End-to-end systems 1: CTC (Connectionist Temporal Classification)

Steve Renals

Automatic Speech Recognition – ASR Lecture 15 11 March 2019

·美

イロト イヨト イヨト イヨト

End-to-end systems

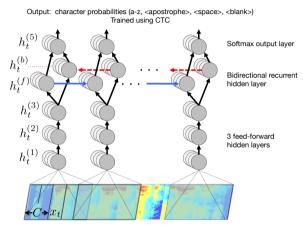
- End-to-end systems are systems which learn to directly map from an input sequence X to an output sequence Y, estimating P(Y|X)
 - Y can be a sequence of words or subwords
- ML trained HMMs are kind of end-to-end system the HMM estimates P(X|Y), and when combined with a language model gives an estimate of P(Y|X)
- Sequence discriminative training of HMMs (using GMMs or DNNs) can be regarded as end-to-end
 - But training is quite complicated need to estimate the denominator (total likelihood) using lattices, first train conventionally (ML for GMMs, CE for NNs) then finetune using sequence discriminative training
 - Lattice-free MMI is one way to address these issues
- Other approaches based on recurrent networks which directly map input to output sequences
 - CTC Connectionist Temporal Classification
 - Encoder-decoder approaches

End-to-end systems

- End-to-end systems are systems which learn to directly map from an input sequence X to an output sequence Y, estimating P(Y|X)
 - Y can be a sequence of words or subwords
- ML trained HMMs are kind of end-to-end system the HMM estimates P(X|Y), and when combined with a language model gives an estimate of P(Y|X)
- Sequence discriminative training of HMMs (using GMMs or DNNs) can be regarded as end-to-end
 - But training is quite complicated need to estimate the denominator (total likelihood) using lattices, first train conventionally (ML for GMMs, CE for NNs) then finetune using sequence discriminative training
 - Lattice-free MMI is one way to address these issues
- Other approaches based on recurrent networks which directly map input to output sequences
 - CTC Connectionist Temporal Classification
 - Encoder-decoder approaches (next lecture)

イロン 不通 とうほう イロン しゅう

Deep Speech



Input: Filter bank features (spectrogram)

Hannun et al (2014), "Deep Speech: Scaling up end-to-end speech recognition",

https://arxiv.org/abs/1412.5567.

Model	SWB	СН	Full
Vesely et al. (GMM-HMM BMMI) [44]	18.6	33.0	25.8
Vesely et al. (DNN-HMM sMBR) [44]	12.6	24.1	18.4
Maas et al. (DNN-HMM SWB) [28]	14.6	26.3	20.5
Maas et al. (DNN-HMM FSH) [28]	16.0	23.7	19.9
Seide et al. (CD-DNN) [39]	16.1	n/a	n/a
Kingsbury et al. (DNN-HMM sMBR HF) [22]	13.3	n/a	n/a
Sainath et al. (CNN-HMM) [36]	11.5	n/a	n/a
Soltau et al. (MLP/CNN+I-Vector) [40]	10.4	n/a	n/a
Deep Speech SWB	20.0	31.8	25.9
Deep Speech SWB + FSH	12.6	19.3	16.0

Table 3: Published error rates (%WER) on Switchboard dataset splits. The columns labeled "SWB" and "CH" are respectively the easy and hard subsets of Hub5'00.

3

・ロット (雪) (日) (日)

- Maps from acoustic frames **X** to subword sequences **S**, where **S** is a sequence of characters (in some other CTC approaches, **S** can be a sequence of phones)
- CTC loss function
- Makes good use of large training data
 - Synthetic additional training data by jittering the signal and adding noise
- Many computational optimisations
- n-gram language model to impose word-level constraints
- Competitive results on standard tasks

• Maps from acoustic frames **X** to subword sequences **S**, where **S** is a sequence of characters (in some other CTC approaches, **S** can be a sequence of phones)

• CTC loss function

- Makes good use of large training data
 - Synthetic additional training data by jittering the signal and adding noise
- Many computational optimisations
- n-gram language model to impose word-level constraints
- Competitive results on standard tasks

Connectionist Temporal Classification (CTC)

- Train a recurrent network to map from input sequence X to output sequence S
 - sequences can be different lengths for speech, input sequence X (acoustic frames) is much longer than output sequence S (characters or phonemes)
 - CTC does not require frame-level alignment (matching each input frame to an output token)
- CTC sums over all possible alignments (similar to forward-backward algorithm) "alignment free"
- Possible to back-propagate gradients through CTC

Gopod overview of CTC: Awni Hannun, "Sequence Modeling with CTC", *Distill*. https://distill.pub/2017/ctc

ъ.

CTC: Alignment

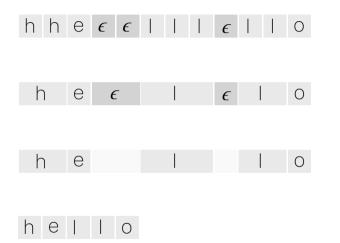
- Imagine mapping $(x_1, x_2, x_3, x_4, x_5, x_6)$ to [a, b, c]
 - Possible alignments: aaabbc, aabbcc, abbbbc,...
- However
 - Don't always want to map every input frame to an output symbol (e.g. if there is "inter-symbol silence")
 - Want to be able to have two identical symbols adjacent to each other keep the difference between
- Solve this using an additional *blank* symbol (ϵ)
- CTC output compression
 - Merge repeating characters
 - ② Remove blanks

Thus to model the same character successively, separate with a blank

- Some possible alignments for [*h*, *e*, *l*, *l*, *o*] and [*h*, *e*, *l*, *o*] given a 10-element input sequence
 - [h, e, l, l, o]: heeeellelo; heelleleoo
 - [h, e, l, o]: heeeelllo; hheeeleeoe

イロン 不通 と イヨン イヨン ニヨー

CTC: Alignment example



First, merge repeat characters.

