
Neural Networks for Acoustic Modelling 3:
Context-dependent DNNs and TDNNs

Steve Renals

Automatic Speech Recognition – ASR Lecture 9
11 February 2019

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 1

Recap: DNN for TIMIT

3-8 hidden layers

~2000 hidden units

3x61 = 183 state outputs

~2000 hidden units

9x39 MFCC inputs

Deeper: Deep neural network
architecture – multiple hidden
layers

Wider: Use HMM state
alignment as outputs rather than
hand-labelled phones – 3-state
HMMs, so 3×48 states

Training many hidden layers is
computationally expensive – use
GPUs to provide the
computational power

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 2

Context Dependent

DNN Acoustic Models

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 3

DNN acoustic model for Switchboard

7 hidden layers

2048 hidden units

9304 CD state outputs

2048 hidden units

9x39 = 351 PLP inputs

(Hinton et al (2012))

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 4

Context-dependent hybrid HMM/DNN

First train a context-dependent HMM/GMM system on the
same data, using a phonetic decision tree to determine the
HMM tied states

Perform Viterbi alignment using the trained HMM/GMM and
the training data

Train a neural network to map the input speech features to a
label representing a context-dependent tied HMM state

So the size of the label set is thousands (number of
context-dependent tied states) rather than tens (number of
context-independent phones) Each frame is labelled with the
Viterbi aligned tied state

Train the neural network using gradient descent as usual

Use the context-dependent scaled likelihoods obtained from
the neural network when decoding

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 5

Example: hybrid HMM/DNN large vocabulary
conversational speech recognition (Switchboard)

Recognition of American English conversational telephone
speech (Switchboard)

Baseline context-dependent HMM/GMM system

9,304 tied states
Discriminatively trained (BMMI — similar to MPE)
39-dimension PLP (+ derivatives) features
Trained on 309 hours of speech

Hybrid HMM/DNN system

Context-dependent — 9304 output units obtained from Viterbi
alignment of HMM/GMM system
7 hidden layers, 2048 units per layer

DNN-based system results in significant word error rate
reduction compared with GMM-based system

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 6

DNN vs GMM on large vocabulary tasks (Experiments
from 2012)

IEEE SIGNAL PROCESSING MAGAZINE [92] NOVEMBER 2012

and model-space discriminative training is applied using the
BMMI or MPE criterion.

Using alignments from a baseline system, [32] trained a
DBN-DNN acoustic model on 50 h of data from the 1996 and
1997 English Broadcast News Speech Corpora [37]. The
 DBN-DNN was trained with the
best-performing LVCSR features,
specifically the SAT+DT features.
The DBN-DNN architecture con-
sisted of six hidden layers with
1,024 units per layer and a final
softmax layer of 2,220 context-
dependent states. The SAT+DT
feature input into the first layer
used a context of nine frames.
Pretraining was performed fol-
lowing a recipe similar to [42].

Two phases of fine-tuning were performed. During the first
phase, the cross entropy loss was used. For cross entropy train-
ing, after each iteration through the whole training set, loss is
measured on a held-out set and the learning rate is annealed
(i.e., reduced) by a factor of two if the held-out loss has grown
or improves by less than a threshold of 0.01% from the previ-
ous iteration. Once the learning rate has been annealed five
times, the first phase of fine-tuning stops. After weights are
learned via cross entropy, these weights are used as a starting
point for a second phase of fine-tuning using a sequence crite-
rion [37] that utilizes the MPE objective function, a discrimi-
native objective function similar to MMI [7] but which takes
into account phoneme error rate.

A strong SAT+DT GMM-HMM baseline system, which con-
sisted of 2,220 context-dependent states and 50,000 Gaussians,
gave a WER of 18.8% on the EARS Dev-04f set, whereas the
DNN-HMM system gave 17.5% [50].

SUMMARY OF THE MAIN RESULTS FOR
DBN-DNN ACOUSTIC MODELS ON LVCSR TASKS
Table 3 summarizes the acoustic modeling results described
above. It shows that DNN-HMMs consistently outperform
GMM-HMMs that are trained on the same amount of data,
sometimes by a large margin. For some tasks, DNN-HMMs
also outperform GMM-HMMs that are trained on much
more data.

