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Speaker recognition

Speaker identification – determine which of the set of enrolled speakers a test
speaker matches

Speaker verification – determine if a test speaker matches a specific speaker

Speaker diarization – “who spoke when” segment and label a continuous
recording by speaker

Text dependent (vs text independent) – for speaker identification and verification,
is the test speaker speaking a pre-defined utterance?

text-dependent – e.g. spoken password
text-independent – e.g. recognise a speaker from a law-enforcement recording

Closed set (vs open set) – is there a fixed set of speakers?
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Speaker verification
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Overview of a speaker verification system

 IEEE SIGNAL PROCESSING MAGAZINE [83] NOVEMBER 2015

AUTOMATIC SPEAKER RECOGNITION
In automatic speaker recognition, computer programs designed 
to operate independently with minimum human intervention 
identify a speaker’s voice. The system user may adjust the 
design parameters, but to make the comparison between speech 
segments, all the user needs to do is provide the system with the 
audio recordings. In the current discussion, we focus our atten-
tion on the text-independent scenario and the speaker-verifica-
tion task. Naturally, the challenges mentioned previously affect 
the automatic systems in the same way as they do the human 
listeners or forensic experts. Various speaker-verification 
approaches can be found in the literature that address specific 
challenges; see [65]–[74] for a comprehensive tutorial review on 
automatic speaker recognition. The research community is 
largely driven by standardized tasks set forth by NIST through 
the speaker-recognition evaluation (SRE) campaigns [75]–[78]. 
We discuss the NIST SRE tasks in more detail in later sections.

A simple block diagram representation of an automatic 
speaker-verification system is shown in Figure 4. Predefined fea-
ture parameters are first extracted from the audio recordings that 
are designed to capture the idiosyncratic characteristics of a 
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[FIG3] (a)–(c) The regions of the human brain that contribute the most in discriminating between vowels (red) and speakers (blue).  
(b) and (c) Enlarged representations of the auditory cortex (region of the brain sensitive to sounds). (d) and (e) Activation patterns of 
sounds created from the 15 most discriminative voxels (of the fMRI) for decoding (d) vowels and (e) speakers. Each axis of the polar 
plot forming a pattern displays the normalized activation level in a voxel. Note the similarity among the patterns of the same vowel 
[horizontal direction in (d)] or speaker [vertical direction in (e)]. (Figure reprinted from [5].) 

Feature
Extraction

Feature
Extraction

Enrollment 

Test 

Modeling

Background
Data 

Scoring
>τ

<τ
∧

Accept 

Reject 

[FIG4] An overall block diagram of a basic speaker-verification 
system.

Source: Hansen and Hasan, 2015
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Evaluating speaker verification

Two types of error
False acceptance – grant access to an imposter: False Acceptance Rate (FAR)
False reject – refuse access to a genuine speaker: False Rejection Rate (FRR)

FAR = False Alarm Probability

=
Number of imposters accepted

Number of imposter attempts

FRR = Miss Probability

=
Number of legitimate speakers rejected

Number of legitimate attempts

Control the levels of these errors by setting decision threshold

Equal error rate – FAR and FRR values when they are equal

DET (detection error tradeoff) curve – plots FRR (miss probability) against FAR
(false alarm probability)
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Speaker verification decision threshold

 IEEE SIGNAL PROCESSING MAGAZINE [93] NOVEMBER 2015

prior probability of encountering a target speaker. For a given data 
set and task, systems evaluated using a specific error/cost criteria can 
be compared. Before discussing the common performance measures, 
we introduce the type of errors encountered in speaker verification.

TYPES OF ERRORS
There are mainly two types of errors in speaker verification (or any 
other biometric authentication) when a hard decision is made by 
the automatic system. From the speaker authentication point of 
view, we define them as

 ■ false accept (FA): granting access to an impostor speaker
 ■ false reject (FR): denying access to a legitimate speaker.

From the speaker-detection point of view (a target speaker is 
sought), these are called false-alarm and miss errors, respectively. 
According to these definitions, two error rates are defined as

 
.

False-Acceptance Rate (FAR) Number of impostor attempts
Number of FA errors

False-Rejection Rate (FRR) Number of legitimate attempts
Number of FR errors

=

=

Speaker-verification systems generally output a match score 
between the training speaker and the test utterance. This is true 
for most two-class recognition/binary detection problem. This 
score is a scalar variable that represents the similarity between the 
enrolled speaker and the test speaker, with higher values indicat-
ing the speakers are more similar. To make a decision, the system 
needs to use a threshold ( )x  as illustrated in Figure 10. If the 
threshold is too low, there will be a lot of FA errors, whereas if the 
threshold is too high, there will be too many FR/miss errors.

