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Local Phonetic Scores and Sequence Modelling

DTW - local distances (Euclidean)

HMM - emission probabilities (Gaussian or GMM)
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Compute the phonetic score(acoustic-frame, phone-model) –
this does the detailed matching at the frame-level

Chain phonetic scores together in a sequence - DTW, HMM
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Phonetic scores

Task: given an input acoustic frame, output a score for each phone

X(t)

/aa/  .01

/ae/  .03

/ax/  .01

/ao/  .04

/b/   .09

/ch/  .67

/d/  .06

…

/zh/  .15

Acoustic frame
(at time t)

Phonetic Scores
(at time t)

f(t)
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Phonetic scores

Compute the phonetic scores using a single layer neural network
(linear regression!)

/aa/  .01

/ae/  .03

/ax/  .01

/ao/  .04

/b/   .09

/ch/  .67

/d/  .06

…

/zh/  .15

/aa/  .01

/ae/  .03

/ax/  .01

/ao/  .04

/b/   .09

/ch/  .67

/d/  .06

…

/zh/  .15

Acoustic frame
(at time t)

X(t)

Phonetic Scores
(at time t)

f(t)

/aa/  .01

/ae/  .03

/ax/  .01

/ao/  .04

/b/   .09

/ch/  .67

/d/  .06

…

/zh/  .15

0.33

-0.23

0.71

0.47

0.11

-0.32

-0.02

…

0.22

w7(/aa/)

w1(/aa/)

w2(/aa/)

w3(/aa/)

w4(/aa/)

w5(/aa/)

w6(/aa/)

wd(/aa/)

Each output computes its score
as a weighted sum of the current inputs

…
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Phonetic scores

Compute the phonetic scores using a single layer neural network

Write the estimated phonetic scores as a vector
f = (f1, f2, . . . , fQ)

Then if the acoustic frame at time t is X = (x1, x2, . . . , xd):

fj = wj1x1 + wj2x2 + . . . + wjdxd + bj =
d∑

i=1

wjixi + bj

f = Wx + b

where we call W the weight matrix, and b the bias vector.

Check your understanding:
What are the dimensions of W and b?
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Error function

f(t) = Wx(t) + b

observed

trained

estimated

How do we learn the parameters W and b?

Minimise an Error Function: Define a function which is 0
when the output f (n) equals the target output r(n) for all n
Target output: for TIMIT the target output corresponds to
the phone label for each frame
Mean square error: define the error function E as the mean
square difference between output and the target:

E =
1

2
· 1

N

N∑

n=1

||f (n)− r(n)||2

where there are N frames of training data in total
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Notes on the error function

f is a function of the acoustic data x and the weights and
biases of the network (W and b)

This means that as well as depending on the training data (x
and r), E is also a function of the weights and biases, since it
is a function of f
We want to minimise the error function given a fixed training
set: we must set W and b to minimise E

Weight space: given the training set we can imagine a space
where every possible value of W and b results in a specific
value of E . We want to find the minimum of E in this weight
space.

Gradient descent: find the minimum iteratively – given a
current point in weight space find the direction of steepest
descent, and change W and b to move in that direction
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Gradient Descent

Iterative update – after seeing some training data, adjust the
weights and biases to reduce the error. Repeat.

To update a parameter so as to reduce the error, move
downhill in the direction of steepest descent. Thus to train a
network compute the gradient of the error with respect to the
weights and biases:

∂E

∂w
=




∂E
∂w10

· ∂E
∂w1i

· ∂E
∂w1d

. . .
∂E
∂wj0

· ∂E
∂wji

· ∂E
∂wjd

. . .
∂E

∂wQ0
· ∂E

∂wQi
· ∂E

∂wQd




∂E

∂b
=
(

∂E
∂b1

· ∂E
∂bj

· ∂E
∂bQ

)
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Stochastic Gradient Descent Procedure

1 Initialise weights and biases with small random numbers

2 Randomise the order of training data examples
3 For each epoch (complete batch of training data)

Take a minibatch of training examples (eg 128 examples), and
for all examples

Forward: compute the network outputs y
Backprop: compute the gradients and accumulate ∂E/∂w for
the minibatch
Update the weights and biases using the accumulated
gradients and the learning rate hyperparameter η:
w = w − η∂E/∂w

Terminate either after a fixed number of epochs, or when the error
stops decreasing by more than a threshold.
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Gradient in SLN

How do we compute the gradients ∂En

∂wki
and ∂En

∂bk
?