SPEEDING UP DNNs AT RECOGNITION TIME
State pruning or Gaussian selection methods can be used to
make GMM-HMM systems computationally efficient at recogni-
tion time. A DNN, however, uses virtually all its parameters at
every frame to compute state likelihoods, making it potentially

much slower than a GMM with a
comparable number of parame-
ters. Fortunately, the time that a
DNN-HMM system requires to
recognize 1 s of speech can be
reduced from 1.6 s to 210 ms,
without decreasing recognition
accuracy, by quantizing the
weights down to 8 b and using
the very fast SIMD primitives for
fixed-point computation that are
provided by a modern x86 cen-

tral processing unit [49]. Alternatively, it can be reduced to
66 ms by using a graphics processing unit (GPU).

ALTERNATIVE PRETRAINING METHODS FOR DNNs
Pretraining DNNs as generative models led to better recognition
results on TIMIT and subsequently on a variety of LVCSR tasks.
Once it was shown that DBN-DNNs could learn good acoustic
models, further research revealed that they could be trained in
many different ways. It is possible to learn a DNN by starting with
a shallow neural net with a single hidden layer. Once this net has
been trained discriminatively, a second hidden layer is interposed
between the first hidden layer and the softmax output units and
the whole network is again discriminatively trained. This can be
continued until the desired number of hidden layers is reached,
after which full backpropagation fine-tuning is applied.

This type of discriminative pretraining works well in prac-
tice, approaching the accuracy achieved by generative DBN pre-
training and further improvement can be achieved by stopping
the discriminative pretraining after a single epoch instead of
multiple epochs as reported in [45]. Discriminative pretraining
has also been found effective for the architectures called “deep
convex network” [51] and “deep stacking network” [52], where
pretraining is accomplished by convex optimization involving
no generative models.

Purely discriminative training of the whole DNN from ran-
dom initial weights works much better than had been thought,

provided the scales of the initial
weights are set carefully, a large
amount of labeled training data is
available, and minibatch sizes over
training epochs are set appropri-
ately [45], [53]. Nevertheless, gen-
erative pretraining still improves
test performance, sometimes by a
significant amount.

Layer-by-layer generative pre-
training was originally done
using RBMs, but various types of

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND
GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

TASK
HOURS OF
TRAINING DATA DNN-HMM

GMM-HMM
WITH SAME DATA

GMM-HMM
WITH MORE DATA

SWITCHBOARD (TEST SET 1) 309 18.5 27.4 18.6 (2,000 H)

SWITCHBOARD (TEST SET 2) 309 16.1 23.6 17.1 (2,000 H)

ENGLISH BROADCAST NEWS 50 17.5 18.8

BING VOICE SEARCH
(SENTENCE ERROR RATES) 24 30.4 36.2

GOOGLE VOICE INPUT 5,870 12.3 16.0 (22 5,870 H)

YOUTUBE 1,400 47.6 52.3

DISCRIMINATIVE PRETRAINING
HAS ALSO BEEN FOUND EFFECTIVE
FOR THE ARCHITECTURES CALLED
“DEEP CONVEX NETWORK” AND

“DEEP STACKING NETWORK,” WHERE
PRETRAINING IS ACCOMPLISHED BY
CONVEX OPTIMIZATION INVOLVING

NO GENERATIVE MODELS.

(Hinton et al (2012))

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 7

TDNNs
Time-delay Neural Networks

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 8

Modelling acoustic context

DNNs allow the network to model acoustic context by
including neighbouring frame in the input layer – the output is
thus estimating the phone or state probability using that
contextual information

Richer NN models of acoustic context
Time-delay neural networks (TDNNs)

each layer processes a context window from the previous layer
higher hidden layers have a wider receptive field into the input

Recurrent neural networks (RNNs)

hidden units at time t take input from their value at time t− 1
these recurrent connections allow the network to learn state

Both approaches try to learn invariances in time, and form
representations based on compressing the history of
observations