EQUAL ERROR RATE
The equal error rate (EER) is defined as the FAR and FRR values 
when they become equal. That is, by changing the threshold, we find 
a point where the FAR and FRR become equal. This is shown in 

Figure 10. The EER is a very popular performance measure for 
speaker-verification systems. Only the soft scores from the automatic 
system are required to compute the EER. No actual hard decisions 
are made. It should be noted that operating a speaker-verification sys-
tem on the threshold corresponding to the EER might not be desir-
able for practical purposes. For high-security applications, one should 
set the threshold higher, lowering the FA errors at the cost of miss 
errors. However, for high convenience, the threshold may be set 
lower. Let us discuss some examples. In authenticating users for bank 
accounts, security is of utmost importance. It is thus better to deny 
access to the legitimate user (and ask other forms of verification) as 
opposed to granting access to an impostor. On the contrary, for an 
automated customer service, denying a legitimate speaker will cause 
inconvenience and frustration to the user. In this case, accepting an 
illegitimate speaker is not as critical as in high-security applications.

DETECTION COST FUNCTION
This is, in fact, a family of performance measures introduced by 
NIST over the years. As mentioned before, the EER does not differ-
entiate between the two errors, which sometimes is not a realistic 
performance measure. The detection cost function (DCF), thus, 
introduces numerical costs/penalties for the two types of errors 
(FA and miss). The a priori probability of encountering a target 
speaker is also provided. The DCF is computed over the full range 
of decision threshold values as

 ( ) ( ) ( ) ( ) .1DCF C P P C P PMISS Target FA FA Targetx x x= + -  

Here,
CMiss  = Cost of a miss/FR error
CFA  =  Cost of an FA error
P argetT  =  Prior probability of target speaker.

( )PM xiss  = Probability of (Miss | Target, Threshold = )x
( )PFA x  = Probability of (FA | Nontarget, Threshold = ) .x
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[FIG10] An illustration of target and nontarget score distributions and the decision threshold. Areas under the curves 
with blue and red colors represent FAR and FRR errors, respectively.Source: Hansen and Hasan, 2015
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DET curve
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Usually, the DCF is normalized by dividing it by a constant [77]. 
The probability values here can be computed using the distribu-
tion of true and impostor scores and computing the areas under 
the curve as shown in Figure 10. The first three quantities above 
( , ,C CMiss FA  and )PTarget  are predefined. Generally, the goal of the 
system designer is to find the optimal threshold value that mini-
mizes the DCF.

In NIST SRE 2008, these DCF parameters were set as ,10CMiss =  
,1CFA =  and . .0 01PTarget =  The values of the costs indicate that 

the system is penalized ten times more for making a miss error 
rather than an FA error. As a real-world example, when detect-
ing a known criminal’s voice from evidence recordings, it may 
be better to have false positives (e.g., to suspect and investigate 
an innocent speaker) than to miss the target speaker (e.g., to be 
unable to detect the criminal at all). If we ignore PTarget  for the 
moment, setting a lower threshold ( )x  would be beneficial 
since, in this case, the system will tolerate more FAs but will not 
miss too many legitimate speakers ( )[PMiss x  will be lower], 
yielding a lower DCF value for that threshold. Now, the value of 
the prior ( . )0 01PTarget =  indicates that a target speaker will be 
encountered by the system once in every 100 speaker-verifica-
tion attempts. If this condition is considered independently, it is 
better to have a higher threshold since most of the attempts will 
be from impostors ( . ) .0 9 9PNon argett =  However, when all three 
parameters are considered together, finding the optimal thresh-
old requires sweeping through all the DCF values.

By processing the DCF, two performance measures are derived: 
1) the minimum DCF (MinDCF) and 2) the actual DCF (ActDCF). 
The MinDCF is the minimum value of DCF that can be obtained 
by changing the threshold, .x  The MinDCF parameter can be 

computed only when the soft scores are provided by the systems. 
When the system provides hard decisions, the actual DCF is used 
where the probability values involved (in the DCF equation) are 
simply computed by counting the errors. Both of these perfor-
mance measures have been extensively used in the NIST evalua-
tions. The most recent evaluation in 2012 introduced a DCF that 
is a dependent on two different operating points (two sets of error 
costs and target priors) instead of one.

