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The Search Problem in ASR

@ Find the most probable word sequence W = wy, wa, ..., wpy
given the acoustic observations X = x1, X2, ..., Xp:

~

W = arg max P(WI|X)
=argmaxp(X | W) P(W)
W ~—— ~——

acoustic model language model

@ Words are composed of state sequences so this problem
corresponds to finding the most probable allowable state
sequence (given the constraints of pronunciation lexicon and
language model) - Viterbi decoding

@ In a large vocabulary task evaluating all possible word
sequences in infeasible (even using an efficient exact
algorithm)

o Reduce the size of the search space through pruning unlikely
hypotheses
e Eliminate repeated computations
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Connected Word Recognition

@ The number of words in the utterance is not known
@ Word boundaries are not known: V words may potentially
start at each frame
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Connected Word Recognition

@ The number of words in the utterance is not known
@ Word boundaries are not known: V words may potentially
start at each frame
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speech: “the cat ate the canary”
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Backtrace to Obtain Word Sequence
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@ Backpointer array keeps track of word sequence for a path:
backpointer[word][wordStartFrame] = (prevWord, prevWordStartFrame)

@ Backtrace through backpointer array to obtain the word
sequence for a path
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Incorporating a bigram language model

Bigram
Language Model
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Trigram or longer span models require a word history.

ASR Lecture 10 7



Computational Issues

@ Viterbi decoding performs an exact search in an efficient
manner

@ Exact search is not possible for large vocabulary tasks

o Cross-word triphones need to be handled carefully since the
acoustic score of a word-final phone depends on the initial
phone of the next word

o Long-span language models (eg trigrams) greatly increase the
size of the search space

@ Solutions:

Beam search (prune low probability hypotheses)
Dynamic search structures

Multipass search (— two-stage decoding)

]
]
]
o Best-first search (— stack decoding / A* search)
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Computational Issues

@ Viterbi decoding performs an exact search in an efficient
manner

@ Exact search is not possible for large vocabulary tasks

o Cross-word triphones need to be handled carefully since the
acoustic score of a word-final phone depends on the initial
phone of the next word

o Long-span language models (eg trigrams) greatly increase the
size of the search space

@ Solutions:

o Beam search (prune low probability hypotheses)

e Dynamic search structures

o Multipass search (— two-stage decoding)

o Best-first search (— stack decoding / A* search)

@ An alternative approach: Weighted Finite State Transducers
(WFST)
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Weighted Finite State Transducers

@ Used by Kaldi

@ Weighted finite state automaton that transduces an input
sequence to an output sequence (Mohri et al 2008)

@ States connected by transitions. Each transition has

e input label
e output label
e weight
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Weighted Finite State Acceptors
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Weighted Finite State Transducers
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Weighted Finite State Transducers

Acceptor
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WEST Algorithms

Composition Combine transducers at different levels. For example
if G is a finite state grammar and L is a
pronunciation dictionary then Lo G transduces a
phone string to word strings allowed by the grammar

Determinisation Ensure that each state has no more than a single
output transition for a given input label

Minimisation transforms a transducer to an equivalent transducer
with the fewest possible states and transitions
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Applying WFSTs to speech recognition

@ Represent the following components as WFSTs

‘ transducer ‘ input sequence ‘ output sequence
G | word-level grammar | words words
L | pronunciation lexicon | phones words
C | context-dependency | CD phones phones
H | HMM HMM states CD phones

@ Composing L and G results in a transducer L o G that maps a
phone sequence to a word sequence

@ Ho Co Lo G results in a transducer that maps from HMM
states to a word sequence
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Context dependency transducer C

Context-independent “string”

X y X X y
OO0
Context-dependency transducer (weights not shown)
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(x/e_y — x with left context e (start/end) and right context y)
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Decoding using WFSTs

@ We can represent the HMM acoustic model, pronunciation
lexicon and n-gram language model as four transducers: H, C,
L, G