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 9

TDNNs – first hidden layer receptive field

Time

Features
Input
Layer

Hidden
Units Hidden

Layer 1

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 10

TDNNs – first hidden layer receptive field

Time

Features
Input
Layer

Hidden
Units Hidden

Layer 1

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 10

TDNNs – first hidden layer receptive field

Time

Features
Input
Layer

Hidden
Units Hidden

Layer 1

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 10

TDNNs – first hidden layer receptive field

Time

Features
Input
Layer

Hidden
Units Hidden

Layer 1

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 10

TDNNs – first hidden layer receptive field

Time

Features
Input
Layer

Hidden
Units Hidden

Layer 1

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 10

TDNNs – first hidden layer receptive field

Time

Features
Input
Layer

Hidden
Units Hidden

Layer 1

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 10

TDNNs – first hidden layer receptive field

Time

Features
Input
Layer

Hidden
Units Hidden

Layer 1

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 10

TDNNs – second hidden layer receptive field

Time

Features

Input
Layer

Hidden
Units Hidden

Layer 1

Hidden
Layer 2

Higher hidden layers take input
from a time window over the
previous hidden layer

Lower hidden layers learn from
narrower contexts, higher hidden
layers from wider acoustic
contexts

Receptive field increases for
higher hidden layers

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 11

TDNNs – second hidden layer receptive field

Time

Features

Input
Layer

Hidden
Units Hidden

Layer 1

Hidden
Layer 2

Higher hidden layers take input
from a time window over the
previous hidden layer

Lower hidden layers learn from
narrower contexts, higher hidden
layers from wider acoustic
contexts

Receptive field increases for
higher hidden layers

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 11

TDNNs – second hidden layer receptive field

Time

Features

Input
Layer

Hidden
Units Hidden

Layer 1

Hidden
Layer 2

Higher hidden layers take input
from a time window over the
previous hidden layer

Lower hidden layers learn from
narrower contexts, higher hidden
layers from wider acoustic
contexts

Receptive field increases for
higher hidden layers

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 11

TDNNs – second hidden layer receptive field

Time

Features

Input
Layer

Hidden
Units Hidden

Layer 1

Hidden
Layer 2

Higher hidden layers take input
from a time window over the
previous hidden layer

Lower hidden layers learn from
narrower contexts, higher hidden
layers from wider acoustic
contexts

Receptive field increases for
higher hidden layers

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 11

Example TDNN Architecture

t-11 t t+11

t+9tt-9

tt-7 t+7

tt-5 t+5

t

t

TDNN Layer
[-2,2]

TDNN Layer
[-2,2]

TDNN Layer
[-2,2]

TDNN Layer
[-5,5]

Fully connected layer
(TDNN Layer [0])

Input Features

Output HMM states

View a TDNN as a 1D
convolutional network
with the transforms for
each hidden unit tied
across time

TDNN layer with context
[-2,2] has 5x as many
weights as a regular DNN
layer

More computation, more
storage required!

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 12

Example TDNN Architecture

t-11 t t+11

t+9tt-9

tt-7 t+7

tt-5 t+5

t

t

TDNN Layer
[-2,2]

TDNN Layer
[-2,2]

TDNN Layer
[-2,2]

TDNN Layer
[-5,5]

Fully connected layer
(TDNN Layer [0])

Input Features

Output HMM states

Hidden layer
~700 ReLU hidden units

View a TDNN as a 1D
convolutional network
with the transforms for
each hidden unit tied
across time

TDNN layer with context
[-2,2] has 5x as many
weights as a regular DNN
layer

More computation, more
storage required!

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 12

Example TDNN Architecture

t-11 t t+11

t+9tt-9

tt-7 t+7

tt-5 t+5

t

t

TDNN Layer
[-2,2]

TDNN Layer
(-2,2)

TDNN Layer
[-2,2]

TDNN Layer
[-5,5]

Fully connected layer
(TDNN Layer [0])

Input Features

Output HMM states

Hidden layer
~700 ReLU hidden units

Incoming weights from
5x700 units

View a TDNN as a 1D
convolutional network
with the transforms for
each hidden unit tied
across time

TDNN layer with context
[-2,2] has 5x as many
weights as a regular DNN
layer

More computation, more
storage required!

