Speaker diarization

Steve Renals

Automatic Speech Recognition – ASR Lecture 18
21 March 2019
Speaker recognition

- Speaker identification – determine which of the set of enrolled speakers a test speaker matches
- Speaker verification – determine if a test speaker matches a specific speaker
- Speaker diarization – “who spoke when” segment and label a continuous recording by speaker
Speaker recognition

- Speaker identification – determine which of the set of enrolled speakers a test speaker matches
- **Speaker verification** (last lecture) – determine if a test speaker matches a specific speaker
- **Speaker diarization** – “who spoke when” segment and label a continuous recording by speaker
Speaker diarization
Dealing with multiple speakers

- Speaker diarization is the “who spoken when” task: given a recording, divide it into segments, where each segment corresponds to speech of a single speaker.
- Each recording contains multiple speakers – unlike what we have assumed so far for speech recognition and speaker verification.
- Multiple speakers in a recording is realistic – many possible domains, e.g.:
 - Broadcast media
 - Telephone conversations
 - Call centres
 - Meeting recordings
Dealing with multiple speakers

- Speaker diarization is the “who spoken when” task: given a recording, divide it into segments, where each segment corresponds to speech of a single speaker.
- Each recording contains multiple speakers – unlike what we have assumed so far for speech recognition and speaker verification.
- Multiple speakers in a recording is realistic – many possible domains, e.g.:
 - Broadcast media
 - Telephone conversations
 - Call centres
 - Meeting recordings
- A basic approach to diarization: Segment the recording into a sequence of short pieces, each assumed to be a single speaker. Then treat as a speaker verification task between all pairs of segmented utterances.
 - Guaranteed to fail on segments with overlapping speakers!
Measuring speaker diarization – Diarization error rate

- There are three main types of error to consider in speaker diarization:
 - **Missed speech** (E_{miss}): system labels a segment as non-speech, but segment is attributed to a speaker in the reference.
 - **False-alarm speech** (E_{fa}): system attributes segment to a speaker, but segment is labelled as non-speech in the reference.
 - **Speaker error** (E_{spkr}): system attributes segment to a speaker different to the reference attribution.

- These errors are computed in a time-based way: each is expressed as a fraction of the scored time in the reference.

- The diarization error rate (DER) is computed as a sum of these errors:

$$DER = E_{\text{miss}} + E_{\text{fa}} + E_{\text{spkr}}$$

- Note that E_{miss} and E_{fa} arise from the speech activity detection.
Segment a recording, and attach a speaker label to each segment.

1. **Split the recording into segments**
2. **Speech activity detection**: identify whether each segment is speech or non-speech, discard non-speech
3. **Represent the speech segments using some form of fixed length embedding**: i-vector, x-vector, d-vector...
4. **Compare all pairs of segments using a scoring metric such as PLDA**
5. **Cluster the segments using an algorithm such as agglomerative hierarchical clustering**
Speech activity detection (SAD) typically carried out using an LSTM or TDNN neural network trained on a large amount of diverse data

- Binary output: speech vs. non-speech
- Possibly with data augmentation – noise, reverb, etc.

Following SAD, segment into short fixed-length segments (typically 2s)

- Assumes each segment contains speech from a single speaker
- In practice can use overlapping segments (overlap by 0.5s at start and end)
- Relatively short segment duration for embedding computation
Speaker Embeddings and Clustering

- Compute a speaker representation for each segment
 - i-vector - typically 64-128 dimension
 - x-vector / d-vector - typically 128-256 dimension
 - can reduce the dimension by performing PCA on the set of embeddings for a recording

- Score all segment pairs – typically use PLDA
- Cluster segments – many possible clustering algorithms: Agglomerative hierarchical clustering can work well
 - Only need to compute pairwise segment scores once
 - Score for a cluster pair is obtained by averaging the pairwise scores between the segments in each cluster

- Determine the number of clusters
 - Clustering stopping criterion determines the number of clusters
 - Define a prior distribution on the number of speakers, and apply to clustering
 - Bayesian models with a prior on number of clusters – Variational Bayes (VB) HMM, Hierarchical Dirichlet Process (HDP) HMM, distance-dependent Chinese Restaurant Process (ddCRP), ...
R&D in speaker diarization has been very domain-dependent

1990s – broadcast news (Hub4)
2000s – multi-microphone meeting recordings (AMI, NIST RT)
2010s – conversational telephone speech (CallHome)

Had the effect of fragmenting the field

Since 2018 the DIHARD Challenge (https://coml.lscp.ens.fr/dihard/) has focused on “speaker diarization for challenging recordings where there is an expectation that the current state-of-the-art will fare poorly” – diverse set of data sets used
Some hot topics in diarization

- Overlapping speech – most systems do not explicitly deal with this
- Speech activity detection is still a significant cause of error
- Development of end-to-end systems
- Bayesian approaches (learning the number of speakers/clusters from the data)
- Use of supervised learning
Reading

 https://ieeexplore.ieee.org/document/7953094

 https://www.isca-speech.org/archive/Interspeech_2018/abstracts/1893.html