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WaveNet: A Generative Model for
Raw Audio

This post presents , a deep generative model of raw audio

waveforms. We show that WaveNets are able to generate speech which

mimics any human voice and which sounds more natural than the best

existing Text-to-Speech systems, reducing the gap with human

performance by over 50%.

We also demonstrate that the same network can be used to synthesize

other audio signals such as music, and present some striking samples of

automatically generated piano pieces.

WaveNet

Talking Machines

Allowing people to converse with machines is a long-standing dream of

human-computer interaction. The ability of computers to understand

natural speech has been revolutionised in the last few years by the

application of deep neural networks (e.g., ).

However, generating speech with computers  — a process usually referred

to as  or text-to-speech (TTS) — is stil l largely based on

so-called , where a very large database of short

speech fragments are recorded from a single speaker and then

recombined to form complete utterances. This makes it difficult to modify

the voice (for example switching to a different speaker, or altering the

Google Voice Search

speech synthesis

concatenative TTS

https://arxiv.org/abs/1609.03499


Motivation
“Researchers usually avoid modelling raw 
audio because it ticks so quickly: typically 
16,000 samples per second or more, with 
important structure at many time-scales.  

“Building a completely autoregressive model, 
in which the prediction for every one of those 
samples is influenced by all previous ones (in 
statistics-speak, each predictive distribution 
is conditioned on all previous observations), 
is clearly a challenging task.”



WaveNet Approach
• Generative model operating directly on the raw 

waveform

• WaveNet model is probabilistic and autoregressive 

• Model using a deep stack of convolutional layers 

• No pooling layers – output has same dimensionality 
as input

p(x) =
TY

t=1

p(xt | x1, x2, . . . , xt�1)



Causal convolutions

• In order to deal with long-range temporal dependencies needed for raw audio generation,
we develop new architectures based on dilated causal convolutions, which exhibit very
large receptive fields.

• We show that when conditioned on a speaker identity, a single model can be used to gener-
ate different voices.

• The same architecture shows strong results when tested on a small speech recognition
dataset, and is promising when used to generate other audio modalities such as music.

We believe that WaveNets provide a generic and flexible framework for tackling many applications
that rely on audio generation (e.g. TTS, music, speech enhancement, voice conversion, source sep-
aration).

2 WAVENET

In this paper we introduce a new generative model operating directly on the raw audio waveform.
The joint probability of a waveform x = {x1, . . . , xT } is factorised as a product of conditional
probabilities as follows:

p (x) =

TY

t=1

p (xt | x1, . . . , xt�1) (1)

Each audio sample xt is therefore conditioned on the samples at all previous timesteps.

Similarly to PixelCNNs (van den Oord et al., 2016a;b), the conditional probability distribution is
modelled by a stack of convolutional layers. There are no pooling layers in the network, and the
output of the model has the same time dimensionality as the input. The model outputs a categorical
distribution over the next value xt with a softmax layer and it is optimized to maximize the log-
likelihood of the data w.r.t. the parameters. Because log-likelihoods are tractable, we tune hyper-
parameters on a validation set and can easily measure if the model is overfitting or underfitting.

2.1 DILATED CAUSAL CONVOLUTIONS
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Figure 2: Visualization of a stack of causal convolutional layers.

The main ingredient of WaveNet are causal convolutions. By using causal convolutions, we
make sure the model cannot violate the ordering in which we model the data: the prediction
p (xt+1 | x1, ..., xt) emitted by the model at timestep t cannot depend on any of the future timesteps
xt+1, xt+2, . . . , xT as shown in Fig. 2. For images, the equivalent of a causal convolution is a
masked convolution (van den Oord et al., 2016a) which can be implemented by constructing a mask
tensor and doing an elementwise multiplication of this mask with the convolution kernel before ap-
plying it. For 1-D data such as audio one can more easily implement this by shifting the output of a
normal convolution by a few timesteps.