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 12

Comparison with DNN with input window

t
Input Features

Output HMM states

t+4t-4

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 13

Comparison with DNN with input window

t
Input Features

Output HMM states

t+4t-4

Hidden layer
~700 ReLU hidden units

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 13

Comparison with DNN with input window

t
Input Features

Output HMM states

t+4t-4

Hidden layer
~700 ReLU hidden units

Incoming weights from
1x700 units

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 13

Sub-sampled TDNN

t-11 t t+11

t+9tt-9

tt-7 t+7

tt-5 t+5

t

t

TDNN Layer
[-2,2]

TDNN Layer
{-2,2}

TDNN Layer
{-2,2}

TDNN Layer
{-5,5}

Fully connected layer
(TDNN Layer (0))

Input Features

Output HMM states

Sub sample window of
hidden unit activations

Large overlaps between
input contexts at
adjacent time steps –
likely to be correlated

Allow gaps between
frames in a window (cf.
dilated convolutions)

Sub-sampling saves
computation and reduces
number of model size
(number of weights)

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 14

Example sub-sampled TDNN

tackle late reverberations, DNNs should be able to model tem-
poral relationships across wide acoustic contexts.

TDNNs [5], which are feed-forward neural networks, with
the ability to model long-term temporal relationships, were used
here. We used the sub-sampling technique proposed in [6] to
achieve an acceptable training time.

In Section 3 we describe the time delay neural network ar-
chitecture in greater detail.

3. Neural network architecture
In a TDNN architecture the initial transforms are learnt on nar-
row contexts and the deeper layers process the hidden activa-
tions from increasingly wider contexts. Hence the higher layers
have the ability to learn longer temporal relationships. However
the training time of a TDNN is substantially larger than that of
a DNN, when modeling long temporal contexts, despite the use
of speed-up techniques such as [19].

In [6] a sub-sampling technique was proposed to reduce the
number of hidden activations computed in the TDNN, while en-
suring that the information from all time steps in the input con-
text was used. Figure 1 shows time steps at which activations
are computed, at each layer, and the dependencies between ac-
tivations across layers, both in a conventional TDNN (blue+red
edges) and a sub-sampled TDNN (red edges), in order to com-
pute the network output at time t. The use of sub-sampling
speeds up the training by ⇠ 5x in the baseline TDNN architec-
ture shown in Figure 1.

t-4

-1 +2

t

t-7 t+2

t-10 t-1 t+5

t-11 t+7

t-13 t+9

-7 +2

-1 +2

-2 +2

-1 +2 -1 +2

-3 +3 -3 +3

t+1 t+4 t-2 t-5 t-8

Layer 4

Layer 3

Layer 2

Layer 1

Figure 1: Computation in TDNN with sub-sampling (red) and
without sub-sampling (blue+red)

The hyper-parameters which define the sub-sampled TDNN
network structure are the set of frame offsets that we require
as an input to each layer. In the case pictured, these are
{�2,�1, 0, 1, 2}, {�1, 2}, {�3, 3} and {�7, 2}. In a conven-
tional TDNN, these input frame offsets would always be con-
tiguous. However, in our work we sub-sample these; in our
normal configuration, the frame splicing at the hidden layers
splices together just two frames, separated by a delay that in-
creases as we go to higher layers of the network [6].

In this paper we were able to operate on input contexts of up
to 280 ms without detriment in performance, using the TDNN.
Thus the TDNN has the capability to tackle corruptions due to
late reverberations.

Our TDNN uses the p-norm non-linearity [20]. We use a
group size of of 10, and the 2-norm.

3.1. Input Features

Mel-frequency cepstral coefficients (MFCCs) [21], without
cepstral truncation, were used as input to the neural network.
40 MFCCs were computed at each time index. MFCCs over a
wide asymmetric temporal context were provided to the neural
network. Different contexts were explored in this paper. 100
dimensional iVectors were also provided as an input to the net-
work, every time frame. Section 4 describes the iVector extrac-
tion process during training and decoding in greater detail.

3.2. Training recipe

The paper follows the training recipe detailed in [20]. It uses
greedy layer-wise supervised training, preconditioned stochas-
tic gradient descent (SGD) updates, an exponentially decreas-
ing learning rate schedule and mixing-up. Parallel training of
the DNNs using up to 18 GPUs was done using the model aver-
aging technique in [13].

3.2.1. Modified sMBR sequence training

Sequence training was done on the DNN, based on a state-level
variant of the Minimum Phone Error (MPE) criterion, called
sMBR [22] . The training recipe mostly follows [23], although
it has been modified for the parallel-training method. Training
is run in parallel using 12 GPUs, while periodically averaging
the parameters, just as in the cross-entropy training phase.

Our previous sMBR-based training recipe degraded results
on the ASpIRE setup, so we introduced a modification to the
recipe which we have since found to be useful more generally,
in other LVCSR tasks.

