
State of the art in
Speech Recognition

Steve Renals
Automatic Speech Recognition – ASR Lecture 17

23 March 2017

G Saon et al, “English Conversational Telephone Speech
Recognition by Humans and Machines”, arXiv:1703:02136

https://arxiv.org/abs/1703.02136

Human Transcription
Experiments

speakers and were selected based on the quality of their work
on past transcription projects. The transcribers were familiar-
ized with the LDC transcription guidelines which cover hyphen-
ations, spelled abbreviations, contractions, partial words, non-
speech sounds, etc.

The transcription time was estimated at 12-14 times real-
time (xRT) for the first pass for Transcribers 1-3 and an addi-
tional 1.7-2xRT for the second quality checking pass (by Tran-
scriber 4). Both passes involved listening to the audio multiple
times: around 3-4 times for the first pass and 1-2 times for the
second. After receiving the transcripts, the following filtering
rules were aplied:

• All non-speech markers were tagged as non-lexical items
which are ignored during scoring. Examples of non-
speech markers are: [laughter], [breathing], [noise], {no
speech}, etc.

• Other markers such as ’...’, ’–’, ’(())’ were eliminated
prior to scoring.

• All partial words ending in ’-’ were marked as non-
lexical items.

• All punctuation marks such as ’.’, ’,’, ’!’ and ’?’ were
eliminated prior to scoring.

In order to use NIST’s scoring tool sclite, we had to
convert the transcripts into CTM files which have time-marked
word boundary information. This was done by splitting the du-
ration of the utterance uniformly across the number of words.

In Table 1 we show the error rates of the three transcribers
before and after quality checking by the fourth transcriber as
well as the human WER reported in [1]. Unsurprisingly, there is
some variation among transcriber performance and the quality
checking pass reduces the error rate across all transcribers.

WER SWB WER CH
Transcriber 1 raw 6.1 8.7
Transcriber 1 QC 5.6 7.8
Transcriber 2 raw 5.3 6.9
Transcriber 2 QC 5.1 6.8
Transcriber 3 raw 5.7 8.0
Transcriber 3 QC 5.2 7.6
Human WER from [1] 5.9 11.3

Table 1: Word error rates on SWB and CH for human tran-
scribers before and after quality checking contrasted with the
human WER reported in [1].

Additionally, in Tables 2 and 3, we take a closer look at
the most frequent substitution, deletion and insertion errors for
our system output and the best human transcript after quality
checking. While many of the errors look similar to those re-
ported in [1], there is a glaring discrepancy in the frequency
of top deletions for CallHome between our human transcript
and theirs. This suggests that the very different estimates for
the human error rate for CallHome (6.8% versus 11.3%) can
be attributed to a much lower deletion rate for our best human
transcript.

3. System improvements
In this section we discuss the training data and testsets that were
used as well as improvements in acoustic and language model-
ing. The training set for our acoustic models consists of 262

SWB CH
ASR Human ASR Human
11: and / in 16: (%hes) / oh 21: was / is 28: (%hes) / oh
9: was / is 12: was / is 16: him / them 22: was / is
7: it / that 7: (i-) / %hes 15: in / and 11: (%hes) / %bcack
6: (%hes) / oh 5: (%hes) / a 8: a / the 10: bentsy / benji
6: him / them 5: (%hes) / hmm 8: and / in 10: yeah / yep
6: too / to 5: (a-) / %hes 8: is / was 9: a / the
5: (%hes) / i 5: could / can 8: two / to 8: is / was
5: then / and 5: that / it 7: the / a 7: (%hes) / a
4: (%hes) / %bcack 4: %bcack / oh 7: too / to 7: the / a
4: (%hes) / am 4: and / in 6: (%hes) / a 7: well / oh

Table 2: Most frequent substitution errors for humans and ASR
system on SWB and CH.