En =
1

2

K∑

k=1

(f nk − rnk )2 =
1

2

K∑

k=1

(
d∑

i=1

(wkix
n
i + bk)− rnk

)2

∂En

∂wki
= (f nk − rnk )xni = gn

k x
n
i gn

k = f nk − rnk

Update rule: Update a weight wki using the gradient of the error
with respect to that weight: the product of the difference between
the actual and target outputs for an example (f nk − rnk ) and the
value of the unit at the input to the weight (xi ).

Check your understanding: Show that the gradient for the bias is

∂En

∂bk
= gn

k
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Applying gradient descent to a single-layer network

x1 x2 x3 x4 x5

f2 =
5X

i=1

w2ixi

w24

�w24 =
X

n

(fn
2 � rn

2 )xn
4
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Softmax

Our network that predicts phonetic scores is a classifier – at
training time each frame of data has a correct label (target
output of 1), other labels have a target output of 0

At test time the the network produces real-valued outputs
which we can interpret as the probability of the kth label (qk)
given the input frame x t , P(qk |x t)

We can design an output layer which forces the output values
to act like probabilities

Each output will be between 0 and 1
The K outputs will sum to 1

A way to do this is using the Softmax activation function:

yk =
exp(ak)

∑K
j=1 exp(aj)

ak =
d∑

j=1

wkjhj + bk
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Cross-entropy error function

Since we are interpreting the network outputs as probabilities,
we can write an error function for the network which aims to
maximise the log probability of the correct label.

If r tk is the 1/0 target of the the kth label for the tth frame,
and ttk is the network output, then the cross-entropy error
function is:

En = −
C∑

k=1

r tk ln y tk

Note that if the targets are 1/0 then the only the term
corresponding to the correct label is non-zero in this
summation.
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Cross entropy and softmax

A neat thing about softmax: if we train with cross-entropy
error function, we get a simple form for the gradients of the
output weights:

∂E t

∂wkj
= (y tk − r tk)︸ ︷︷ ︸ xj

In statistics this is called logistic regression

Check your understanding:
Why does the cross-entropy error function correspond to
maximising the log probability of the cirrect label?
Why does the softmax output function ensure the set of
outputs for a frame sums to 1?
Why are the target labels either 1 or 0? Why does only one
target label per frame take the value 1?
Why are the network outputs real numbers and not binary
(1/0)?
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Extending the model: Acoustic context

Use multiple frames of acoustic context

/aa/  .01

/ae/  .03

/ax/  .01

/ao/  .04

/b/   .09

/ch/  .67

/d/  .06

…

/zh/  .15

/aa/  .11

/ae/  .09

/ax/  .04

/ao/  .04

/b/   .01

…

/i/  .65

…

/zh/  .01

Acoustic input
X(t) with +/-3 

frames of context

Phonetic Scores
(at time t)

f(t)

/aa/  .01
X(t-3)

X(t-2)

X(t-1)

X(t)

X(t+1)

X(t+2)

X(t+3)

ASR Lecture 7 Neural Network Acoustic Models 1: Introduction 15



Extending the model: Hidden layers

Single layer networks have limited computational power –
each output unit is trained to match a spectrogram directly (a
kind of discriminative template matching)

But there is a lot of variation in speech (as previously
discussed) – rate, coarticulation, speaker characteristics,
acoustic environment

Introduce an intermediate feature representation – layers of
“hidden units” – more robust than template matching

Can have multiple hidden layers to learn successively more
abstract representations – deep neural networks (DNNs)

ASR Lecture 7 Neural Network Acoustic Models 1: Introduction 16



Hidden units extracting features

/aa/  .01

/ae/  .03

/ax/  .01

/ao/  .04

/b/   .09

/ch/  .67

/d/  .06

…

/zh/  .15

/aa/  .11

/ae/  .09

/ax/  .04

/ao/  .04

/b/   .01

…

/i/  .65

…

/zh/  .01

/aa/  .01
X(t-3)

X(t-2)

X(t-1)

X(t)

X(t+1)

X(t+2)

X(t+3)

.