It is important to note here that the MinDCF (or ActDCF) param-
eter is not an error rate in the general sense. Thus, its interpretation 
is not straightforward. Obviously, the lower MinDCF, the better the 
system performance. However, the exact value of the MinDCF can 
only be used to compare other systems evaluated using the same tri-
als and performance measure. Generally, when the system EER 
improves, the DCF parameters also improve. An elaborate discussion 
on the relationship between EER and DCF can be found in [124].

DETECTION ERROR TRADEOFF CURVE
When speaker-verification performance needs to be evaluated in a 
range of operating points, the detection error tradeoff (DET) curve is 
generally employed. The DET curve is a plot of the errors FAR versus 
FRR/miss. An example DET curve is shown in Figure 11. As the sys-
tem performance improves, the curve moves toward the origin. As 
illustrated in Figure 11, the DET curve corresponding to System 2 is 
closer to the origin and thus represents a better system. The EER 
and minDCT points are shown on the DET curve of System 1.

During the preparation of the DET curve, the cumulative density 
functions (CDFs) of the true and impostor scores are transformed to 
normal deviates. This means that the true/impostor score CDF value 
for a given threshold is transformed by a standard normal inverse 
CDF (ICDF) and the resulting values are used to make the plot. This 
transform yields a linear DET curve when the two distributions are 
normal and have equal variances. Thus, even though the labels indi-
cate the axis as error probabilities, they are actually plotted according 
to the corresponding normal deviate values. 

RECENT ADVANCEMENTS IN  
AUTOMATIC SPEAKER RECOGNITION 
In recent years, considerable research progress has been made in 
spoofing and countermeasures [125], [126], back-end classifiers 
[127], [128], compensation for short utterances [129]–[131], 
score calibration and fusion [132], [133], deep neural network 
(DNN) [134]–[136], and alternate acoustic modeling [137] tech-
niques. In this section, we briefly discuss some of these topics and 
their possible implications in the speaker-recognition research.

NIST i-VECTOR MACHINE-LEARNING  
CHALLENGE AND BACK-END PROCESSING
The most recent NIST-sponsored evaluation, the i-Vector 
Machine-Learning Challenge, focused on back-end classifiers. In 
this paradigm, instead of audio data, i-vectors from speech utter-
ances were provided to the participants [138]. In this way, the 
entry barrier to the evaluation was reduced as many machine-
learning-focused research groups were able to participate without 
expertise in audio/speech processing. Significant performance 
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[FIG11] DET curves of two speaker-verification systems  
(System 1 and System 2). In System 1, the points on the curve 
corresponding to the threshold that yields the EER and minimum 
DCF (as in NIST SRE 2008), and the direction of an increasing 
threshold are shown. Being closer to the origin, System 2 shows 
a better performance.

Source: Hansen and Hasan, 2015
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Detection cost function

Detection cost function takes into account

Cost of miss (Cmiss) and false alarm (CFA) errors
Prior probability of target speaker – Ptarget)
Miss probability at threshold τ – Pmiss(τ)
FA probability at threshold τ – PFA(τ)

DCF (τ) = CmissPmiss(τ)Ptarget + CFAPFA(τ)(1− Ptarget)

Set Cmiss > CFA if it is better to have false alarms than it is to miss the target
speaker (e.g. law enforcement applicationa)
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Features for speaker verification

Frame-level – typically use MFCCs or other features used in ASR

Utterance/speaker-level – since we require to make decisions at the utterance
level often aim to learn utterance level representations or embeddings

GMM supervectors
i-vectors
DNN embeddings

d-vectors
x-vectors
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GMM-based speaker verification

UBM (Universal Background Model) – train a GMM with many Gaussians (eg
2048) on the speech of the general population

NB: no sequence modelling (no HMM) - just a distribution over MFCCs

Then adapt the UBM to each target speaker using MAP adaptation

Directly use these GMMs to verify a target speaker using the log likelihood ratio
(LLR), where X is the observed test utterance, θs is the target speaker model,
and θ0 is the UBM. :

LLR(X , s) = log
p(X |θs)

p(X |θ0)
= log p(X |θs)− log p(X |θ0)

