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The Search Problem in ASR

Find the most probable word sequence Ŵ = w1,w2, . . . ,wM

given the acoustic observations X = x1, x2, . . . , xn:

Ŵ = arg max
W

P(W |X)

= arg max
W

p(X |W )︸ ︷︷ ︸
acoustic model

P(W )︸ ︷︷ ︸
language model

Words are composed of state sequences so this problem
corresponds to finding the most probable allowable state
sequence (given the constraints of pronunciation lexicon and
language model) - Viterbi decoding
In a large vocabulary task evaluating all possible word
sequences in infeasible (even using an efficient exact
algorithm)

Reduce the size of the search space through pruning unlikely
hypotheses
Eliminate repeated computations
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Connected Word Recognition

The number of words in the utterance is not known
Word boundaries are not known: V words may potentially
start at each frame
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speech: “the cat ate the canary”
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Backtrace to Obtain Word Sequence

Time
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Backpointer array keeps track of word sequence for a path:
backpointer[word][wordStartFrame] = (prevWord, prevWordStartFrame)

Backtrace through backpointer array to obtain the word
sequence for a path
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Incorporating a bigram language model
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Word Models Word Ends

P(cat | cat)

P(but | cat)P(cat | and)

Trigram or longer span models require a word history.
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Computational Issues

Viterbi decoding performs an exact search in an efficient
manner

Exact search is not possible for large vocabulary tasks

Cross-word triphones need to be handled carefully since the
acoustic score of a word-final phone depends on the initial
phone of the next word
Long-span language models (eg trigrams) greatly increase the
size of the search space

Solutions:

Beam search (prune low probability hypotheses)
Dynamic search structures
Multipass search (→ two-stage decoding)
Best-first search (→ stack decoding / A∗ search)

An alternative approach: Weighted Finite State Transducers
(WFST)
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Weighted Finite State Transducers

Used by Kaldi

Weighted finite state automaton that transduces an input
sequence to an output sequence (Mohri et al 2008)

States connected by transitions. Each transition has

input label
output label
weight
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Weighted Finite State Acceptors
Springer Handbook on Speech Processing and Speech Communication 3
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Figure 1: Weighted finite-state acceptor examples. By convention, the states are represented by circles and
marked with their unique number. The initial state is represented by a bold circle, final states by double
circles. The label l and weight w of a transition are marked on the corresponding directed arc by l/w. When
explicitly shown, the final weight w of a final state f is marked by f/w.

quite similar to a weighted acceptor except that it has
an input label, an output label and a weight on each
of its transitions. The examples in Figure 2 encode
(a superset of) the information in the WFSAs of Fig-
ure 1(a)-(b) as WFSTs. Figure 2(a) represents the
same language model as Figure 1(a) by giving each
transition identical input and output labels. This adds
no new information, but is a convenient way we use
often to treat acceptors and transducers uniformly.

Figure 2(b) represents a toy pronunciation lexi-
con as a mapping from phone strings to words in
the lexicon, in this example data and dew, with
probabilities representing the likelihoods of alterna-
tive pronunciations. It transduces a phone string that
can be read along a path from the start state to a fi-
nal state to a word string with a particular weight.
The word corresponding to a pronunciation is out-
put by the transition that consumes the first phone
for that pronunciation. The transitions that consume
the remaining phones output no further symbols, in-
dicated by the null symbol ϵ as the transition’s output
label. In general, an ϵ input label marks a transition
that consumes no input, and an ϵ output label marks
a transition that produces no output.

This transducer has more information than the
WFSA in Figure 1(b). Since words are encoded by

the output label, it is possible to combine the pronun-
ciation transducers for more than one word without
losing word identity. Similarly, HMM structures of
the form given in Figure 1(c) can be combined into
a single transducer that preserves phone model iden-
tity. This illustrates the key advantage of a transducer
over an acceptor: the transducer can represent a rela-
tionship between two levels of representation, for in-
stance between phones and words or between HMMs
and context-independent phones. More precisely, a
transducer specifies a binary relation between strings:
two strings are in the relation when there is a path
from an initial to a final state in the transducer that
has the first string as the sequence of input labels
along the path, and the second string as the sequence
of output labels along the path (ϵ symbols are left
out in both input and output). In general, this is a
relation rather than a function since the same input
string might be transduced to different strings along
two distinct paths. For a weighted transducer, each
string pair is also associated with a weight.