Deletions Insertions
SWB CH SWB CH

ASR Human ASR Human ASR Human ASR Human
30: it 19: i 46: i 20: i 13: i 16: is 23: a 17: is
20: i 17: it 46: it 18: and 10: a 14: %hes 14: is 17: it
17: that 16: and 39: and 15: it 7: and 12: i 11: i 16: and
16: a 14: that 32: is 15: the 7: of 11: and 10: are 14: have
14: and 14: you 26: oh 14: is 6: you 9: it 10: you 13: a
14: oh 12: is 25: a 13: not 5: do 6: do 9: the 13: that
14: you 12: the 20: to 10: a 5: the 5: have 8: have 12: i
12: %bcack 11: a 19: that 10: in 5: yeah 5: yeah 8: that 11: %hes
12: the 10: of 19: the 10: that 4: air 5: you 7: and 10: not
11: to 9: have 18: %bcack 10: to 4: in 4: are 7: it 9: oh

Table 3: Most frequent deletion and insertion errors for humans
and ASR system on SWB and CH.

hours of Switchboard 1 audio with transcripts provided by Mis-
sissippi State University, 1698 hours from the Fisher data col-
lection and 15 hours of CallHome audio. In order to allay fears
that we may be overfitting to the Hub5 2000 testsets by exten-
sively testing on them, we have decided to report results on a va-
riety of testsets. Since the RT’02, RT’03, RT’04 and DEV’04f
testsets have not been used in more than a decade, we are fairly
confident that performance improvements on these testsets are
indicative of real progress. Statistics about all the testsets used
in the experiments are given in Table 4.

Testset Duration Nb. speakers Nb. words
Hub5’00 SWB 2.1h 40 21.4K
Hub5’00 CH 1.6h 40 21.6K
RT’02 6.4h 120 64.0K
RT’03 7.2h 144 76.0K
RT’04 3.4h 72 36.7K
DEV’04f 3.2h 72 37.8K

Table 4: Testsets that are used to report experimental results.

In [7], we have shown that convolutional and non-
convolutional AMs have comparable performance and good
complementarity. Hence, the strategy for our previous sys-
tems [8, 5] was to use a combination of recurrent and convolu-
tional nets. For example, in last year’s system we used a score
fusion of three models which share the same decision tree: un-
folded RNNs with maxout activations, LSTMs and VGG nets.
This year, in order to simplify and enhance the overall architec-
ture, we eliminated the maxout RNN, we improved the LSTMs
and we replaced the VGG nets with residual nets (ResNets).

3.1. LSTM acoustic models

All models presented here share the following characteris-
tics. Their architecture consists in 4-6 bidirectional layers
with 1024 cells per layer (512 per direction), one linear bot-

Task

• Conversational telephone speech

• Total 1975h training data

• 5 test sets, totalling 24h

Acoustic Models
• LSTM recurrent neural networks

• Speaker adversarial multi-task learning networks
(SA-MTL)

• Very deep convolutional networks – ResNet
Acoustic Models

• Model Combination (frame-level)

LSTM Acoustic Model
are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

274

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

274

LSTM Cell

Bidirectional
RNN

Graves et al, Hybrid speech recognition with
deep bidirectional LSTM, ICASSP-2013.

LSTM Acoustic Model

Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y

t

defines a probability distribution over the
K possible states: that is, yk

t

(the k

th element of y
t

) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
TX

t=1

log y

zt
t

(13)

Which leads to the following error derivatives at the output
layer

� @ log Pr(z|x)
@ŷ

k

t

= y

k

t

� �

k,zt (14)

where ŷ

t

is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input

275

Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y

t

defines a probability distribution over the
K possible states: that is, yk

t

(the k

th element of y
t

) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
TX

t=1

log y

zt
t

(13)

Which leads to the following error derivatives at the output
layer

� @ log Pr(z|x)
@ŷ

k

t

= y

k

t

� �

k,zt (14)

where ŷ

t

is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input

275

Deep RNN Deep Bidirectional LSTM

LSTM Architecture and
Setup

• LSTM has 4-6 32k bidirectional layers with 1024 cells/
layer (512 each direction)

• 256 unit linear bottleneck layer

• 32k context-dependent state outputs

• 40-dimension FMLLR input features + 100-dimension i-
vector

• 14 passes CE (frame-level) training, 1 pass sequence
training

• Training took 2 weeks on a GPU

Speaker-adversarial multi-task learning
(SA-MTL)

• Train a speaker classifier
in parallel with main
classifier

• Subtract the gradient
component from the
speaker classifier when
training

• Speaker classifier trained
to predict input i-vector

tleneck layer with 256 units and an output layer with 32K
units corresponding to as many context-dependent HMM states
(shown on the left side of Figure 1). Training is done on non-
overlapping subsequences of 21 frames where each frame con-
sists of 40-dimensional FMLLR features to which we append
100-dimensional i-vectors. We group subsequences from dif-
ferent utterances into minibatches of size 128 for processing
speed and reliable gradient estimates. The training consists
of 14 passes of cross-entropy followed by 1 pass of SGD se-
quence training using the boosted MMI criterion [9] smoothed
by adding the scaled gradient of the cross-entropy loss [10]. Im-
plementation of the LSTM was done in Torch [11] with cuDNN
v5.0 backend. Cross-entropy training for each model took about
2 weeks for 700M samples/epoch, on a single Nvidia K80 GPU
device.

