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Languages of the World

Over 6,000 languages globally....

In Europe alone
e 24 official languages and 5 “semi-official” languages
o Over 100 further regional /minority languages
o If we rank the 50 most used languages in Europe, then there are over 50 million
speakers of languages 26-50 (Finnish — Montenegrin)

3,000 of the world's languages are endangered

Google cloud speech API covers over 60 languages and more than 50
accents/dialects of those languages; Apple Siri covers over 20 languages and
about 20 accents/dialects
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Under-resourced languages

Under-resourced (or low-resourced) languages have some or all of the following
characteristics

@ limited web presence
@ lack of linguistic expertise
@ lack of digital resources: acoustic and text corpora, pronunciation lexica, ...

Under-resourced languages thus provide a challenge for speech technology

See Besaciera et al (2014) for more
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Speech recognition of under-resourced languages

Training acoustic and language models with limited training data
Transferring knowledge between languages
Constructing pronunciation lexica

Dealing with language specific characteristics (e.g. morphology)
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Multilingual and cross-lingual acoustic models

How to share information from acoustic models in different languages?
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General principal — use neural network hidden layers to learn a multilingual
representation

Hidden layers are multilingual — shared between languages
Output layer is monolingual language specific

Hat swap use a network with multilingual hidden representations directly in a
hybrid DNN/HMM systems

Block softmax train a network with an output layer for each language, but
shared hidden layers

Multilingual bottleneck use a bottleneck hidden layer (trained in a multilingual)
way as features for either a GMM- or NN-based system
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Hat Swap — experiment
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Block softmax

@ In block softmax we train one network for all languages:

e separate output layer for each language
e shared hidden layers

@ Each training input is propagated forward to the output layer of the corresponding
language — only that output layer is used to compute the error used to train the
network for that input

@ Since the hidden layers are shared, they must learn features relevant to all the
output layers (languages)

@ Can view block softmax as a parallel version of hat swap
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Block softmax — architecture

Language 1 senones Language 2 senones Language 3 senones Language 4 senones
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Huang et al, 2013
NB: A senone is a context-dependent tied state
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Bottleneck features
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@ Use a "bottleneck” hidden layer to provide features as input to a GMM or an NN

@ Decorrelate the hidden layer using PCA (or similar)
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Multilingual bottleneck features — architecture
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Tuske et al, 2013
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Multilingual bottleneck features — experiments

GMM-based acoustic models. (Similar results obtained using multilingual bottleneck
features with NN-based acoustic models.)
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(Mismatched acoustic environment)

Tuske et al, 2013
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Graphemes and phonemes

e Can represent pronunciations as a sequence of graphemes (letters) rather than a
sequence of phones
@ Advantages of grapheme-based pronunciations
o No need to construct/generate phone-based pronunciations
e Can use unicode attributes to assist in decision tree construction

e Disadvantages: not always direct link between graphemes and sounds (most of in
English)
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Grapheme-based ASR results for 6 low-resource languages

WER (%)
Language ID  System tg [ +on [ one
Kurmanji Phonetic 67.6 | 65.8
Kurdish 2% Graphemic || 670 | 65.3 | &1
Tok Pisin 207 Phonetic 41.8 | 40.6 394

Graphemic || 42.1 | 41.1

Phonetic 55.5 | 54.0
Cebuano 301 Graphemic || 55.5 | 542 52.6

Phonetic 549 | 53.5
Kazakh 302 Graphemic || 54.0 | 527 | 219

Phonetic 70.6 | 69.1
Telugu 303 Graphemic || 709 | 69.5 | ¢7°

. . Phonetic 51.5 | 50.2
Lithuanian 304 5 Shemic || 50.9 | 495 | 483

IARPA Babel, 40h acoustic training data per language, monolingual training; cnc is
confusion network combination, combining the grapheme- and phone-based systems
Gales et al (2015)
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Morphology

@ Many languages are morphologically richer than English: this has a major effect of
vocabulary construction and language modelling

e Compounding (eg German): decompose compund words into constituent parts,
and carry out pronunciation and language modelling on the decomposed parts

@ Highly inflected languages (eg Arabic, Slavic languages): specific components for
modelling inflection (eg factored language models)

@ Inflecting and compounding languages (eg Finnish)

@ All approaches aim to reduce ASR errors by reducing the OOV rate through
modelling at the morph level; also addresses data sparsity
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Vocabulary size for different languages
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Creutz et al (2007)
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OOQV Rate for different languages

New words in test set [%]
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Creutz et al (2007)
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Segmenting into morphs

@ Linguistic rule-based approaches — require a lot of work for an under-resourced
language!
@ Automatic approaches — use automatically segment and cluster words into their
constitutent morphs
@ Morfessor (http://www.cis.hut.fi/projects/morpho/)
e "Morfessor is an unsupervised data-driven method for the segmentation of words
into morpheme-like units.”
e Aims to identify frequently occurring substrings of letters within either a word list
(type-based) or a corpus of text (token-based)
o Uses a probabilistic framework to balance between few, short morphs and many,
longer morphs
@ Morph-based language modelling uses morphs instead of words — may require
longer context (since multiple morphs correspond to one word)
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http://www.cis.hut.fi/projects/morpho/

Morph-based vs Word-based ASR

Speech recognition accuracies on Finnish (Finl-Fin4), Estonian (Est), Turkish (Tur),
and Egyptian Arabic (ECA), using morph- and word-based n-gram language models.

100

word accuracies

Creutz et al (2007)
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Speech recognition systems for low-resource languages

@ Transferring data between acoustic models based on multilingual hidden
representations

@ Grapheme-based pronunciation lexica

@ Morph-based language modeling
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