We rely on a common set of weighted trans-
ducer operations to combine, optimize, search and
prune them [Mohri et al., 2000]. Each operation
implements a single, well-defined function that has
its foundations in the mathematical theory of ratio-
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Figure 2: Weighted finite-state transducer examples. These are similar to the weighted acceptors in Figure 1
except output labels are introduced on each transition. The input label i, the output label o, and weight w of
a transition are marked on the corresponding directed arc by i : o/w.

nal power series [Salomaa and Soittola, 1978, Bers-
tel and Reutenauer, 1988, Kuich and Salomaa, 1986].
Many of those operations are the weighted trans-
ducer generalizations of classical algorithms for un-
weighted acceptors. We have brought together those
and a variety of auxiliary operations in a comprehen-
sive weighted finite-state machine software library
(FsmLib) available for non-commercial use from the
AT&T Labs – ResearchWeb site [Mohri et al., 2000].

Basic union, concatenation, and Kleene closure
operations combine transducers in parallel, in series,
and with arbitrary repetition, respectively. Other op-
erations convert transducers to acceptors by project-
ing onto the input or output label set, find the best
or the n best paths in a weighted transducer, remove
unreachable states and transitions, and sort acyclic
automata topologically.

Where possible, we provided lazy (also called on-
demand) implementations of algorithms. Any finite-
state object fsm can be accessed with the three main
methods fsm.start(), fsm.final(state),
and fsm.transitions(state) that return the
start state, the final weight of a state, and the transi-
tions leaving a state, respectively. This interface can
be implemented for concrete automata in an obvious
way: the methods simply return the requested infor-
mation from a stored representation of the automa-

ton. However, the interface can also be given lazy
implementations. For example, the lazy union of two
automata returns a new lazy fsm object. When the
object is first constructed, the lazy implementation
just initializes internal book-keeping data. It is only
when the interface methods request the start state, the
final weights, or the transitions (and their destination
states) leaving a state, that this information is actually
computed, and optionally cached inside the object for
later reuse. This approach has the advantage that if
only a part of the result of an operation is needed (for
example in a pruned search), then the unused part is
never computed, saving time and space. We refer the
interested reader to the library documentation and an
overview of the library [Mohri et al., 2000] for fur-
ther details on lazy finite-state objects.

We now discuss the key transducer operations
that are used in our speech applications for model
combination, redundant path removal, and size re-
duction, respectively.

2.3. Composition

Composition is the transducer operation for com-
bining different levels of representation. For in-
stance, a pronunciation lexicon can be composed
with a word-level grammar to produce a phone-to-
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WFST Algorithms

Composition Combine transducers at different levels. For example
if G is a finite state grammar and L is a
pronunciation dictionary then L ◦ G transduces a
phone string to word strings allowed by the grammar

Determinisation Ensure that each state has no more than a single
output transition for a given input label

Minimisation transforms a transducer to an equivalent transducer
with the fewest possible states and transitions
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Applying WFSTs to speech recognition

Represent the following components as WFSTs

transducer input sequence output sequence

G word-level grammar words words
L pronunciation lexicon phones words
C context-dependency CD phones phones
H HMM HMM states CD phones

Composing L and G results in a transducer L ◦ G that maps a
phone sequence to a word sequence

H ◦ C ◦ L ◦ G results in a transducer that maps from HMM
states to a word sequence
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Context dependency transducer C

Context-independent “string”

Springer Handbook on Speech Processing and Speech Communication 21
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Figure 16: Context-dependent composition examples: (a) context-independent ‘string’, (b) context-
dependency applied to (a), (c) context-independent automaton, (d) context-dependency applied to (c).
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dependency applied to (a), (c) context-independent automaton, (d) context-dependency applied to (c).