For a threshold τ

If LLR(X , s) ≥ τ then accept
If LLR(X , s) < τ then reject

ASR Lecture 17 Speaker verification 10



Recap: MAP adaptation

Basic idea MAP adaptation balances the parameters estimated on the universal
data with estimates from the target speaker

Consider the mean of the mth Gaussian, µm

ML estimate of SI model:

µm =

∑
n γm(n)xn∑
n γm(n)

where γm(n) is the component occupation probability

MAP estimate for the adapted model:

µ̂ =
αµ0 +

∑
n γ(n)xn

α +
∑

n γ(n)

α controls balances the SI estimate and the adaptation data (typically 0 ≤ α ≤ 20)
xn is the adaptation vector at time n
γ(n) the probability of this Gaussian at this time

As the amount of training data increases, MAP estimate converges to ML estimate
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GMM UBM system
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advancement achieved by the so-called GMM–UBM method. In this 
approach, a speaker’s GMM is adapted or derived from the UBM 
using Bayesian adaptation [103]. In contrast to performing maxi-
mum likelihood training of the GMM for an enrollment speaker, 
this model is obtained by updating the well-trained UBM parame-
ters. This relation between the speaker model and the background 
model provides better performance than independently trained 
GMMs and also lays the foundation for the speaker model adapta-
tion techniques that were developed later. We will return to these 
relations as we proceed. In the following subsections, we describe 
the formulations of this approach.

The LR Test
Given an observation O and a hypothesized speaker ,s  the task of 
speaker verification can be stated as a hypothesis test between

 
: ,
: .

H O s
H O s

is from speaker
is no from speakert

0

1
 

In the GMM–UBM approach, the hypothesis H0  and H1  are repre-
sented by a speaker-dependent GMM sm  and the UBM .0m  Thus, 
for the set of observed feature vectors { | },x n T1n f!=X  the LR 
test is performed by evaluating the following ratio:
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where x  is the decision threshold. Usually, the LR test is per-
formed in the logarithmic scale, providing the so-called log-LR

 ( ) ( | ) ( | ) .log logp pX X Xs 0m mK = -  (2)

Maximum A Posteriori Adaptation of UBM
Let { | }x n T1X n f!=  denote the set of acoustic feature vectors 
obtained from the enrollment speaker s. Given a UBM as in (1) and 
the enrollment speaker’s data X, at first the probabilistic align-
ment of the feature vectors with respect the UBM components is 
calculated as
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Next, the values of ( )gnc  values are used to calculate the sufficient 
statistics for the weight, mean, and covariance parameter as
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These quantities are known as the zero-, first-, and second-order 
Baum–Welch statistics, respectively. Using these parameters, the 
posterior mean and covariance matrix of the features given the 
data vectors X  can be found as

 
[ | ] ( )
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The maximum a posteriori (MAP) adaptation update equations for 
weight, mean, and covariance, (3), (4), and (5), respectively, are 
proposed in [103] and used in [6] for speaker verification

 [ ( ) / ( ) ] ,N g T 1g g s g gr a a r b= + -t  (3)
 [ | ] ( )xE 1Xg g g n gn a a= + -t ,gn  (4)
 [ | ] ( ) .x xE 1Xg g g n n

T
g g g g

T
g g

Ta a n n n nR R= + - + -t t t^ h  (5)

The scaling factor b  in (3) is computed from all the adapted mix-
ture weights to ensure that they sum to unity. Thus, the new GMM 
parameters are a weighted summation of the UBM parameters and 
the sufficient statistics obtained from the observed data (see 
“GMM–UBM System: Summary”). The variable ga  is defined as

 ( )
( ) .N g r

N g
g
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s
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+
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[FIG7] A schematic diagram of a GMM–UBM system using a four-mixture UBM. MAP adaptation procedure and supervector formation 
by concatenating the mean vectors are also illustrated. (a) A schematic diagram of a GMM–UBM system using a four-mixture UBM.  
(b)MAP adaptation procedure and supervector formation by concatenating the mean vectors are also illustrated.