At training time, the conditional predictions for all timesteps can be made in parallel because all
timesteps of ground truth x are known. When generating with the model, the predictions are se-
quential: after each sample is predicted, it is fed back into the network to predict the next sample.
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Efficiency
• Training:  predictions can be made in parallel, because 

all timesteps of the ground truth training data x are 
known 

• Generating:  predictions are sequential, each predicted 
sample is used as part of the context for future samples 

• Sequence modelling done by stacked convolutions 

• CNN more efficient that RNN (no backprop through time) 

• Many layers needed for long temporal context 

• Dilated convolutions increase the context



Dilated causal convolutions

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).
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Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,
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In WaveNet dilations increase to a limit, then repeated: 
1,2,4,…,512,1,2,4,…,512,1,2,4,…512 

Each 1,2,4,…,512 block has a context of 1024 
– more efficient and discriminative than a 1024-convolution



WaveNet Output

• Use a softmax distribution to model the outputs – 
but if sample is x is 16 bits, then we would have 
65,536 outputs 

• 8-bit sample coding using μ-law compression 

• 256 outputs 

• This is like a “language model” for audio samples



Residual/skip connections

where �1 < xt < 1 and µ = 255. This non-linear quantization produces a significantly better
reconstruction than a simple linear quantization scheme. Especially for speech, we found that the
reconstructed signal after quantization sounded very similar to the original.

2.3 GATED ACTIVATION UNITS

We use the same gated activation unit as used in the gated PixelCNN (van den Oord et al., 2016b):

z = tanh (Wf,k ⇤ x)� � (Wg,k ⇤ x) , (2)

where ⇤ denotes a convolution operator, � denotes an element-wise multiplication operator, �(·) is
a sigmoid function, k is the layer index, f and g denote filter and gate, respectively, and W is a
learnable convolution filter. In our initial experiments, we observed that this non-linearity worked
significantly better than the rectified linear activation function (Nair & Hinton, 2010) for modeling
audio signals.

2.4 RESIDUAL AND SKIP CONNECTIONS
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Figure 4: Overview of the residual block and the entire architecture.

Both residual (He et al., 2015) and parameterised skip connections are used throughout the network,
to speed up convergence and enable training of much deeper models. In Fig. 4 we show a residual
block of our model, which is stacked many times in the network.

2.5 CONDITIONAL WAVENETS

Given an additional input h, WaveNets can model the conditional distribution p (x | h) of the audio
given this input. Eq. (1) now becomes

p (x | h) =
TY

t=1

p (xt | x1, . . . , xt�1,h) . (3)

By conditioning the model on other input variables, we can guide WaveNet’s generation to produce
audio with the required characteristics. For example, in a multi-speaker setting we can choose the
speaker by feeding the speaker identity to the model as an extra input. Similarly, for TTS we need
to feed information about the text as an extra input.

We condition the model on other inputs in two different ways: global conditioning and local condi-
tioning. Global conditioning is characterised by a single latent representation h that influences the
output distribution across all timesteps, e.g. a speaker embedding in a TTS model. The activation
function from Eq. (2) now becomes:

z = tanh

�
Wf,k ⇤ x+ V

T
f,kh

�
� �

�
Wg,k ⇤ x+ V

T
g,kh

�
.
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Gated activation unit



Control: 
Conditional WaveNets

• By conditioning the model on other variables can 
control the characteristics of generated audio 

• crucial for speech synthesis 

• for multi-speaker modelling, h could encode speaker 
identity

p(x | h) =
TY

t=1

p(xt | x1, x2, . . . , xt�1,h)



WaveNet Generation
• Free-form speech generation 

• WaveNet conditioned on speaker identity 

• Trained on 44h speech from 109 speakers 

• Text-to-speech synthesis 

• locally conditioned on linguistic features and log F0 

• trained on multispeaker data, conditioned on speaker 
identity 



WaveNet for  
Speech Recognition

• Use WaveNet as learned front end to ASR neural 
network 

• Mean pooling layer after the dilated convolutions 

• aggregate to 10ms frames (mean-pooling) 

• followed by a “few non-causal convolutions” 

• multi-task training to simultaneously predict the next sample 
and classify the frame 

• 18.6% PER on TIMIT



The End.


