
v. 1.0

Lab 4: Hybrid Acoustic Models

University of Edinburgh

March 13, 2017

This is the final lab, in which we will have a look at training hybrid neural
network acoustic models using a frame-level cross-entropy loss. We will continue
using the word level models from the last lab for alignments.

Path errors

If you get errors such as command not found, try sourcing the path again:

source path.sh

There is an appendix at the end of every lab with the most typical mis-
takes.

1 Setup

Let’s begin by opening a terminal window, cd to your workdir and sourcing the
path:

cd ~/asrworkdir

source path.sh

Before we start building new models run the following script to gather some
new files we need to do word recognition:

./local/lab4_setup.sh

The message “Lab 4 preparation succeeded” should appear.

1.1 Alignments

Before we train the neural networks, lets try to get better alignments by making
a stronger acoustic model.

1

Align the system from the last lab by running

steps/align_si.sh --nj 4 data/train_words \

data/lang_wsj exp/word/tri1 exp/word/tri1_ali

Alignments

Why do we have a separate step to align between model training? In
Kaldi, we typically do a pass of alignment between each training phase.
This is just to ensure that we have the absolute latest alignments for the
latest model in each stage. Technically we could skip these parts, and
most scripts that take alignment experiment directories will also accept
a normal training experiment directory (e.g. tri1 vs. tri1 ali).

Train a system on top of LDA+MLLT features, using the tri1 ali align-
ments:

steps/train_lda_mllt.sh \

--splice-opts "--left-context=3 --right-context=3" \

2500 15000 data/train_words data/lang_wsj \

exp/word/tri1_ali exp/word/tri2

LDA+MLLT

LDA and MLLT transformations have not been covered in the course.
We provide a very brief introduction here. For more information see [1]a.

We first splice together 7 frames (left and right-context=3 above)
of the MFCC features. The dimensionality is then reduced to 40 using
Linear Discriminant Analysis (LDA) using the acoustic states as classes.
How much of a dimensionality reduction is this, given the 13-dimensional
MFCCs and the context window?

Finally, during training we estimate a transform known as Maximum
Likelihood Linear Transform (MLLT). Don’t confuse this with Maximum
Likelihood Linear Regression (MLLR), which we use for adaptation. Nor-
mally in HMM-GMM systems, we model the emission probabilities using
diagonal covariance matrices for the GMMs. This is because there would
otherwise be far too many parameters to estimate. However, modelling
without covariances assumes that each element of the feature vectors
(e.g. MFCCs) are independent. MLLT is a way to loosen this assump-
tion somewhat, by sharing a few full covariance matrices across many
distributions. This models some of the covariances, without the corre-
sponding explosion in the number of parameters.

a
http://mi.eng.cam.ac.uk/

~

sjy/papers/gayo07.pdf

2

Finally, align the system once more so that we have the latest possible align-
ments for the neural networks:

steps/align_si.sh --nj 4 data/train_words \

data/lang_wsj exp/word/tri2 exp/word/tri2_ali

2 Neural networks

Kaldi comes with three neural network toolkits. We will use nnet11. First, let’s
separate the data into training and validation data. The script
utils/subset data dir tr cv.sh by default separates data into 90% for train-
ing and 10% for validation:

dir=data/train_words

utils/subset_data_dir_tr_cv.sh $dir ${dir}_tr90 ${dir}_cv10

This will have created these directories:

data/train_words_tr90

data/train_words_cv10

We will begin training a fairly small neural network model:

steps/nnet/train.sh --hid-layers 2 --hid-dim 256 --splice 5 \

--learn-rate 0.008 \

--skip-cuda-check true \

data/train_words_tr90 data/train_words_cv10 data/lang_wsj \

exp/word/tri2_ali exp/word/tri2_ali exp/word/nnet

Important

Since we are running this on a CPU, this will likely take longer than the
lab time to complete (training on a GPU would be 10-20x faster). If
it has not finished by the time the lab is over, just cancel it by hitting
ctrl+c. Instead, we have provided a fully trained model for you for this
lab, in exp/word/tri3 nnet.

Have a look at the training script. Open another terminal window and run:

cd ~/asrworkdir

less steps/nnet/train.sh

Scroll down to the section that begins with “###### PREPARE ALIGNMENTS”.
There are two important events occurring in this section, we first generate target

1
http://kaldi-asr.org/doc/dnn1.html

3

labels using the alignments we created above. Then, we generate counts of the
PDFs corresponding to the phones in the alignments. Convince yourself of
where this is happening in the code.

Let’s have a closer look at both cases.

2.1 Labels

Look at the labels by running the following command

ali-to-pdf exp/word/tri2_ali/final.mdl \

"ark:gunzip -c exp/word/tri2_ali/ali.1.gz |" ark:- | \

ali-to-post ark:- ark,t:- | less

Can you relate the first number in each bracket to a previous lab? This
file sets out, for each frame, the phone state which will be on. Or equivalently,
which output of the neural network will be set to 12. This makes sense since
we will only expect one phone state to be active at any given time. The second
number is a weight, which for our cases will always be set to 1.0. Leave less

by hitting q.

