them by j or k)

At each time step t:

the model is in a fixed state qt .
the model generates an observation, xt , according to a
probability distribution that is specific to the state

We don’t actually observe which state the model is in at each
time step – hence “hidden”.

Observations can be either continous or discrete (usually the
former)
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HMM probabilities

qt-1 qt qt+1

xt-1 xt xt+1

Imagine we know the state at a given time step t, qt = k

Then the probability of being in a new state, j at the next
time step, is dependent only on qt . This is the Markov
assumption.

Alternatively: qt+1 is conditionally independent of
q1, . . . , qt−1, given qt .

This means we can parametrise the model with parameters λ:

Transition probabilities akj = P(qt+1 = j |qt = k)
Observation probabilities bj(x) = P(x|q = j)
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HMM assumptions

qt-1 qt qt+1

xt-1 xt xt+1

P(qt|qt-1) P(qt+1|qt)

P(xt-1|qt-1) P(xt|qt) P(xt+1|qt+1)

Note that observation independence is an assumption that
naturally arises from the model: the probability of xt depends only
on the state that generated it, qt .
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HMM topologies

The HMM topology determines the set of allowed transitions
between states

In principle any topology is possible

1

2 3

5

6
7

4

a12

a14

a71
a15

a33

a37

a67

a76

Not all transition probabilities are shown
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Example topologies

ergodic modelleft−to−right model parallel path left−to−right model

 a11 a12 0
0 a22 a23
0 0 a33




a11 a12 a13 0 0
0 a22 a23 a24 0
0 0 a33 a34 a35
0 0 0 a44 a45
0 0 0 0 a55




a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55



Speech recognition: left-to-right HMM with 3 ∼ 5 states
Speaker recognition: ergodic HMM
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HMMs for ASR

We generally model words or phones with a left-to-right topology
with self loops.

r ai t
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HMMs for ASR

Traditional HMMs for ASR tend to model each phone with three
distinct states (this also enforces a minimum phone duration of
three frames of observations)

r1 r2 r3
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r1 r2 r3

ai1 ai2 ai3

t1 t2 t3
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HMMs for ASR

Traditional HMMs for ASR tend to model each phone with three
distinct states (this also enforces a minimum phone duration of
three frames of observations)

r1 r2 r3 ai1 ai2 ai3r1 r2 r3 t1 t2 t3

The phone model topologies can be concatenated to form a HMM
for the whole word

ASR Lecture 2 Hidden Markov Models and Gaussian Mixture Models 12



HMMs for ASR

Traditional HMMs for ASR tend to model each phone with three
distinct states (this also enforces a minimum phone duration of
three frames of observations)

r1 r2 r3 ai1 ai2 ai3r1 r2 r3 t1 t2 t3

x1 x2 x3 x4 ...

This model naturally generates an alignment between states and
observations (and hence words/phones).
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A note on HMM observation probabilities

3
1

2

22
a

11

23 34
a

b (x)

a

a
12

a

b (x) b (x)

01
a

33
a

emission pdfs

Observation prob.

Continuous (density) HMM continuous GMM, DNN
Discrete (probability) HMM discrete Vector quantisation

Semi-continuous HMM continuous tied mixture
(tied-mixture HMM)
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Computing likelihoods with the HMM

Suppose we have a sequence of observations of length T ,
X = (x1, . . . , xT ), and Q is a known state sequence, (q1, . . . , qT ).
Then we can use the HMM to compute the joint likelihood of X
and Q:

P(X ,Q;λ) = P(q1)P(x1|q1)P(q2|q1)P(x2|q2) . . . (1)

= P(q1)P(x1|q1)
T∏
t=2

P(qt |qt−1)P(xt |qt) (2)

P(q1) denotes the initial occupancy probability of each state
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Background: cdf

Consider a real valued random variable X

Cumulative distribution function (cdf) F (x) for X :

F (x) = P(X ≤ x)

To obtain the probability of falling in an interval we can do
the following:

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a)

= F (b)− F (a)
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Background: pdf

The rate of change of the cdf gives us the probability density
function (pdf), p(x):

p(x) =
d

dx
F (x) = F ′(x)

F (x) =

∫ x

−∞
p(x)dx

p(x) is not the probability that X has value x . But the pdf is
proportional to the probability that X lies in a small interval
centred on x .

