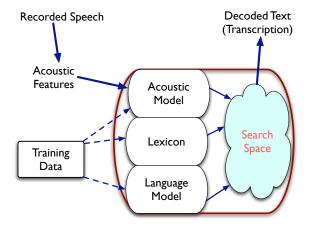
Decoding, Alignment, and WFSTs

Steve Renals

Automatic Speech Recognition – ASR Lecture 10 25 February 2019

크

HMM Speech Recognition



イロン イヨン イヨン ・

E

The Search Problem in ASR

• Find the most probable word sequence $\hat{W} = w_1, w_2, \dots, w_M$ given the acoustic observations $\mathbf{X} = \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$:

$$\hat{W} = \arg \max_{W} P(W|\mathbf{X})$$
$$= \arg \max_{W} \underbrace{p(\mathbf{X} \mid W)}_{\text{acoustic model language model}} \underbrace{P(W)}_{\text{language model}}$$

- Words are composed of state sequences so this problem corresponds to finding the most probable allowable state sequence (given the constraints of pronunciation lexicon and language model) **Viterbi decoding**
- In a large vocabulary task evaluating all possible word sequences in infeasible (even using an efficient exact algorithm)
 - Reduce the size of the search space through pruning unlikely hypotheses
 - Eliminate repeated computations

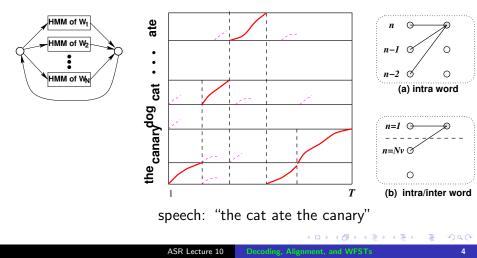
イロト イポト イヨト イヨト

Connected Word Recognition

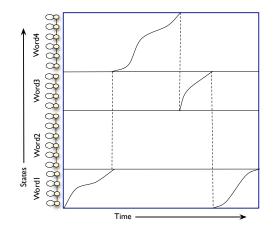
- The number of words in the utterance is not known
- Word boundaries are not known: *V* words may potentially start at each frame

Connected Word Recognition

- The number of words in the utterance is not known
- Word boundaries are not known: *V* words may potentially start at each frame



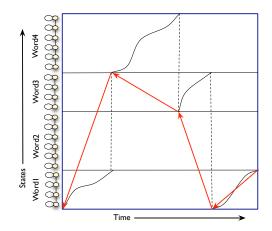
Time Alignment Path



・ロト ・日ト ・ヨト ・ヨト

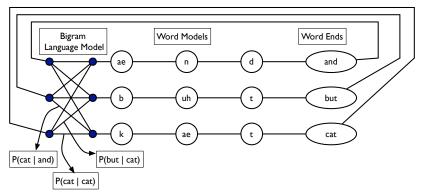
æ

Backtrace to Obtain Word Sequence



- Backpointer array keeps track of word sequence for a path: backpointer[word][wordStartFrame] = (prevWord, prevWordStartFrame)
- Backtrace through backpointer array to obtain the word sequence for a path

Incorporating a bigram language model



Trigram or longer span models require a word history.

イロト イヨト イヨト イヨト

æ

Computational Issues

- Viterbi decoding performs an exact search in an efficient manner
- Exact search is not possible for large vocabulary tasks
 - Cross-word triphones need to be handled carefully since the acoustic score of a word-final phone depends on the initial phone of the next word
 - Long-span language models (eg trigrams) greatly increase the size of the search space
- Solutions:
 - Beam search (prune low probability hypotheses)
 - Dynamic search structures
 - Multipass search (\rightarrow two-stage decoding)
 - Best-first search (\rightarrow stack decoding / A^{*} search)

ヘロト ヘヨト ヘヨト ヘヨト

Computational Issues

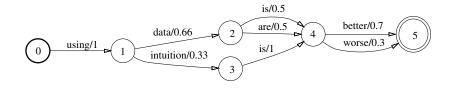
- Viterbi decoding performs an exact search in an efficient manner
- Exact search is not possible for large vocabulary tasks
 - Cross-word triphones need to be handled carefully since the acoustic score of a word-final phone depends on the initial phone of the next word
 - Long-span language models (eg trigrams) greatly increase the size of the search space
- Solutions:
 - Beam search (prune low probability hypotheses)
 - Dynamic search structures
 - Multipass search (\rightarrow two-stage decoding)
 - Best-first search (\rightarrow stack decoding / A* search)
- An alternative approach: Weighted Finite State Transducers (WFST)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Used by Kaldi
- Weighted finite state automaton that transduces an input sequence to an output sequence (Mohri et al 2008)
- States connected by transitions. Each transition has
 - input label
 - output label
 - weight