In the sMBR objective function, as for MPE, insertion er-
rors are not penalized. This can lead to larger number of inser-
tion errors when decoding with sMBR trained acoustic models.
Correcting this asymmetry in the sMBR objective function, by
penalizing insertions, was shown to improve the WER perfor-
mance of sMBR models by 10% relative. In standard sMBR
training [22, 24], the frame error is always set to zero if the
reference is silence, which means that insertions into silence
regions are not penalized. In other words, frames where the
reference alignment is silence are treated specially. (Note that
in our implementation several phones, including silence, vo-
calized noise and non-spoken noise, are treated as silence for
these purposes.) In our modified sMBR training method, we
treat silence as any other phone, except that all pdfs of silence
phones are collapsed into a single class for the frame-error com-
putation. This means that replacing one silence phone with an-
other silence phone is not penalized (e.g. replacing silence with
vocalized-noise is not penalized), but insertion of a non-silence
phone into a silence region is penalized. This is closer to the
WER metric that we actually care about, since WER is gener-
ally computed after filtering out noises, but does penalize in-
sertions. We call our modified criterion the “one-silence-class”
modification of sMBR.

4. iVector Extraction
In this section we describe the iVector estimation process
adopted during training and decoding. We discuss issues in es-
timating iVectors from noisy unsegmented speech recordings,
and in using these noisy estimates of iVectors as input to neural
networks.

On each frame we append a 100-dimensional iVector [25]
to the 40-dimensional MFCC input. The MFCC input is not

Peddinti (2015)

Sub-sampled
Layer Context Context

1 [-2,2] [-2,2]
2 [-1,2] {-1,2}
3 [-3,3] {-3,3}
4 [-7,2] {-7,2}
5 {0} {0}

Increase the context for higher layers of the network

Subsampled so that difference between sampled hidden units
is multiple of 3 to enable “clean” sub-sampling

Asymmetric contexts

MFCC features in this case

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 15

Switchboard results – DNN vs TDNN

Table 2: Performance comparison of DNN and TDNN with various temporal contexts

Model Network Context Layerwise Context WER
1 2 3 4 5 Total SWB

DNN-A [�7, 7] [�7, 7] {0} {0} {0} {0} 22.1 15.5
DNN-A2 [�7, 7] [�7, 7] {0} {0} {0} {0} 21.6 15.1
DNN-B [�13, 9] [�13, 9] {0} {0} {0} {0} 22.3 15.7
DNN-C [�16, 9] [�16, 9] {0} {0} {0} {0} 22.3 15.7

TDNN-A [�7, 7] [�2, 2] {�2, 2} {�3, 4} {0} {0} 21.2 14.6
TDNN-B [�9, 7] [�2, 2] {�2, 2} {�5, 3} {0} {0} 21.2 14.5
TDNN-C [�11, 7] [�2, 2] {�1, 1} {�2, 2} {�6, 2} {0} 20.9 14.2
TDNN-D [�13, 9] [�2, 2] {�1, 2} {�3, 4} {�7, 2} {0} 20.8 14.0
TDNN-E [�16, 9] [�2, 2] {�2, 2} {�5, 3} {�7, 2} {0} 20.9 14.2

Table 3: Results on SWBD LVCSR task with data augmentation and enhanced lexicon

Acoustic Model + Language Model WER
Total SWB

TDNN - D + pp 21.9 14.8
TDNN - D + pp + fg 20.4 13.6
TDNN - D + pp + fg + sp + vp 19.2 12.9
TDNN - D + pp + fg + sp + vp + silp 19.0 12.7
TDNN - D + pp + fg + sp + vp + sequence training 17.6 11.4
TDNN - D + pp + fg + sp + vp + sequence training + pa 17.1 11
unfolded RNN + fMLLR features + iVectors [13] - 12.7
unfolded RNN + fMLLR features + iVectors + sequence training [13] - 11.3
CNN/DNN joint training + fMLLR features + iVectors [25] - 12.1
CNN/DNN joint training + fMLLR features + iVectors + sequence training[25] - 10.4

pp : pronunciation probabilities sp : speed perturbation
fg : 4-gram LM rescoring vp : volume perturbation
silp : word position dependent silence probabilities pa : prior adjustment