Notation: p for pdf, P for probability
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The Gaussian distribution (univariate)

The Gaussian (or Normal) distribution is the most common
(and easily analysed) continuous distribution

It is also a reasonable model in many situations (the famous
“bell curve”)

If a (scalar) variable has a Gaussian distribution, then it has a
probability density function with this form:

p(x |µ, σ2) = N (x ;µ, σ2) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
The Gaussian is described by two parameters:

the mean µ (location)
the variance σ2 (dispersion)
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Plot of Gaussian distribution

Gaussians have the same shape, with the location controlled
by the mean, and the spread controlled by the variance

One-dimensional Gaussian with zero mean and unit variance
(µ = 0, σ2 = 1):
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Properties of the Gaussian distribution

N (x ;µ, σ2) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
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Parameter estimation

Estimate mean and variance parameters of a Gaussian from
data x1, x2, . . . , xT

Use the following as the estimates:

µ̂ =
1

T

T∑
t=1

xt (mean)

σ̂2 =
1

T

T∑
t=1

(xt − µ̂)2 (variance)
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Exercise — maximum likelihood estimation (MLE)

Consider the log likelihood of a set of T training data points
{x1, . . . , xT} being generated by a Gaussian with mean µ and
variance σ2:

L = ln p({x1, . . . , xT}|µ, σ2) = −1

2

T∑
t=1

(
(xt − µ)2

σ2
− lnσ2 − ln(2π)

)

= − 1

2σ2

T∑
t=1

(xt − µ)2 − T

2
lnσ2 − T

2
ln(2π)

By maximising the the log likelihood function with respect to µ
show that the maximum likelihood estimate for the mean is indeed
the sample mean:

µML =
1

T

T∑
t=1

xt .
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The multivariate Gaussian distribution

The D-dimensional vector x = (x1, . . . , xD)T follows a
multivariate Gaussian (or normal) distribution if it has a
probability density function of the following form:

p(x |µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
The pdf is parameterised by the mean vector µ = (µ1, . . . , µD)T

and the covariance matrix Σ =

 σ11 . . . σ1D

...
. . .

...
σD1 . . . σDD

.

The 1-dimensional Gaussian is a special case of this pdf

The argument to the exponential 0.5(x− µ)TΣ−1(x− µ) is
referred to as a quadratic form.
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Covariance matrix

The mean vector µ is the expectation of x:

µ = E [x]

The covariance matrix Σ is the expectation of the deviation of
x from the mean:

Σ = E [(x− µ)(x− µ)T ]

Σ is a D × D symmetric matrix:

σij = E [(xi − µi )(xj − µj)] = E [(xj − µj)(xi − µi )] = σji

The sign of the covariance helps to determine the relationship
between two components:

If xj is large when xi is large, then (xi − µi )(xj − µj) will tend
to be positive;
If xj is small when xi is large, then (xi − µi )(xj − µj) will tend
to be negative.
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Spherical Gaussian
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Diagonal Covariance Gaussian
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Full covariance Gaussian
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Parameter estimation of a multivariate Gaussian
distribution

It is possible to show that the mean vector µ̂ and covariance
matrix Σ̂ that maximise the likelihood of the training data are
given by:

µ̂ =
1

T

T∑
t=1

x t

Σ̂ =
1

T

T∑
t=1

(x t − µ̂)(x t − µ̂)T

where x t = (xt1, . . . , xtD)T .

NB: T denotes either the number of samples or vector
transpose depending on context.
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Example data
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Maximum likelihood fit to a Gaussian
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Data in clusters (example 1)
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Example 1 fit by a Gaussian
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k-means clustering

k-means is an automatic procedure for clustering unlabelled
data

Requires a prespecified number of clusters

Clustering algorithm chooses a set of clusters with the
minimum within-cluster variance

Guaranteed to converge (eventually)

Clustering solution is dependent on the initialisation
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k-means example: data set
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k-means example: initialisation
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k-means example: iteration 1 (assign points to clusters)
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k-means example: iteration 1 (recompute centres)
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k-means example: iteration 2 (assign points to clusters)
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k-means example: iteration 2 (recompute centres)
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k-means example: iteration 3 (assign points to clusters)
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No changes, so converged
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Mixture model

A more flexible form of density estimation is made up of a
linear combination of component densities:

p(x) =
M∑

m=1

P(m)p(x |m)

This is called a mixture model or a mixture density

p(x |m) : component densities

P(m) : mixing parameters

Generative model:
1 Choose a mixture component based on P(m)
2 Generate a data point x from the chosen component using

p(x |m)
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Gaussian mixture model

The most important mixture model is the Gaussian Mixture Model
(GMM), where the component densities are Gaussians

Consider a GMM, where each component Gaussian N (x;µm,Σm)
has mean µm and a spherical covariance Σm = σ2m I

p(x) =
M∑

m=1

P(m) p(x |m) =
M∑

m=1

P(m)N (x;µm, σ
2
m I)

x1 x2 xd

p(x|1) p(x|2) p(x|M)

p(x)