The first two improvements are fairly banal and consist in
increasing the number of layers from 4 (like in our previous
model [5]) to 6 and in realigning the training data with a 6-layer
LSTM and retraining another LSTM. The effect of these steps
is shown in the first three rows of Table 5 across all testsets.

LSTM SWB CH RT’02 RT’03 RT’04 DEV’04f
4-layer 8.0 14.3 12.2 11.6 11.0 10.8
6-layer 7.7 14.0 11.8 11.4 10.8 10.4
Realigned 7.7 13.8 11.7 11.2 10.8 10.2
SA-MTL 7.6 13.6 11.5 11.0 10.7 10.1
Feat. fusion 7.2 12.7 10.7 10.2 10.1 9.6

Table 5: Word error rates for LSTM AMs across all testsets
(36M n-gram LM).

The second set of experiments was centered around
the use of speaker-adversarial multi-task learning (SA-MTL).
In [12], the authors introduce domain-adversarial neural net-
works which are models that are trained to not distiguish be-
tween in-domain, labeled data and out-of-domain, unlabeled
data. This is achieved by training a domain classifier in parallel
with the main classifier and by subtracting the gradient compo-
nent from the domain classifier when estimating the parameters
of the main classifier. This idea has been successfully applied
in speech by [13] in the context of noise robustness where the
author proposes noise-adversarial MTL to suppress the effects
of noise. Here, we experiment with training a speaker classi-
fier in addition to the main CD-HMM state classifier in order to
suppress the effects of speaker variability on ASR performance.
Since i-vectors are a good low-dimensional representation of a
speaker, we decided to train the speaker classifier to predict the
i-vector inputs using an MSE loss function. The speaker classi-
fier has one sigmoid layer and one hyperbolic tangent layer as
shown in Figure 1.

If we denote by ✓, ✓c, ✓s the parameters of the common
LSTM, the main classifier (weights of linear layer before soft-
max) and the speaker classifier, the SGD update is done accord-
ing to:

✓̂c = ✓c � ✏
@LCE(x)

@✓c

✓̂s = ✓s � ✏
@LMSE(x)

@✓s

✓̂ = ✓ � ✏

✓
@LCE(x)

@✓
� �

@LMSE(x)
@✓

◆

where x denotes a minibatch, LCE , LMSE denote respectively

256 linear

32000 softmax

1024 LSTM

FMLLR i−vector

1024 LSTM

...

1024 sigmoid

100 tanh

θ

θ
s

θ
c

Figure 1: LSTM with speaker-adversarial MTL architecture.

the cross-entropy loss of the main classifier and the mean-
squared error loss of the i-vector classifier, � is a scaling pa-
rameter (typically set to 0.1), and ✏ is the learning rate. After
the model is trained, the i-vector classifier branch is discarded
at test time. As can be seen from Table 5 rows 3 and 4, we ob-
serve some small gains across all testsets which are also due in
part to reestimating the VTLN warp factors and FMLLR trans-
forms using an LSTM decoding output (old factors and trans-
forms were based off a GMM decoding).

Last but not least, the largest improvement in LSTM mod-
eling was achieved through feature fusion. The thought pro-
cess leading to this experiment was that we wanted to add
utterance-level information to our models which were only
looking at a window of 21 consecutive frames. One possi-
bility was to train an end-to-end LSTM using CTC as in [14,
15, 16, 17] and append the features from the last LSTM layer
before the softmax to our existing features. This experiment
worked quite well however, upon closer inspection, it turned
out that the CTC model used a different set of input features:
Logmel+�+�� instead of PLP followed by LDA and FM-
LLR. The question then naturally arose whether the gains came
from CTC modeling or from the different input representa-
tions. To answer this question, we built an LSTM trained on
fused FMLLR+i-vector+Logmel+�+�� features the standard
way (without speaker-adversarial MTL). The WER improve-
ment from adding the Logmel features, indicated in Table 5
rows 3 and 5, is the same as with CTC features meaning that
the CTC modeling step was not needed. Finally, we note that
the feature fusion LSTM compares favorably with other single
acoustic models from the literature as mentioned in [17] (Table
4).