・ 同 ト ・ ヨ ト ・ ヨ ト

Weighted Finite State Acceptors



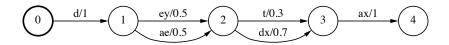


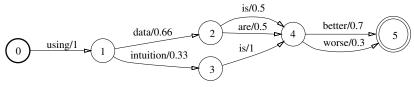
Image: A match the second s

→

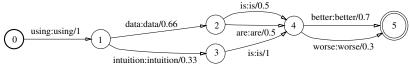
æ

Weighted Finite State Transducers

Acceptor



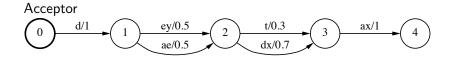
Transducer



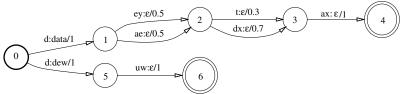
イロト イポト イヨト イヨト

크

Weighted Finite State Transducers



Transducer



< 17 ×

• 3 >

э

Composition Combine transducers at different levels. For example if G is a finite state grammar and L is a pronunciation dictionary then $L \circ G$ transduces a phone string to word strings allowed by the grammar

Determinisation Ensure that each state has no more than a single output transition for a given input label

Minimisation transforms a transducer to an equivalent transducer with the fewest possible states and transitions

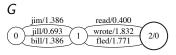
Applying WFSTs to speech recognition

• Represent the following components as WFSTs

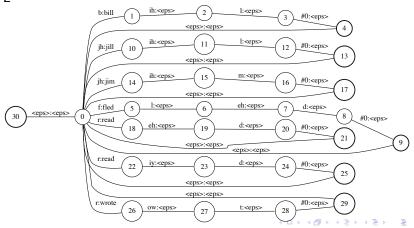
	transducer	input sequence	output sequence
G	word-level grammar	words	words
L	pronunciation lexicon	phones	words
С	context-dependency	CD phones	phones
Н	HMM	HMM states	CD phones

- Composing *L* and *G* results in a transducer *L* \circ *G* that maps a phone sequence to a word sequence
- $H \circ C \circ L \circ G$ results in a transducer that maps from HMM states to a word sequence

(4) E (4) E (4)



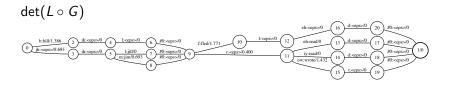
L

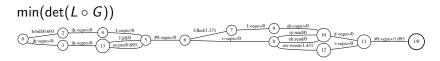


ASR Lecture 10 Decoding, Alignment, and WFSTs

$L \circ G$, det $(L \circ G)$, min $(det(L \circ G))$

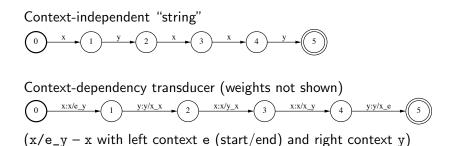
 $L \circ G$





・ロト ・日ト ・ヨト ・ヨト

æ



Decoding using WFSTs

- We can represent the HMM acoustic model, pronunciation lexicon and n-gram language model as four transducers: H, C, L, G
- Combining the transducers gives an overall "decoding graph" for our ASR system – but minimisation and determination means it is much smaller than naively combining the transducers
- But it is important in which order the algorithms are combined otherwise the transducers may "blow-up" – basically after each composition, first determinise then minimise
- In Kaldi, ignoring one or two details

 $HCLG = \min(\det(H \circ \min(\det(C \circ \min(\det(L \circ G)))))))$

Alignment

- Alignment is the task of matching a recording to a transcript
- In many circumstances the available transcript differs from a verbatim transcript: for example, captions/subtitles for a TV programme may not include every word spoken, or may include paraphrasing
- Performing alignment using such transcripts is of great practical use
 - time-aligning subtitles to the broadcast
 - using the data for speech recognition training (*lightly supervised training*)
- In lightly supervised training we need to use the alignment to identify reliable labels and learn from them – without also learning from unreliable labels, or past mistakes

ヘロト ヘヨト ヘヨト ヘヨト

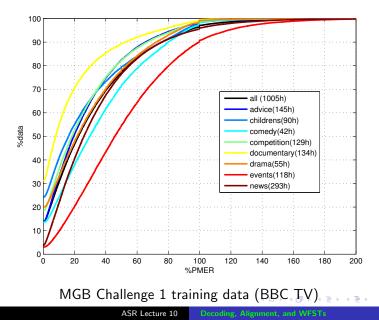
Alignment using a biased language model

- Basic idea transcribe the recording using a language model biased towards the transcript
 - Train a biased language model on the supplied transcript, interpolated (smoothed) with a background LM