Source: Hansen and Hasan, 2015
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i-Vectors

Represent a speaker using the GMM (mean) parameters – concatenate the target
speaker mean parameters to form a GMM supervector ms . Typical dimension of
a UBM GMM is 2048, so with 39-dimension parameters, this can be a very high
dimension vector (∼ 80, 000 components)

Represent the supervector for an utterance X u as the combination of the UBM
supervector and the utterance i-vector (Dehak et al, 2011):

mu = m0 + Twu

mu and m0 are D-dimension supervectors for the utterance u and the UBM
wu is the i-vector (“identity vector”) – a reduced dimension (d) representation for
utterance u (d ∼ 400)
T is a D × d matrix (sometimes called the “total variability matrix”) which projects
the supervector down to the i-vector representation
Estimate T for the development corpus using an EM algorithm, estimate the i-vector
wu for an utterance as the mean of the (Gaussian) posterior distribution of wu given
X u and T .
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Speaker verification scoring using i-vectors

Speaker verification involves computing a score f (w target,w test) between the
target and test i-vectors

Cosine score

fcos(w target,w test) =
w target ·w test

||w target|| ||w test||

Probabilistic linear discriminant analysis (PLDA) – probabilistic model that
accounts for speaker variability and channel variability. Can be used to compute
the log likelihood ratio, so

fplda(w target,w test) = log p(w target,w test|H1)−log
[
p(w target|H0)p(w test|H0)

]
where H1 is the hypothesis that the test and target speakers are the same, H0 is
the hypothesis they are different

PLDA is current-state of the art for scoring i-vectors

ASR Lecture 17 Speaker verification 14



Neural network approaches

Current state-of-the-art neural network approaches use NNs to extract
embeddings, which are then scored by PLDA

d-vectors (Variani et al, 2014)

Development – train a DNN to recognise speakers
Enrolment – extract speaker-specific features from last hidden layer
d-vector – average speaker-specific features across frames of an utterance (pooling)

x-vectors (Snyder et al, 2018)

Similarly to d-vectors extract an utterance level feature as an embedding
Train TDNN with frame-level input and utterance-level output
Architecture includes a “stats pooling” layer which computes mean and sd across
the utterance of the highest frame-level hidden layer
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d-vector extraction

Fig. 1. The background DNN model for speaker verification.

Moreover, the PLDA on the i-vectors can decompose the total vari-
ability into speaker and session variability more effectively com-
pared to JFA. The i-vector-PLDA technique and its variants have
also been successfully used in text-dependent speaker recognition
tasks [8, 9, 10].

In past studies, neural networks have been investigated for
speaker recognition [11, 12]. Being nonlinear classifiers, neural net-
works can discriminate the characteristics of different speakers. The
neural network was typically used as a binary classifier of target and
non-target speakers, or multicategory classifiers for speaker identi-
fication purposes. Auto-associative neural networks (AANN) [13]
were proposed to use the reconstruction error difference computed
from the UBM-AANN and speaker specific AANN as the verifica-
tion score. Multi-layer perceptrons (MLPs) with a bottleneck layer
have been used to derive robust features for speaker recognition [14].
More recently, some preliminary studies have been conducted on us-
ing deep learning for speaker recognition, such as the use of convolu-
tional deep belief networks [15] and Boltzmann machine classifiers
[16].

3. DNN FOR SPEAKER VERIFICATION

The proposed background DNN model for SV is depicted in Fig-
ure 1. The idea is similar to [15] in the sense that neural networks
are used to learn speaker specific features. The main differences are
that here we perform supervised training, and use DNNs instead of
convolutional neural networks. In addition, in this paper we evaluate
on a SV task instead of the simpler speaker identification task.

3.1. DNN as a feature extractor

At the heart of the proposed approach in this work is the idea of using
a DNN architecture as a speaker feature extractor. As in the i-vector
approach, we look for a more abstract and compact representation of
the speaker acoustic frames but using a DNN rather than a generative
Factor Analysis model.

With this aim, we first built a supervised DNN, operating at the
frame level, to classify the speakers in the development set. The
input of this background network is formed by stacking each training
frame with its left and right context frames. The number of outputs

corresponds to the number of speakers in the development set, N .
The target labels are formed as a 1-hot N -dimensional vector where
the only non-zero component is the one corresponding to the speaker
identity. Figure 1 illustrates the DNN topology.

Once the DNN has been trained successfully, we use the accu-
mulated output activations of the last hidden layer as a new speaker
representation. That is, for every frame of a given utterance belong-
ing to a new speaker, we compute the output activations of the last
hidden layer using standard feedforward propagation in the trained
DNN, and then accumulate those activations to form a new compact
representation of that speaker, the d-vector. We choose to use the
output from the last hidden layer instead of the softmax output layer
due to a couple of reasons. First, we can reduce the DNN model size
for runtime by pruning away the output layer, and this also enables
us to use a large number of development speakers without increasing
DNN size at runtime. Second, we have observed better generaliza-
tion to unseen speakers from the last hidden layer output.