3.2. ResNet acoustic models

On the convolutional network acoustic modeling side, we
trained residual networks with pre-activation identity shortcut
connections. Residual Networks were introduced for image
recognition in [18] and used in speech recognition in [1, 19].
The novelty of residual networks is to introduce shortcut con-
nections between so-called “blocks” of convolutional layers,
which was argued to improve the flow of information and gra-
dients, and allows training even deeper CNNs without the opti-
mization problem occuring without the residual connections.

Table 6 shows four residual network model architectures

CD states
i-vector input

flip gradient

LSTM Results

tleneck layer with 256 units and an output layer with 32K
units corresponding to as many context-dependent HMM states
(shown on the left side of Figure 1). Training is done on non-
overlapping subsequences of 21 frames where each frame con-
sists of 40-dimensional FMLLR features to which we append
100-dimensional i-vectors. We group subsequences from dif-
ferent utterances into minibatches of size 128 for processing
speed and reliable gradient estimates. The training consists
of 14 passes of cross-entropy followed by 1 pass of SGD se-
quence training using the boosted MMI criterion [9] smoothed
by adding the scaled gradient of the cross-entropy loss [10]. Im-
plementation of the LSTM was done in Torch [11] with cuDNN
v5.0 backend. Cross-entropy training for each model took about
2 weeks for 700M samples/epoch, on a single Nvidia K80 GPU
device.

The first two improvements are fairly banal and consist in
increasing the number of layers from 4 (like in our previous
model [5]) to 6 and in realigning the training data with a 6-layer
LSTM and retraining another LSTM. The effect of these steps
is shown in the first three rows of Table 5 across all testsets.

LSTM SWB CH RT’02 RT’03 RT’04 DEV’04f
4-layer 8.0 14.3 12.2 11.6 11.0 10.8
6-layer 7.7 14.0 11.8 11.4 10.8 10.4
Realigned 7.7 13.8 11.7 11.2 10.8 10.2
SA-MTL 7.6 13.6 11.5 11.0 10.7 10.1
Feat. fusion 7.2 12.7 10.7 10.2 10.1 9.6

Table 5: Word error rates for LSTM AMs across all testsets
(36M n-gram LM).

The second set of experiments was centered around
the use of speaker-adversarial multi-task learning (SA-MTL).
In [12], the authors introduce domain-adversarial neural net-
works which are models that are trained to not distiguish be-
tween in-domain, labeled data and out-of-domain, unlabeled
data. This is achieved by training a domain classifier in parallel
with the main classifier and by subtracting the gradient compo-
nent from the domain classifier when estimating the parameters
of the main classifier. This idea has been successfully applied
in speech by [13] in the context of noise robustness where the
author proposes noise-adversarial MTL to suppress the effects
of noise. Here, we experiment with training a speaker classi-
fier in addition to the main CD-HMM state classifier in order to
suppress the effects of speaker variability on ASR performance.
Since i-vectors are a good low-dimensional representation of a
speaker, we decided to train the speaker classifier to predict the
i-vector inputs using an MSE loss function. The speaker classi-
fier has one sigmoid layer and one hyperbolic tangent layer as
shown in Figure 1.

If we denote by ✓, ✓c, ✓s the parameters of the common
LSTM, the main classifier (weights of linear layer before soft-
max) and the speaker classifier, the SGD update is done accord-
ing to:

✓̂c = ✓c � ✏
@LCE(x)

@✓c

✓̂s = ✓s � ✏
@LMSE(x)

@✓s

✓̂ = ✓ � ✏

✓
@LCE(x)

@✓
� �

@LMSE(x)
@✓

◆

where x denotes a minibatch, LCE , LMSE denote respectively

256 linear

32000 softmax

1024 LSTM

FMLLR i−vector

1024 LSTM

...

1024 sigmoid

100 tanh

θ

θ
s

θ
c

Figure 1: LSTM with speaker-adversarial MTL architecture.

the cross-entropy loss of the main classifier and the mean-
squared error loss of the i-vector classifier, � is a scaling pa-
rameter (typically set to 0.1), and ✏ is the learning rate. After
the model is trained, the i-vector classifier branch is discarded
at test time. As can be seen from Table 5 rows 3 and 4, we ob-
serve some small gains across all testsets which are also due in
part to reestimating the VTLN warp factors and FMLLR trans-
forms using an LSTM decoding output (old factors and trans-
forms were based off a GMM decoding).