P(1)
P(2)

P(M)
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GMM Parameter estimation when we know which
component generated the data

Define the indicator variable zmt = 1 if component m
generated data point x t (and 0 otherwise)

If zmt wasn’t hidden then we could count the number of
observed data points generated by m:

Nm =
T∑
t=1

zmt

And estimate the mean, variance and mixing parameters as:

µ̂m =

∑
t zmtx t

Nm

σ̂2m =

∑
t zmt‖x t−µ̂m‖2

Nm

P̂(m) =
1

T

∑
t

zmt =
Nm

T
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GMM Parameter estimation when we don’t know which
component generated the data

Problem: we don’t know zmt - which mixture component a
data point comes from...

Idea: use the posterior probability P(m |x), which gives the
probability that component m was responsible for generating
data point x.

P(m |x) =
p(x |m)P(m)

p(x)
=

p(x |m)P(m)∑M
m′=1 p(x |m′)P(m′)

The P(m |x)s are called the component occupation
probabilities (or sometimes called the responsibilities)

Since they are posterior probabilities:

M∑
m=1

P(m |x) = 1
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p(x |m)P(m)

p(x)
=

p(x |m)P(m)∑M
m′=1 p(x |m′)P(m′)

The P(m |x)s are called the component occupation
probabilities (or sometimes called the responsibilities)

Since they are posterior probabilities:

M∑
m=1

P(m |x) = 1
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Soft assignment

Estimate “soft counts” based on the component occupation
probabilities P(m |x t):

N∗m =
T∑
t=1

P(m |x t)

We can imagine assigning data points to component m
weighted by the component occupation probability P(m |x t)

So we could imagine estimating the mean, variance and prior
probabilities as:

µ̂m =

∑
t P(m |x t)x t∑
t P(m |x t)

=

∑
t P(m |x t)x t

N∗m

σ̂2m =

∑
t P(m |x t) ‖x t−µ̂m‖2∑

t P(m |x t)
=

∑
t P(m |x t) ‖x t−µ̂m‖2

N∗m

P̂(m) =
1

T

∑
t

P(m |x t) =
N∗m
T
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EM algorithm

Problem! Recall that:

P(m |x) =
p(x |m)P(m)

p(x)
=

p(x |m)P(m)∑M
m′=1 p(x |m′)P(m′)

We need to know p(x |m) and P(m) to estimate the
parameters of P(m |x), and to estimate P(m)....
Solution: an iterative algorithm where each iteration has two
parts:

Compute the component occupation probabilities P(m |x)
using the current estimates of the GMM parameters (means,
variances, mixing parameters) (E-step)
Computer the GMM parameters using the current estimates of
the component occupation probabilities (M-step)

Starting from some initialisation (e.g. using k-means for the
means) these steps are alternated until convergence

This is called the EM Algorithm and can be shown to
maximise the likelihood. (NB: local maximum rather than global)
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Maximum likelihood parameter estimation

The likelihood of a data set X = {x1, x2, . . . , xT} is given by:

L =
T∏
t=1

p(x t) =
T∏
t=1

M∑
m=1

p(x t |m)P(m)

We can regard the negative log likelihood as an error function:

Considering the derivatives of E with respect to the
parameters, gives expressions like the previous slide
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Example 1 fit using a GMM
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Example 1 fit using a GMM
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Fitted with a two component GMM using EM
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Peakily distributed data (Example 2)

−4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

µ1 = µ2 = [0 0]T Σ1 = 0.1I Σ2 = 2I
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Example 2 fit by a Gaussian
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µ1 = µ2 = [0 0]T Σ1 = 0.1I Σ2 = 2I
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Example 2 fit by a GMM
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Example 2 fit by a GMM
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Fitted with a two component GMM using EM
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Example 2: component Gaussians
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P(x |m=1) P(x |m=2)
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Comments on GMMs

GMMs trained using the EM algorithm are able to self
organise to fit a data set

Individual components take responsibility for parts of the data
set (probabilistically)

Soft assignment to components not hard assignment — “soft
clustering”

GMMs scale very well, e.g.: large speech recognition systems
can have 30,000 GMMs, each with 32 components:
sometimes 1 million Gaussian components!! And the
parameters all estimated from (a lot of) data by EM
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Next

Back to HMMs:

Likelihood computation with the Forward algorithm

Finding the most likely path with the Viterbi algorithm

Parameter estimation with the Forward-Backward algorithm
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