Then, remove any ϵ tokens.

The remaining characters are the output.

イロト イヨト イヨト

э.

Consider an output [c, a, t] with an input of length six

Valid Alignments	Invalid Alignments	Invalid Alignments				
ϵ C C ϵ a t	$C \epsilon C \epsilon$ at	corresponds to $Y = [c, c, a, t]$				
c c a a t t	c c a a t	has length 5				
C a ϵ ϵ ϵ t	C $\epsilon \epsilon \epsilon$ t t	missing the 'a'				

э.

イロト イヨト イヨト イヨト

- Monotonic Alignments are monotonic (left-to-right model); no re-ordering (unlike neural machine translation)
- Many-to-one Alignments are many-to-one; many inputs can map to the same output (however a single input cannot map to many outputs)
- CTC doesn't find a single alignment: it sums over all possible alignments

- Let ${m C}$ be an output label sequence, including blanks and repetitions same length as input sequence ${m X}$
- Posterior probability of output labels C = (c₁,...c_t,...c_T) given the input sequence X = (x₁,...x_t,...x_T):

$$P(oldsymbol{\mathcal{C}}|oldsymbol{\mathcal{X}}) = \prod_{t=1}^T y(c_t,t)$$

where $y(c_t, t)$ is the output for label c_t at time t

• This is the probability of a single alignment

CTC: Loss function (2)

- Let \boldsymbol{S} be the target output sequence after compression
- Compute the posterior probability of the target sequence $\boldsymbol{S} = (s_1, \dots s_m, \dots s_M)$ $(M \leq T)$ given \boldsymbol{X} by summing over the possible CTC alignments:

$$P(oldsymbol{S}|oldsymbol{X}) = \sum_{oldsymbol{c}\in A(oldsymbol{S})} P(oldsymbol{C}|oldsymbol{X})$$

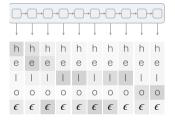
where A is the set of possible output label sequences c that can be mapped to S using the CTC compression rules (merge repeated labels, then remove blanks)

• The CTC loss function \mathcal{L}_{CTC} is given by the negative log likelihood of the sum of CTC alignments:

$$\mathcal{L}_{CTC} = -\log P(\boldsymbol{S}|\boldsymbol{X})$$

- Perform the sum over alignments using dynamic programming similar structure as used in forward-backward algorithm and Viterbi (see Hannun for details)
- Various NN architectures can be used for CTC usually use a deep bidirectional LSTM RNN

CTC: Distribution over alignments



We start with an input sequence, like a spectrogram of audio.

The input is fed into an RNN, for example.

The network gives $p_t(a \mid X)$, a distribution over the outputs {h, e, l, o, ϵ } for each input step.

h	е	ϵ		ϵ		0	0
h	h	е		ϵ	ε	ϵ	0
ϵ	е	ϵ		ϵ	ϵ	0	0

ASR Lecture 15

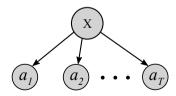
With the per time-step output distribution, we compute the probability of different sequences

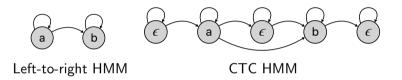
By marginalizing over alignments, we get a distribution over outputs.

ロマス語マスヨマスヨマ

Understanding CTC: Conditional independence assumption

- Each output is dependent on the entire input sequence (in Deep Speech this is achieved using a bidirectional recurrent layer)
- Given the inputs, each output is independent of the other outputs (conditional independence)
- CTC does not learn a language model over the outputs, although a language model can be applied later
- Graphical model showing dependences in CTC:





• CTC can be interpreted as an HMM with additional (skippable) blank states, trained discriminatively

э

Applying language models to CTC

• Direct interpolation of a language model with the CTC acoustic model:

$$\hat{\boldsymbol{W}} = \arg \max_{\boldsymbol{W}} (\alpha \log P(\boldsymbol{S}|\boldsymbol{X}) + \log P(\boldsymbol{W}))$$

Only consider word sequences W which correspond to the subword sequence \boldsymbol{S} (using a lexicon)

- α is an empirically determined scale factor to match the acoustic model to the language model
- Lexicon-free CTC: use a "subword language model" P(S) (Maas et al, 2015)
- WFST implementation: create an FST T which transforms a framewise label sequence c into the subword sequence S, then compose with L and G:
 T ∘ min(det(L ∘ G)) (Miao et al, 2015)

- Mozilla have released an Open Source TensorFlow implementation of the Deep Speech architecture:
- https://hacks.mozilla.org/2017/11/a-journey-to-10-word-error-rate/
- https://github.com/mozilla/DeepSpeech
- Close to state-of-the-art results on librispeech
- Mozilla Common Voice project: https://voice.mozilla.org/en

ъ.

Summary and reading

- CTC is an alternative approach to sequence discriminative training, typically applied to RNN systems
- Used in "Deep Speech" architecture for end-to-end speech recognition
- Reading
 - A Hannun et al (2014), "Deep Speech: Scaling up end-to-end speech recognition", ArXiV:1412.5567. https://arxiv.org/abs/1412.5567
 - A Hannun (2017), "Sequence Modeling with CTC", *Distill*. https://distill.pub/2017/ctc
- Background reading
 - Y Miao et al (2015), "EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding", ASRU-2105.

https://ieeexplore.ieee.org/abstract/document/7404790

• A Maas et al (2015). "Lexicon-free conversational speech recognition with neural networks", NAACL HLT 2015, http://www.aclweb.org/anthology/N15-1038

イロン 不良 とうせい イロン 一日