Last but not least, the largest improvement in LSTM mod-
eling was achieved through feature fusion. The thought pro-
cess leading to this experiment was that we wanted to add
utterance-level information to our models which were only
looking at a window of 21 consecutive frames. One possi-
bility was to train an end-to-end LSTM using CTC as in [14,
15, 16, 17] and append the features from the last LSTM layer
before the softmax to our existing features. This experiment
worked quite well however, upon closer inspection, it turned
out that the CTC model used a different set of input features:
Logmel+�+�� instead of PLP followed by LDA and FM-
LLR. The question then naturally arose whether the gains came
from CTC modeling or from the different input representa-
tions. To answer this question, we built an LSTM trained on
fused FMLLR+i-vector+Logmel+�+�� features the standard
way (without speaker-adversarial MTL). The WER improve-
ment from adding the Logmel features, indicated in Table 5
rows 3 and 5, is the same as with CTC features meaning that
the CTC modeling step was not needed. Finally, we note that
the feature fusion LSTM compares favorably with other single
acoustic models from the literature as mentioned in [17] (Table
4).

3.2. ResNet acoustic models

On the convolutional network acoustic modeling side, we
trained residual networks with pre-activation identity shortcut
connections. Residual Networks were introduced for image
recognition in [18] and used in speech recognition in [1, 19].
The novelty of residual networks is to introduce shortcut con-
nections between so-called “blocks” of convolutional layers,
which was argued to improve the flow of information and gra-
dients, and allows training even deeper CNNs without the opti-
mization problem occuring without the residual connections.

Table 6 shows four residual network model architectures

Feature fusion: append log mel filter bank features (+ first
and second derivatives) to FMLLR and i-vector features

GMM/ML
GMM/BMMI
DNN/CE
DNN/MMI

21.2 36.4
18.6 33.0
14.2 25.7
12.9 24.6

Vesely et al (2013)

Deep CNN Acoustic Models

!"#$%&'()*+,-

!"!#$%&'(#)*

!"!#$%&'(#)*

!"!#$%&'(#+,-

!"!#$%&'(#+,-

,"+#.%%/

!"!#$%&'(#,0)

!"!#$%&'(#,0)

,"+#.%%/

!"!#$%&'(#,0)

,",#.%%/

!"!#$%&'(#0+,

!"!#$%&'(#0+,
*#"#-

!"!#$%&'(#0+,

,",#.%%/

12#,3*-

12#,3*-

12#,3*-

12#4566#7898:7

+)./0"1

!"#$%&'()*+,-

!"!#$%&'(#)*

!"!#$%&'(#)*

!"!#$%&'(#+,-

!"!#$%&'(#+,-

,"+#.%%/

!"!#$%&'(#,0)

!"!#$%&'(#,0)

,"+#.%%/

,",#.%%/

!"!#$%&'(#0+,

!"!#$%&'(#0+,

,",#.%%/

12#,3*-

12#,3*-

12#,3*-

12#4566#7898:7

2./0"1

!"#$%&'()*+,-

!"!#$%&'(#)*

!"!#$%&'(#)*

!"!#$%&'(#+,-

!"!#$%&'(#+,-

,"+#.%%/

!"!#$%&'(#,0)

!"!#$%&'(#,0)

,",#.%%/

,"+#.%%/

12#,3*-

12#,3*-

12#4566#7898:7

,./0"1

!"#$%&'()*++-

;";#$%&'(#0+,

*"!#$%&'(#0+,

12#,3*-

12#,3*-

12#,3*-

12#4566#7898:7

3./0"1&'/4566!/-

!"+#.%%/

12#,3*-

<:98=>:69.#7?@:
A<>:B#"#8?6:C

*3#"#+)

,3#"#+)

+3#"#+)

,#"#*

Figure 2: (1) Classical CNN. (2-4) The design of the very deep convolutional nets from [14] with 6, 8 and 10 convolutional layers
respectively. This figure corresponds to [14, table 1]. The rightmost, deepest CNN (10 convolutional layers) was found to obtain best
performance [14] and will be the only design we provide results for in this paper. Table 2 provides results for three variants of this
deepest CNN.