The underlying hypothesis here is that the trained DNN, having
learned compact representations of the development set speakers in
the output of the last hidden layer, may also be able to represent
unseen speakers.

3.2. Enrollment and evaluation

Given a set of utterances Xs = {Os1 , Os2 , . . . , Osn} from a
speaker s, with observations Osi = {o1, o2, . . . , om}, the process
of enrollment can be described as follows. First, we use every ob-
servation oj in utterance Osi , together with its context, to feed the
supervised trained DNN. The output of the last hidden layer is then
obtained, L2 normalized, and accumulated for all the observations
oj in Osi . We refer to the resulting accumulated vector as the d-
vector associated with the utterance Osi . The final representation of
the speaker s is derived by averaging all d-vectors corresponding for
utterances in Xs.

During the evaluation phase, we first extract the normalized d-
vector from the test utterance. Then we compute the cosine distance
between the test d-vector and the claimed speaker’s d-vector. A ver-
ification decision is made by comparing the distance to a threshold.

3.3. DNN training procedure

Given the low-resource conditions of the scenario explored in this
study (see Section 4), we trained the background DNN as a maxout
DNN using dropout [17][18].

Dropout is a useful strategy to prevent over-fitting in DNN fine-
tuning when using a small training set [18][19]. In essence, the
dropout training procedure consists of randomly omitting certain
hidden units for each training token. Maxout DNNs [17] were con-
ceived to properly exploit dropout properties. Maxout networks dif-
fer from the standard multi-layer perceptron (MLP) in that hidden
units at each layer are divided into non-overlapping groups. Each
group generates a single activation via the max pooling operation.
Training of maxout networks can optimize the activation function
for each unit.

Specifically, in this study, we trained a maxout DNN with four
hidden layers and 256 nodes per layer, within the DistBelief frame-
work [20]. A pool size of 2 is used per layer. The first two layers do
not use dropout while the last two layers drop 50 percent of activa-
tions after dropout, as shown in Figure 1.

Regarding other configuration parameters, we used rectified lin-
ear units [21] as the non-linear activation function on hidden units
and a learning rate of 0.001 with exponential decay (0.1 every
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x-vector extraction

Figure 1: Diagram of the DNN. Segment-level embeddings (e.g.,
a or b) can be extracted from any layer of the network after the
statistics pooling layer.

2. Baseline i-vector system
The baseline is a traditional i-vector system that is based on the
GMM-UBM Kaldi recipe described in [11]. The front-end fea-
tures consist of 20 MFCCs with a frame-length of 25ms that
are mean-normalized over a sliding window of up to 3 seconds.
Delta and acceleration are appended to create 60 dimension fea-
ture vectors. An energy-based VAD selects features correspond-
ing to speech frames. The UBM is a 2048 component full-
covariance GMM. The system uses a 600 dimension i-vector
extractor. Prior to PLDA scoring, i-vectors are centered, di-
mensionality reduced to 150 using LDA, and length normalized.
PLDA scores are normalized using adaptive s-norm [24].

3. DNN embedding system
3.1. Overview

The proposed system is a feed-forward DNN (depicted in Fig-
ure 1) that computes speaker embeddings from variable-length
acoustic segments. The architecture is based on the end-to-end
system described in [23]. However, an end-to-end approach re-
quires a large amount of in-domain data to be effective. We
replace the end-to-end loss with a multiclass cross entropy ob-
jective. In addition, a separately trained PLDA backend is used
to compare pairs of embeddings. This enables the DNN and
similarity metric to be trained on potentially different datasets.
The network is implemented using the nnet3 neural network li-
brary in the Kaldi Speech Recognition Toolkit [25].

3.2. Features

The features are 20 dimensional MFCCs with a frame-length
of 25ms, mean-normalized over a sliding window of up to 3
seconds. The same energy-based VAD from Section 2 filters
out nonspeech frames. Instead of stacking frames at the input,
short-term temporal context is handled by a time-delay DNN
architecture.

3.3. Neural network architecture

The network, illustrated in Figure 1, consists of layers that op-
erate on speech frames, a statistics pooling layer that aggregates
over the frame-level representations, additional layers that oper-
ate at the segment-level, and finally a softmax output layer. The
nonlinearities are rectified linear units (ReLUs).