5.1. Performance of TDNNs on various LVCSR tasks

Table 4: Baseline vs TDNN on various LVCSR tasks with dif-
ferent amount of training data

Database Size WER Rel.
DNN TDNN Change

Res. Management 3h hrs 2.27 2.30 -1.3
Wall Street Journal 80 hrs 6.57 6.22 5.3

TedLIUM 118 hrs 19.3 17.9 7.2
Switchboard 300 hrs 15.5 14.0 9.6
Librispeech 960 hrs 5.19 4.83 6.9

Fisher English 1800 hrs 22.24 21.03 5.4

Experiments were done using Kaldi speech recognition
toolkit [27] on Resource Management [28], Wall Street Journal
[29], TedLIUM [30], Switchboard [7], Librispeech [31] and the
english portion of Fisher corpora [32]. The amount of training
data available for acoustic modeling varies from 3-1800 hours
across the setups mentioned. The recipes for these experiments
are available in the Kaldi code repository [27] 2.

An average relative improvement 5.52% was observed over
the baseline DNN architecture through the use of TDNN archi-
tecture to process wider contexts. It is to be noted that the num-

2e.g. https://svn.code.sf.net/p/kaldi/code/
trunk/egs/swbd/s5c/local/online/run_nnet2_ms.sh
in revision 5125

ber of parameters in the system are not matched between DNN
and TDNN architectures. However the individual systems were
tuned for best performance, given the architecture.

In the Resource Management medium-vocabulary task, we
did not see gains from TDNNs. This could be due to the slight
increase in parameters in the TDNN architecture when process-
ing larger input contexts.

6. Conclusion
The effectiveness of TDNNs in processing wider context inputs
was shown in small and large data scenarios. An input temporal
context of [t�13, t+9] was found to be optimal. Further using
efficient selection of sub-sampling indices speed-ups were be
obtained during training. An average relative improvement of
5.52% was reported across 6 different LVCSR tasks, compared
with our previous DNN configuration. Our results are also 2.6%
relative better than a previously reported result from the litera-
ture using an unfolded RNN architecture operating on speaker
adapted features [13]. Our future work involves switching from
the p-norm nonlinearity to ReLU, which according to some pre-
liminary experiments seems to work better in the TDNN frame-
work.

7. Acknowledgements
The authors would like to thank Pegah Ghahrmani for dis-
cussing results on comparison of p-norm and ReLU layers, in
the context of TDNNs.

3217

Peddinti (2015)

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 16

DNN vs TDNN on other datasets

Table 2: Performance comparison of DNN and TDNN with various temporal contexts

Model Network Context Layerwise Context WER
1 2 3 4 5 Total SWB

DNN-A [�7, 7] [�7, 7] {0} {0} {0} {0} 22.1 15.5
DNN-A2 [�7, 7] [�7, 7] {0} {0} {0} {0} 21.6 15.1
DNN-B [�13, 9] [�13, 9] {0} {0} {0} {0} 22.3 15.7
DNN-C [�16, 9] [�16, 9] {0} {0} {0} {0} 22.3 15.7

TDNN-A [�7, 7] [�2, 2] {�2, 2} {�3, 4} {0} {0} 21.2 14.6
TDNN-B [�9, 7] [�2, 2] {�2, 2} {�5, 3} {0} {0} 21.2 14.5
TDNN-C [�11, 7] [�2, 2] {�1, 1} {�2, 2} {�6, 2} {0} 20.9 14.2
TDNN-D [�13, 9] [�2, 2] {�1, 2} {�3, 4} {�7, 2} {0} 20.8 14.0
TDNN-E [�16, 9] [�2, 2] {�2, 2} {�5, 3} {�7, 2} {0} 20.9 14.2

Table 3: Results on SWBD LVCSR task with data augmentation and enhanced lexicon

Acoustic Model + Language Model WER
Total SWB

TDNN - D + pp 21.9 14.8
TDNN - D + pp + fg 20.4 13.6
TDNN - D + pp + fg + sp + vp 19.2 12.9
TDNN - D + pp + fg + sp + vp + silp 19.0 12.7
TDNN - D + pp + fg + sp + vp + sequence training 17.6 11.4
TDNN - D + pp + fg + sp + vp + sequence training + pa 17.1 11
unfolded RNN + fMLLR features + iVectors [13] - 12.7
unfolded RNN + fMLLR features + iVectors + sequence training [13] - 11.3
CNN/DNN joint training + fMLLR features + iVectors [25] - 12.1
CNN/DNN joint training + fMLLR features + iVectors + sequence training[25] - 10.4

pp : pronunciation probabilities sp : speed perturbation
fg : 4-gram LM rescoring vp : volume perturbation
silp : word position dependent silence probabilities pa : prior adjustment