on 40-dimensional FMLLR + 100-dimensional ivector frames
and have 1024 (or 512) LSTM units per layer and per direction
(left-to-right and right-to-left). The forward and backward ac-
tivations from the previous LSTM layer are concatenated and
fed into the next LSTM layer. The contrast model is a sin-
gle layer bidirectional LSTM trained on 128-dim features ob-
tained by performing PCA on 512-dimensional bottleneck fea-
tures. The features are obtained from a 6-layer DNN cross en-
tropy trained on blocks of 11 consecutive FMLLR frames and
100-dimensional i-vectors. In Table 3, we report recognition re-
sults on Hub5’00 for these four models trained with 15 passes
of cross-entropy SGD on the 300 hour (SWB-1) subset.

Model WER SWB WER CH
1-layer 1024 bottleneck 11.8 19.3
2-layer 1024 FMLLR+ivec 11.1 19.2
3-layer 1024 FMLLR+ivec 11.0 18.5
4-layer 512 FMLLR+ivec 10.8 19.3

Table 3: Word error rates on Hub5 2000 for various LSTM mod-
els trained with cross-entropy on 300 hours.

Due to a bug that affected our earlier multi-layer LSTM
results, we decided to go ahead with single layer bidirectional
LSTMs on bottleneck features on the full 2000 hour training
set. We also experimented with how to deal with the start states
at the beginning of the left-to-right pass. One option is to carry
them over from the previous subsequence and the other one is
to reset the start states at the beginning of each subsequence.
In Figure 3 we compare the cross-entropy loss on held-out data
between these two models.

As can be seen, the LSTM model with carried over start

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 2 4 6 8 10 12 14 16

H
el

d-
ou

t l
os

s

Epoch

start states reset
start states carried over

Figure 3: Single layer LSTM cross-entropy loss on held-out
data with left-to-right start states which are either reset or car-
ried over.

states is much better at predicting the correct HMM state. How-
ever, when comparing word error rates in Table 4, the LSTM
with start states that are reset has a better performance. We
surmise that this is because the increased memory of the LSTM
with carried over start states is in conflict with the state sequence
constraints imposed by the HMM topology and the language
model. Additionally, we show the WERs of the DNN used for
the bottleneck features and of a 4-layer 512 unit LSTM. We ob-
serve that the 4 layer LSTM is significantly better than the DNN
and the two single layer LSTMs trained on bottleneck features.

9

ResNet
Deep Residual Networks

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

(a) (b) (c) (d)

Summary Bottleneck 1-3333 1-3333
NoTimestride 1-2222 Timestride 1-3333 Timestride

param 64.3 M 67.1 M 60.8 M 67.1 M
Input 3 ⇥ 64 ⇥ 31 3 ⇥ 64 ⇥ 55 3 ⇥ 64 ⇥ 56 3 ⇥ 64 ⇥ 76
Stage 0
64x32xT

conv5x5, 64
maxpool (2x1)

conv5x5, 64
maxpool (2x1)

conv5x5, 64
maxpool (2x1)

conv5x5, 64
maxpool (2x1)

Stage 1
(64x32xT)

initStride 1x1
3x [conv 1x1, 64

conv 3x3, 64
conv 1x1, 256]

initStride 1x1
3x [conv 3x3, 64

conv 3x3, 64]

initStride 1x1
2x [conv 3x3, 64

conv 3x3, 64]

initStride 1x1
3x [conv 3x3, 64

conv 3x3, 64]

Stage 2
(128x16xT)

initStride 2x1
3x [conv 1x1, 128

conv 3x3, 128
conv 1x1, 512]

initStride 2x1
3x [conv 3x3, 128

conv 3x3, 128]

initStride 2x1
2x [conv 3x3, 128

conv 3x3, 128]

initStride 2x1
3x [conv 3x3, 128

conv 3x3, 128]

Stage 3
(256x8xT)

initStride 2x1
3x [conv 1x1, 256

conv 3x3, 256
conv 1x1, 1024]

initStride 2x1
3x [conv 3x3, 256

conv 3x3, 256]

initStride 2x1
2x [conv 3x3, 256

conv 3x3, 256]

initStride 2x1
3x [conv 3x3, 256

conv 3x3, 256]

Stage 4
(512x4xT)

initStride 2x1
3x [conv 1x1, 512

conv 3x3, 512
conv 1x1, 2048]

maxpool (2x1)

initStride 2x1
3x [conv 3x3, 512

conv 3x3, 512]
maxpool (2x1)

initStride 2x2

2x [conv 3x3, 512
conv 3x3, 512]
maxpool (2x2)

initStride 2x2

3x [conv 3x3, 512
conv 3x3, 512]
maxpool (2x2)