2.2 PDF counts

Next, run the following command.

ali-to-phones --per-frame=true exp/word/tri2_ali/final.mdl \

ark:"gunzip -c exp/word/tri2_ali/ali.1.gz |" ark:- | \

analyze-counts --verbose=1 ark:- -

What are these numbers? Recall from the lectures the theory on hybrid
acoustic models. We still make use of Hidden Markov Models (HMMs), however,
we now replace the GMMs used to estimate output pdfs by the outputs of neural
networks. That is, we want to train the neural network to classify phones, and
given the output probabilities, we want to compute the likelihood of the state q
given the features x, p(x|q). We can interpret the output of the neural network
as the probability of a phone class given the feature p(q|x). Then, using Bayes
rule we get scaled likelihoods:

p(q|x)
p(q)

=
p(x|q)
p(x)

, (1)

where on the left hand side we have divided by the class priors. We don’t get
p(x|q) exactly, but this is fine since p(x) does not depend on the class q. For
more information, see lecture 8.

All this means that we will have to scale the outputs by the class pri-
ors, in order to use the neural network outputs in place of the GMMs. The

2
The rest of the outputs are set to zero. Remember that we are doing frame cross-entropy

training.

4

train.sh script computes these from the alignments and stores them in a file
called ali train pdf.counts, using a command similar to the one above. Let’s
see how this plays out when decoding. Open the corresponding decoding script
by running

less steps/nnet/decode.sh

Search for “counts” by typing a forward slash and then “counts”:

/counts

and hit enter.
We see first that we can provide the counts if we’d like. Hit n a couple of

times. There are now a couple of lines which look for particular files. Note that
we fall back to ali train pdf.counts if we can’t find anything else. This is the
file created above. Hit n a few times more and you will get to a line that begins
with nnet-forward. This is a forward pass that will be used to provide the
class probabilities for decoding. Notice that the class frame counts are passed
in as an argument.

Let’s try to look at the output of a forward pass. First, as in the scripts,
lets set up a feature stream:

first set up the original features

feats="ark:copy-feats scp:data/train_words/feats.scp ark:- |"

then splice with 5 context frames on either side

feats="$feats splice-feats --left-context=5 \

--right-context=5 ark:- ark:- |"

Then run a forward pass and look at the output. What happens if you
remove the prior counts?

nnet-forward \

--class-frame-counts=exp/word/tri3_nnet/ali_train_pdf.counts \

exp/word/tri3_nnet/final.nnet "$feats" ark,t:- | less

3 Architecture

There’s one last, important piece of the puzzle. When we ran steps/nnet/train.sh
above we specified some parameters for the network, such as the number of hid-
den layers, the layer width, etc. What this does is actually to create a prototype
file, setting out the overall architecture. Look at it by typing

less exp/word/tri3_nnet/nnet.proto

5

Can you work out what each part means? Why is the input dimension 143?
Recall that we ran the training script with --splice 5. For more interesting
architectures, it can sometimes be worth modifying this file directly. It can then
be passed to the training script using --nnet-proto my.proto. Let’s go ahead
and modify the prototype. First, copy the file:

cp exp/word/tri3_nnet/nnet.proto my.proto

Now open the file in a text editor, such as nano, vim, emacs or gedit, e.g.:

nano my.proto

Change it so that the input layer takes 13 units and that the first layer
has 5 neurons. Finally, let’s generate an initial model with all the required
parameters:

nnet-initialize --binary=false my.proto my.init

Hopefully, that was successful. In which case, you can look at the model by
typing

nnet-info my.init

Then, go ahead go ahead and open the file itself to see it in full detail:

less my.init

Can you relate the parameters you set to what you observe in the model
file?

That’s it! We’ve already decoded the model for you, using steps/nnet/decode.sh,
which you can check by running

more exp/word/tri3_nnet/decode_test/scoring_kaldi/best_wer

Thanks for following along. We hope you enjoy the rest of the course.

3.1 Appendix: Common errors

• Forgot to source path.sh, check current path with echo $PATH

• No space left on disk: check df -h

• No memory left: check top or htop

• Lost permissions reading or writing from/to AFS: run kinit && aklog.
To avoid this, run long jobs with the longjob command.

6

• Syntax error: check syntax of a Bash script without running it using bash

-n scriptname

• Avoid spaces after \when splitting Bash commands over multiple lines

• Optional params:

• command line utilities: --param=value

• shell scripts: --param value

• Most file paths are absolute: make sure to update the paths if moving
data directories

• Search the forums: http://kaldi-asr.org/forums.html

• Search the old forums: https://sourceforge.net/p/kaldi/discussion

3.2 Appendix: UNIX

• cd dir - change directory to dir, or the enclosing directory by ..

• cd - - change to previous directory

• ls -l - see directory contents

• less script.sh - view the contents of script.sh

• head -l and tail -l - show first or last l lines of a file

• grep text file - search for text in file

• wc -l file - compute number of lines in file

References

[1] Mark Gales and Steve Young. The application of hidden markov models in
speech recognition. Foundations and trends in signal processing, 1(3):195–
304, 2008.

7