@ Combining the transducers gives an overall “decoding graph”
for our ASR system — but minimisation and determination
means it is much smaller than naively combining the
transducers

@ But it is important in which order the algorithms are
combined otherwise the transducers may “blow-up” — basically
after each composition, first determinise then minimise

o In Kaldi, ignoring one or two details

HCLG = min(det(H o min(det(C o min(det(L o G))))))
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@ Alignment is the task of matching a recording to a transcript

@ In many circumstances the available transcript differs from a
verbatim transcript: for example, captions/subtitles for a TV
programme may not include every word spoken, or may
include paraphrasing

@ Performing alignment using such transcripts is of great
practical use

e time-aligning subtitles to the broadcast
o using the data for speech recognition training (lightly
supervised training)

@ In lightly supervised training we need to use the alignment to
identify reliable labels and learn from them — without also
learning from unreliable labels, or past mistakes

ASR Lecture 10 19



Alignment using a biased language model

@ Basic idea - transcribe the recording using a language model
biased towards the transcript

@ Train a biased language model on the supplied transcript,
interpolated (smoothed) with a background LM

p(Wt‘ht) = )\pbias(Wt|ht) + (1 - )‘)pbg(Wt|ht)

@ Decode the training data with a pre-existing acoustic model,
and the biased LM
© Align the captions with the ASR output
@ For lightly supervised training — select utterances where there
is a good match between the captions and the automatic
output
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Data selection subtitled TV recordin
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An alternative alignment method

@ The biased LM approach is quite computationally costly; it
can also lead to bias towards data that we can already
recognise well

@ Alternative approach: construct a WFST for each utterance

@ This allows the use of much stronger constraints — based on
the captions — at decoding time
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Alignment with WFSTs

A G transducer that allows any substring of the original captions —
known as a factor transducer
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Alignment with WFSTs

A determinized version of the G transducer

QUIZ:QUIZ

BOOK:BOOK

THE:THE

#0:<eps> @ TOTO
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AND:AND WELCOME:WELCOME
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Alignment with WFSTs

What about when word appears in the captions that was not
actually spoken?

Alter the design to be robust to this by allowing deletions (at a
cost)

HELLO:HELLON0.9

AND:AND/O0.9

QUIZ:QUIZI0.9
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Alignment with WFSTs

A determinized version
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The complete alignment process

© Decode with a factor-transducer for the each programme
@ Align the output to the original captions
© Re-segment the data, to potentially include missed speech

@ Decode again with utterance-specific factor transducers,
allowing word-skips
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Evaluating alignment

e Evaluation requires gold-standard (verbatim) transcriptions as
well as the captions to be aligned

@ Evaluate the alignment of the captions with respect to a
forced alignment of the gold-standard verbatim transcription

@ Words spoken but not in the captions are ignored

@ For words in both, systems judged correct if supplied timings
are correct within a 100ms window

@ Evaluated in terms of f-score

N N P xR
pP— match’R: match’/_—:2><
Nhyp Ner P+R

ASR Lecture 10 28



Alignment results on MGB

’ System Precision | Recall | F-score
Preliminary DNN AMs
Pass 1 FT 0.8816 | 0.7629 | 0.8180
+ force align 0.8290 | 0.7855 | 0.8066
Pass 2 FT+skip | 0.8679 | 0.8563 | 0.8620
Final DNN AMs
Pass 1 0.9009 | 0.8128 | 0.8546
Pass 2 FT+skip | 0.8856 | 0.9013 | 0.8934
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@ Search (decoding) in ASR involves finding the correct word
sequence given a sample recording

@ Weighted finite state transducer (WFST) framework —
provides a well-justified way to combine models at different
levels

e WFST algorithms - composition, determinisation,
minimisation

o Kaldi represents a speech recogniser as an HCLG transducer —
combining 4 transducers to map from HMM states to word
sequences

e WFSTs provide a way to represent various problems in speech
recognition, eg alignment
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