Output
3x FC 2084

FC 1024
FC 32k

3x FC 2084
FC 1024

FC 32k

3x FC 2084
FC 1024
FC 32k

3x FC 2084
FC 1024
FC 32k

(XE-300) SWB 11.8 11.2 11.3 11.4
(XE) SWB 9.7 9.5 9.2
(ST) SWB 8.6 8.7 8.3
(ST) CH 15.5 15.0 14.9
(ST) RT’02 13.4 13.3 13.1
(ST) RT’03 13.1 12.7 12.7
(ST) RT’04 12.1 12.0 11.9
(ST) DEV’04f 11.3 11.1 11.2

Table 6: ResNet architectures and results. Decoding with small
LM (4M n-grams). In the bottom rows (results on test-sets).
XE-300 indicates the network was cross-entropy trained on the
300h SWB corpus only, XE and ST for training on the 2000h
SWB+Fisher corpus. Column (d) has best performance, com-
pared against 3 different ablation variants: (a) with bottleneck
blocks and without pooling, (b) without pooling, and (c) less
depth. The size of the output of the 3 ⇥ 3 convolutions is indi-
cated for each stage.

and their performance on the testsets with small LM. We
achieved best results with basic residual blocks without bot-
tleneck, similar to the observations from [20] on CIFAR and
SVHN experiments. However, bottleneck residual blocks could
possibly be optimal with a larger computational budget. The
input to our network are vtln-warped logmel features with 64
mel bins. We perform data-balancing according to [22] with
exponent � = 0.8. We use full pre-activation identity shortcut
connections which keep a clean information path [21] without
nonlinearity after addition. For batch normalization the statis-
tics are accumulated per feature map and per frequency bin fol-
lowing [24].

In order to use residual networks for acoustic modeling, we
need to adapt the residual blocks (see Figure 2), while taking
efficient convolution on sequences into account. In ResNets for
image classification the convolutional pathway only includes
padded convolutions, so does not reduce the size of the fea-
ture maps. The addition with the shortcut pathway is trivial,
since both feature maps have the same size. In contrast, for
convolutions on sequences we can not pad along the time di-
rections. Padding along the time direction would modify the
values on the edges based on the input sliding window location,
thus making efficient convolution over a full utterance impossi-
ble (see [23]). So we do not pad the convolutions in time and
as a consequence, the convolutional pathway reduces the size
of the feature maps along the time direction. In this case, we
need to crop on the shortcut connection to match the size of the
feature maps coming out of the convolutional pathway. It is im-
portant to note that this does not impact the ability to convolve
the residual net over full utterances at once: since the values at
the edges are computed the same as everywhere else, they are

crop [-2, -2]

+

BN+ReLU+conv

BN+ReLU+conv

convolutional pathway shortcut connection

Figure 2: Residual connections on sequences. The convolu-
tions are unpadded and reduce the size of the feature maps in
the time direction (indicated with red dashed lines). To match
this reduction, we simply crop the edges along the time on the
shortcut connection.

independent of the position of the input window.
Let us now consider how to use strided pooling and strided

convolutions, and the relation to time-dilated convolutions.
First off, in the frequency direction, similar as for images, con-
volutions are padded so they do not reduce the size. Rather,
the size is reduced by a factor of 2 through convolutions with
stride 2. In Table 6, the “initStride” field on the first line of each
stage indicates the (frequency x time) stride for the first block of
that stage, where the number of feature maps is increased. This
stride applies to both the first 3 ⇥ 3 convolution of the block,
and the 1⇥1 convolution in the projection shortcut. The output
feature map size is indicated in the left column for each stage.
Secondly, along the time direction, strided convolutions and
strided pooling is optional, but was found to improve perfor-
mance [24]. In Table 6, Stage 4, column (c) and (d), bold in-
dicates striding in time. Note that, when adding time-strided
conv and pool to an architecture, we need to increase the input
context window to compensate for the additional size reduction.
For residual networks, similar as for VGG-style networks, we
indeed observe that time-strided time-pooling improves perfor-
mance, see column (b) vs (d).