.

.

.

.

.
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Hidden Units

/aa/  .01

/ae/  .03

/ax/  .01

/ao/  .04

/b/   .09

/ch/  .67

/d/  .06

…

/zh/  .15

/aa/  .11

/ae/  .09

/ax/  .04

/ao/  .04

/b/   .01

…

/i/  .65

…

/zh/  .01

/aa/  .01
X(t-3)

X(t-2)

X(t-1)

X(t)

X(t+1)

X(t+2)

X(t+3)

.

.

.

.

.

.

+

+

g

g

hj = relu

(
d∑

i=1

vjixi + bj

)
fk = softmax




H∑

j=1

wkjhj + bk
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Rectified Linear Unit – ReLU

relu(x) = max(0, x)

Derivative: relu′(x) =
d

dx
relu(x) =

{
0 if x ≤ 0

1 if x > 0
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Training deep networks: Backprop and gradient descent

Hidden units make training the weights more complicated,
since each hidden units affects the error function indirectly via
all the output units

The credit assignment problem: what is the “error” of a
hidden unit? how important is input-hidden weight wji to
output unit k?

Solution: back-propagate the gradients through the network –
the gradient for a hidden unit output with respect to the
error1 can be computed as the weighted sum of the deltas of
the connected output units. (Propagate the g values
backwards through the network)

The back-propagation of error (backprop) algorithm thus
provides way to propagate the error graidents through a deep
network to allow gradient descent training to be performed

1And this gradient can be easily used to compute the gradients of the error
with respect to the weights into that hiudden unit
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Training DNNs using backprop

Outputs
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Simple neural network for phone classification

1 hidden layer

~1000 hidden units

~48 phone classes

9x39 MFCC inputs

x(t-4) x(t-3) x(t) x(t+3) x(t+4)… …

P(phone | x)
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Neural networks for phone classification

Phone recognition task – e.g. TIMIT corpus

630 speakers (462 train, 168 test) each reading 10 sentences
(usually use 8 sentences per speaker, since 2 sentences are the
same for all speakers)
Speech is labelled by hand at the phone level (time-aligned)
61-phone set, usually reduced to 48/39 phones

Phone recognition tasks

Frame classification – classify each frame of data
Phone classification – classify each segment of data
(segmentation into unlabelled phones is given)
Phone recognition – segment the data and label each segment
(the usual speech recognition task)

Frame classification – straightforward with a neural network

train using labelled frames
test a frame at a time, assigning the label to the output with
the highest score
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Interim conclusions

Neural networks using cross-entropy (CE) and softmax
outputs give us a way of assigning the probability of each
possible phonetic label for a given frame of data

Hidden layers provide a way for the system to learn
representations of the input data

All the weights and biases of a network may be trained by
gradient descent – back-propagation of error provides a way to
compute the gradients in a deep network

Acoustic context can be simply incorporated into such a
network by providing multiples frame of acoustic input

Introductory reading for neural networks:

Nielsen, Neural Networks and Deep Learning, (chapters 1, 2, 3)

http://neuralnetworksanddeeplearning.com

Jurafsky and Martin (draft 3rd edition), chapter 7 (secs 7.1 – 7.4)

https://web.stanford.edu/~jurafsky/slp3/7.pdf
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Next Lecture

From frames to sequences to word level transcription – hybrid
HMM/DNN

Modelling context dependence with neural network acoustic
models

Hybrid HMM/DNN systems in practice
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