The first 5 layers of the network work at the frame level,
with a time-delay architecture [26]. Suppose t is the current
time step. At the input, we splice together frames at {t� 2, t�
1, t, t+1, t+2}. The next two layers splice together the output
of the previous layer at times {t�2, t, t+2} and {t�3, t, t+3},
respectively. The next two layers also operate at the frame-level,
but without any added temporal context. In total, the frame-
level portion of the network has a temporal context of t � 8 to
t + 8 frames. Layers vary in size, from 512 to 1536, depending
on the splicing context used.

The statistics pooling layer receives the output of the final
frame-level layer as input, aggregates over the input segment,
and computes its mean and standard deviation. These segment-
level statistics are concatenated together and passed to two ad-
ditional hidden layers with dimension 512 and 300 (either of
which may be used to compute embeddings) and finally the soft-
max output layer. Excluding the softmax output layer (because
it is not needed after training) there is a total of 4.4 million pa-
rameters.

3.4. Training

The network is trained to classify training speakers using a mul-
ticlass cross entropy objective function (Equation 1). The pri-
mary difference between this and training in [16, 17, 21] is that
our system is trained to predict speakers from variable-length
segments, rather than frames. Suppose there are K speakers in
N training segments. Then P (spkrk | x

(n)
1:T ) is the probabil-

ity of speaker k given T input frames x
(n)
1 ,x

(n)
2 , ...x

(n)
T . The

quantity dnk is 1 if the speaker label for segment n is k, other-
wise it’s 0.

E = �
NX

n=1

KX

k=1

dnkln(P (spkrk | x(n)
1:T )) (1)

The DNN is trained on the combined SWBD and SRE data
described in Section 4.1. We refine the dataset by removing any
recordings that are less than 10 seconds long, and any speak-
ers with fewer than 4 recordings. This leaves a total of 4,733
speakers, which is the size of the softmax output layer.

To reduce sensitivity to utterance length, it is desirable to
train the DNN on speech chunks that capture the range of du-
rations we expect to encounter at test time (e.g., a few seconds
to a few minutes). However, GPU memory limitations force
a tradeoff between minibatch size and maximum training ex-
ample length. As a comprise, we pick examples that range
from 2 to 10 seconds (200 to 1000 frames) along with a mini-
batch size of 32 to 64. The example speech chunks are sampled
densely from the recordings, resulting in about 3,400 examples
per speaker. The network is trained for several epochs using
natural gradient stochastic gradient descent [27].

3.5. Speaker embeddings

Ultimately, the goal of training the network is to produce em-
beddings that generalize well to speakers that have not been
seen in the training data. We would like embeddings to capture
speaker characteristics over the entire utterance, rather than at
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2.2. Phonetic bottleneck i-vector

This i-vector system incorporates phonetic bottleneck features
(BNF) from an ASR DNN acoustic model and is similar to [9].
The DNN is a time-delay acoustic model with p-norm nonlineari-
ties. The ASR DNN is trained on the Fisher English corpus and uses
the same recipe and architecture as the system described in Section
2.2 of [11], except that the penultimate layer is replaced with a 60
dimensional linear bottleneck layer. Excluding the softmax output
layer, which is not needed to compute BNFs, the DNN has 9.2
million parameters.

The BNFs are concatenated with the same 20 dimensional
MFCCs described in Section 2.1 plus deltas to create 100 dimen-
sional features. The remaining components of the system (feature
processing, UBM, i-vector extractor, and PLDA classifier) are iden-
tical to the acoustic system in Section 2.1.

2.3. The x-vector system

This section describes the x-vector system. It is based on the DNN
embeddings in [1] and described in greater detail there.

Our software framework has been made available in the Kaldi
toolkit. An example recipe is in the main branch of Kaldi at https:
//github.com/kaldi-asr/kaldi/tree/master/egs/
sre16/v2 and a pretrained x-vector system can be downloaded
from http://kaldi-asr.org/models.html. The recipe
and model are similar to the x-vector system described in Section
4.4.

Layer Layer context Total context Input x output
frame1 [t � 2, t + 2] 5 120x512
frame2 {t � 2, t, t + 2} 9 1536x512
frame3 {t � 3, t, t + 3} 15 1536x512
frame4 {t} 15 512x512
frame5 {t} 15 512x1500

stats pooling [0, T ) T 1500Tx3000
segment6 {0} T 3000x512
segment7 {0} T 512x512
softmax {0} T 512xN

Table 1. The embedding DNN architecture. x-vectors are extracted
at layer segment6, before the nonlinearity. The N in the softmax
layer corresponds to the number of training speakers.