5.1. Performance of TDNNs on various LVCSR tasks

Table 4: Baseline vs TDNN on various LVCSR tasks with dif-
ferent amount of training data

Database Size WER Rel.
DNN TDNN Change

Res. Management 3h hrs 2.27 2.30 -1.3
Wall Street Journal 80 hrs 6.57 6.22 5.3

TedLIUM 118 hrs 19.3 17.9 7.2
Switchboard 300 hrs 15.5 14.0 9.6
Librispeech 960 hrs 5.19 4.83 6.9

Fisher English 1800 hrs 22.24 21.03 5.4

Experiments were done using Kaldi speech recognition
toolkit [27] on Resource Management [28], Wall Street Journal
[29], TedLIUM [30], Switchboard [7], Librispeech [31] and the
english portion of Fisher corpora [32]. The amount of training
data available for acoustic modeling varies from 3-1800 hours
across the setups mentioned. The recipes for these experiments
are available in the Kaldi code repository [27] 2.

An average relative improvement 5.52% was observed over
the baseline DNN architecture through the use of TDNN archi-
tecture to process wider contexts. It is to be noted that the num-

2e.g. https://svn.code.sf.net/p/kaldi/code/
trunk/egs/swbd/s5c/local/online/run_nnet2_ms.sh
in revision 5125

ber of parameters in the system are not matched between DNN
and TDNN architectures. However the individual systems were
tuned for best performance, given the architecture.

In the Resource Management medium-vocabulary task, we
did not see gains from TDNNs. This could be due to the slight
increase in parameters in the TDNN architecture when process-
ing larger input contexts.

6. Conclusion
The effectiveness of TDNNs in processing wider context inputs
was shown in small and large data scenarios. An input temporal
context of [t�13, t+9] was found to be optimal. Further using
efficient selection of sub-sampling indices speed-ups were be
obtained during training. An average relative improvement of
5.52% was reported across 6 different LVCSR tasks, compared
with our previous DNN configuration. Our results are also 2.6%
relative better than a previously reported result from the litera-
ture using an unfolded RNN architecture operating on speaker
adapted features [13]. Our future work involves switching from
the p-norm nonlinearity to ReLU, which according to some pre-
liminary experiments seems to work better in the TDNN frame-
work.

7. Acknowledgements
The authors would like to thank Pegah Ghahrmani for dis-
cussing results on comparison of p-norm and ReLU layers, in
the context of TDNNs.

3217

Peddinti (2015)

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 17

Summary and Conclusions

Scaling DNNs for large vocabulary speech recognition

Context-dependent DNNs – use state clusters from CD
HMM/GMM as output labels – results in significant
improvements in accuracy for DNNs over GMMs

Richer temporal modelling – time-delay neural networks
(TDNNs)

Sub-sampled TDNNs

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 18

Reading

A Maas et al (2017). “Building DNN acoustic models for
large vocabulary speech recognition”, Computer Speech and
Language, 41:195–213.
https://web.stanford.edu/class/cs224s/papers/

maas_et_al_2017.pdf

V Peddinti et al (2015). “A time delay neural network
architecture for efficient modeling of long temporal contexts”,
Interspeech.
https://www.isca-speech.org/archive/interspeech_

2015/i15_3214.html

Background Reading:

G Hinton et al (Nov 2012). “Deep neural networks for
acoustic modeling in speech recognition”, IEEE Signal
Processing Magazine, 29(6), 82–97.
http://ieeexplore.ieee.org/document/6296526

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 19

https://web.stanford.edu/class/cs224s/papers/maas_et_al_2017.pdf
https://web.stanford.edu/class/cs224s/papers/maas_et_al_2017.pdf
https://www.isca-speech.org/archive/interspeech_2015/i15_3214.html
https://www.isca-speech.org/archive/interspeech_2015/i15_3214.html
http://ieeexplore.ieee.org/document/6296526