(x/e_y – x with left context e (start/end) and right context y)
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Decoding using WFSTs

We can represent the HMM acoustic model, pronunciation
lexicon and n-gram language model as four transducers: H, C,
L, G

Combining the transducers gives an overall “decoding graph”
for our ASR system – but minimisation and determination
means it is much smaller than naively combining the
transducers

But it is important in which order the algorithms are
combined otherwise the transducers may “blow-up” – basically
after each composition, first determinise then minimise

In Kaldi, ignoring one or two details

HCLG = min(det(H ◦min(det(C ◦min(det(L ◦ G ))))))
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Alignment

Alignment is the task of matching a recording to a transcript

In many circumstances the available transcript differs from a
verbatim transcript: for example, captions/subtitles for a TV
programme may not include every word spoken, or may
include paraphrasing

Performing alignment using such transcripts is of great
practical use

time-aligning subtitles to the broadcast
using the data for speech recognition training (lightly
supervised training)

In lightly supervised training we need to use the alignment to
identify reliable labels and learn from them – without also
learning from unreliable labels, or past mistakes
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Alignment using a biased language model

Basic idea - transcribe the recording using a language model
biased towards the transcript

1 Train a biased language model on the supplied transcript,
interpolated (smoothed) with a background LM

p(wt |ht) = λpbias(wt |ht) + (1− λ)pbg (wt |ht)

2 Decode the training data with a pre-existing acoustic model,
and the biased LM

3 Align the captions with the ASR output

For lightly supervised training – select utterances where there
is a good match between the captions and the automatic
output
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Data selection from subtitled TV recordings
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An alternative alignment method

The biased LM approach is quite computationally costly; it
can also lead to bias towards data that we can already
recognise well

Alternative approach: construct a WFST for each utterance

This allows the use of much stronger constraints – based on
the captions – at decoding time
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Alignment with WFSTs

A G transducer that allows any substring of the original captions –
known as a factor transducer
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Alignment with WFSTs

A determinized version of the G transducer
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Alignment with WFSTs

What about when word appears in the captions that was not
actually spoken?
Alter the design to be robust to this by allowing deletions (at a
cost)
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Alignment with WFSTs

A determinized version
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The complete alignment process

1 Decode with a factor-transducer for the each programme

2 Align the output to the original captions

3 Re-segment the data, to potentially include missed speech

4 Decode again with utterance-specific factor transducers,
allowing word-skips
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Evaluating alignment

Evaluation requires gold-standard (verbatim) transcriptions as
well as the captions to be aligned

Evaluate the alignment of the captions with respect to a
forced alignment of the gold-standard verbatim transcription

Words spoken but not in the captions are ignored

For words in both, systems judged correct if supplied timings
are correct within a 100ms window

Evaluated in terms of f-score

P =
Nmatch

Nhyp
,R =

Nmatch

Nref
,F = 2× P × R

P + R
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Alignment results on MGB

System Precision Recall F-score

Preliminary DNN AMs

Pass 1 FT 0.8816 0.7629 0.8180
+ force align 0.8290 0.7855 0.8066
Pass 2 FT+skip 0.8679 0.8563 0.8620

Final DNN AMs

Pass 1 0.9009 0.8128 0.8546
Pass 2 FT+skip 0.8856 0.9013 0.8934
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Summary

Search (decoding) in ASR involves finding the correct word
sequence given a sample recording

Weighted finite state transducer (WFST) framework –
provides a well-justified way to combine models at different
levels

WFST algorithms - composition, determinisation,
minimisation

Kaldi represents a speech recogniser as an HCLG transducer –
combining 4 transducers to map from HMM states to word
sequences

WFSTs provide a way to represent various problems in speech
recognition, eg alignment
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