The features are 24 dimensional filterbanks with a frame-length
of 25ms, mean-normalized over a sliding window of up to 3 seconds.
The same energy SAD as used in the baseline systems filters out
nonspeech frames.

The DNN configuration is outlined in Table 1. Suppose an input
segment has T frames. The first five layers operate on speech frames,
with a small temporal context centered at the current frame t. For
example, the input to layer frame3 is the spliced output of frame2, at
frames t� 3, t and t + 3. This builds on the temporal context of the
earlier layers, so that frame3 sees a total context of 15 frames.

The statistics pooling layer aggregates all T frame-level outputs
from layer frame5 and computes its mean and standard deviation.
The statistics are 1500 dimensional vectors, computed once for each
input segment. This process aggregates information across the time
dimension so that subsequent layers operate on the entire segment.
In Table 1, this is denoted by a layer context of {0} and a total con-
text of T . The mean and standard deviation are concatenated to-

gether and propagated through segment-level layers and finally the
softmax output layer. The nonlinearities are all rectified linear units
(ReLUs).

The DNN is trained to classify the N speakers in the training
data. A training example consists of a chunk of speech features
(about 3 seconds average), and the corresponding speaker label. Af-
ter training, embeddings are extracted from the affine component of
layer segment6. Excluding the softmax output layer and segment7
(because they are not needed after training) there is a total of 4.2
million parameters.

2.4. PLDA classifier

The same type of PLDA [3] classifier is used for the x-vector and
i-vector systems. The representations (x-vectors or i-vectors) are
centered, and projected using LDA. The LDA dimension was tuned
on the SITW development set to 200 for i-vectors and 150 for
x-vectors. After dimensionality reduction, the representations are
length-normalized and modeled by PLDA. The scores are normal-
ized using adaptive s-norm [22].

3. EXPERIMENTAL SETUP

3.1. Training data

The training data consists of both telephone and microphone speech,
the bulk of which is in English. All wideband audio is downsampled
to 8kHz.

The SWBD portion consists of Switchboard 2 Phases 1, 2, and 3
as well as Switchboard Cellular. In total, the SWBD dataset contains
about 28k recordings from 2.6k speakers. The SRE portion con-
sists of NIST SREs from 2004 to 2010 along with Mixer 6 and con-
tains about 63k recordings from 4.4k speakers. In the experiments
in Sections 4.1–4.4 the extractors (UBM/T or embedding DNN) are
trained on SWBD and SRE and the PLDA classifiers are trained on
just SRE. Data augmentation is described in Section 3.3 and is ap-
plied to these datasets as explained throughout Section 4.

In the last experiment in Section 4.5 we incorporate audio from
the new VoxCeleb dataset [19] into both extractor and PLDA train-
ing lists. The dataset consists of videos from 1,251 celebrity speak-
ers. Although SITW and VoxCeleb were collected independently,
we discovered an overlap of 60 speakers between the two datasets.
We removed the overlapping speakers from VoxCeleb prior to using
it for training. This reduces the size of the dataset to 1,191 speakers
and about 20k recordings.

The ASR DNN used in the i-vector (BNF) system was trained
on the Fisher English corpus. To achieve a limited form of domain
adaptation, the development data from SITW and SRE16 is pooled
and used for centering and score normalization. No augmentation is
applied to these lists.

3.2. Evaluation

Our evaluation consists of two distinct datasets: Speakers in the Wild
(SITW) Core [23] and the Cantonese portion of the NIST SRE 2016
evaluation (SRE16) [24]. SITW consists of unconstrained video au-
dio of English speakers, with naturally occurring noises, reverber-
ation, as well as device and codec variability. The SRE16 portion
consists of Cantonese conversational telephone speech. Both en-
roll and test SITW utterances vary in length form 6–240 seconds.
For SRE16, the enrollment utterances contain about 60 seconds of
speech while the test utterances vary from 10–60 seconds.
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Summary

i-vectors are the state-of-the-art speaker representation, used in

speaker recognition
speaker diarization
speaker adaptation in ASR

NN speaker representations such as d-vectors and x-vectors are now competitive
with i-vectors

PLDA is the state-of-the-art scoring approach

Current challenges include development of end-to-end NN approaches
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