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https://arxiv.org/abs/1609.03499

Votivation

"Researchers usually avoid modelling raw
audio because it ticks so quickly: typically
16,000 samples per second or more, with
important structure at many time-scales.

"Building a completely autoregressive model,
in which the prediction for every one of those
samples is influenced by all previous ones (in
statistics-speak, each predictive distribution
s conditioned on all previous observations),
'S clearly a challenging task.”




WaveNet Approacn

Generative model operating directly on the raw
waveform
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WaveNet model is probabilistic and autoregressive
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p(x) =

Model using a deep stack of convolutional layers

No pooling layers — output has same dimensionality
as input
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Causal convolutions
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Efficiency

e Jraining: predictions can be made in parallel, because

all timesteps of the ground truth training data x are
Known

 (Generating: predictions are sequential, each predicted
sample is used as part of the context for future samples

* Sequence modelling done by stacked convolutions
 CNN more efficient that RNN (no backprop through time)
 Many layers needed for long temporal context

e Dilated convolutions increase the context



Dilated causal convolutions
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In WaveNet dilations increase to a limit, then repeated:
1,2,4,...512,1,24,....512,1,2,4,...512

Fach 1,2,4,... 512 block has a context of 1024
— more efficient and discriminative than a 1024-convolution



WaveNet Output

* Use a softmax distribution to model the outputs —
but If sample is x is 16 bits, then we would have

65,530 outputs
* 8-bit sample coding using y-law compression

e 250 outputs

 Thisis like a “language model” for audio samples



Residual/skip connections
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Control:
Conditional WaveNets

T
p(x | h) = Hp(wt | T1,@2,..., 241, h)

t=1

* By conditioning the model on other variables can
control the characteristics of generated audio

e crucial for speech synthesis

e for multi-speaker modelling, h could encode speaker
identity



WaveNet Generation

* Free-form speech generation
 \WavelNet conditioned on speaker identity
* [rained on 44h speech from 109 speakers

e Jext-to-speech synthesis
* |ocally conditioned on linguistic teatures and log FO

* trained on multispeaker data, conditioned on speaker
identity



WaveNet tor
Speech Recognition

e Use WaveNet as learned front end to ASR neural
network

 Mean pooling layer after the dilated convolutions
e aggregate to 10ms frames (mean-pooling)
e followed by a “few non-causal convolutions”

* multi-task training to simultaneously predict the next sample
and classifty the frame

e 18.6% PER on TIMIT
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