 $p(w_t|h_t) = \lambda p_{bias}(w_t|h_t) + (1-\lambda)p_{bg}(w_t|h_t)$

- Oecode the training data with a pre-existing acoustic model, and the biased LM
- O Align the captions with the ASR output
- For lightly supervised training select utterances where there is a good match between the captions and the automatic output

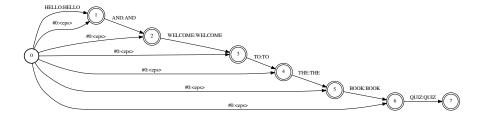
Data selection from subtitled TV recordings



An alternative alignment method

- The biased LM approach is quite computationally costly; it can also lead to bias towards data that we can already recognise well
- Alternative approach: construct a WFST for each utterance
- This allows the use of much stronger constraints based on the captions – at decoding time

A G transducer that allows any substring of the original captions – known as a *factor transducer*



A B > A B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

• 3 >

э

A determinized version of the G transducer

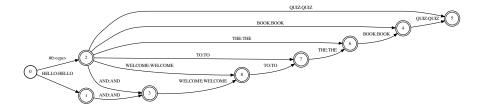


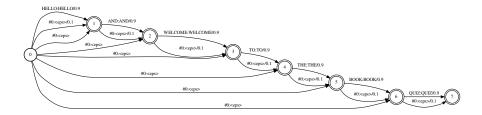
Image: A match the second s

→

э

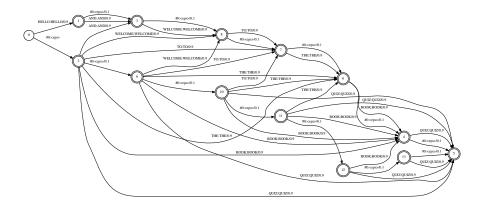
What about when word appears in the captions that was not actually spoken?

Alter the design to be robust to this by allowing deletions (at a cost)



Alignment with WFSTs

A determinized version



ъ

ヘロア 人間 アメヨア 人間 アー

The complete alignment process

- Decode with a factor-transducer for the each programme
- Align the output to the original captions
- Se-segment the data, to potentially include missed speech
- Oecode again with utterance-specific factor transducers, allowing word-skips

- Evaluation requires gold-standard (verbatim) transcriptions as well as the captions to be aligned
- Evaluate the alignment of the captions with respect to a forced alignment of the gold-standard verbatim transcription
- Words spoken but not in the captions are ignored
- For words in both, systems judged correct if supplied timings are correct within a 100ms window
- Evaluated in terms of f-score

$$P = rac{N_{match}}{N_{hyp}}, R = rac{N_{match}}{N_{ref}}, F = 2 imes rac{P imes R}{P + R}$$

System	Precision	Recall	F-score		
Preliminary DNN AMs					
Pass 1 FT	0.8816	0.7629	0.8180		
+ force align	0.8290	0.7855	0.8066		
Pass 2 FT+skip	0.8679	0.8563	0.8620		
Final DNN AMs					
Pass 1	0.9009	0.8128	0.8546		
Pass 2 FT+skip	0.8856	0.9013	0.8934		

ヘロト 人間 とくほとく ほとう

æ

Summary

- Search (decoding) in ASR involves finding the correct word sequence given a sample recording
- Weighted finite state transducer (WFST) framework provides a well-justified way to combine models at different levels
- WFST algorithms composition, determinisation, minimisation
- Kaldi represents a speech recogniser as an HCLG transducer combining 4 transducers to map from HMM states to word sequences
- WFSTs provide a way to represent various problems in speech recognition, eg alignment

イロト イポト イヨト イヨト

Reading

• Mohri et al (2008). "Speech recognition with weighted finite-state transducers." In Springer Handbook of Speech Processing, pp. 559-584. Springer.

http://www.cs.nyu.edu/~mohri/pub/hbka.pdf

- WFSTs in Kaldi. http://danielpovey.com/files/Lecture4.pdf
- Bell and Renals (2015), "A system for automatic alignment of broadcast media captions using weighted finite-state transducers," ASRU. https://doi.org/10.1109/ASRU.2015.7404861
- Moreno and Alberti (2009), "A factor automaton approach for the forced alignment of long speech recordings," *ICASSP*. https://doi.org/10.1109/ICASSP.2009.4960722
- Braunschweiler et al (2010), "Lightly supervised recognition for automatic alignment of large coherent speech recordings," *Interspeech*. http:

//www.isca-speech.org/archive/interspeech_2010/i10_2222.html

・ロト ・回 ト ・ヨト ・ヨト