When transitioning from cross-entropy (XE) to sequence
training (ST), we want to modify our network to do dense pre-
diction efficiently [24]. This means the intermediate states of
the convolutional layers and output of the ResNet should main-
tain inputs full time-resolution, i.e. it should produce an output
CD state distribution for each input frame. We can achieve this
by using time-dilated convolutions according to the same recipe
as in [24]: for each layer which originally strides in time with
factor 2, set time-stride to 1 and dilate with factor 2 all consecu-
tive convolutions, maxpooling and fully connected layers. This
includes the projection shortcut in the first block of each stage,
though dilation for these 1 ⇥ 1 convolutions is irrelevant. Af-
ter these modifications, the residual net can be used for dense
prediction on sequences.

The ResNet which we will use in further sections is in Ta-
ble 6 (d). It has 12 residual blocks, 30 weight layers and 67.1 M
parameters. We trained this model using Nesterov accelerated
gradient with learningrate 0.03 and momentum 0.99. Imple-
mentation of the CNN was also done in Torch with cuDNN v5.0
backend. Cross-entropy training took about 80 days for 1.5 bil-
lion samples, on 2 Nvidia K80 GPU’s (4 devices) with batch
size 64 per GPU and full synchronization between every mini-
batch. We sequence trained this model for 200M frames with
the boosted MMI criterion [9].

ResNet
Architectures and Results

(a) (b) (c) (d)

Summary Bottleneck 1-3333 1-3333
NoTimestride 1-2222 Timestride 1-3333 Timestride

param 64.3 M 67.1 M 60.8 M 67.1 M
Input 3 ⇥ 64 ⇥ 31 3 ⇥ 64 ⇥ 55 3 ⇥ 64 ⇥ 56 3 ⇥ 64 ⇥ 76
Stage 0
64x32xT

conv5x5, 64
maxpool (2x1)

conv5x5, 64
maxpool (2x1)

conv5x5, 64
maxpool (2x1)

conv5x5, 64
maxpool (2x1)

Stage 1
(64x32xT)

initStride 1x1
3x [conv 1x1, 64

conv 3x3, 64
conv 1x1, 256]

initStride 1x1
3x [conv 3x3, 64

conv 3x3, 64]

initStride 1x1
2x [conv 3x3, 64

conv 3x3, 64]

initStride 1x1
3x [conv 3x3, 64

conv 3x3, 64]

Stage 2
(128x16xT)

initStride 2x1
3x [conv 1x1, 128

conv 3x3, 128
conv 1x1, 512]

initStride 2x1
3x [conv 3x3, 128

conv 3x3, 128]

initStride 2x1
2x [conv 3x3, 128

conv 3x3, 128]

initStride 2x1
3x [conv 3x3, 128

conv 3x3, 128]

Stage 3
(256x8xT)

initStride 2x1
3x [conv 1x1, 256

conv 3x3, 256
conv 1x1, 1024]

initStride 2x1
3x [conv 3x3, 256

conv 3x3, 256]

initStride 2x1
2x [conv 3x3, 256

conv 3x3, 256]

initStride 2x1
3x [conv 3x3, 256

conv 3x3, 256]

Stage 4
(512x4xT)

initStride 2x1
3x [conv 1x1, 512

conv 3x3, 512
conv 1x1, 2048]

maxpool (2x1)

initStride 2x1
3x [conv 3x3, 512

conv 3x3, 512]
maxpool (2x1)

initStride 2x2

2x [conv 3x3, 512
conv 3x3, 512]
maxpool (2x2)

initStride 2x2

3x [conv 3x3, 512
conv 3x3, 512]
maxpool (2x2)

Output
3x FC 2084

FC 1024
FC 32k

3x FC 2084
FC 1024

FC 32k

3x FC 2084
FC 1024
FC 32k

3x FC 2084
FC 1024
FC 32k

(XE-300) SWB 11.8 11.2 11.3 11.4
(XE) SWB 9.7 9.5 9.2
(ST) SWB 8.6 8.7 8.3
(ST) CH 15.5 15.0 14.9
(ST) RT’02 13.4 13.3 13.1
(ST) RT’03 13.1 12.7 12.7
(ST) RT’04 12.1 12.0 11.9
(ST) DEV’04f 11.3 11.1 11.2

Table 6: ResNet architectures and results. Decoding with small
LM (4M n-grams). In the bottom rows (results on test-sets).
XE-300 indicates the network was cross-entropy trained on the
300h SWB corpus only, XE and ST for training on the 2000h
SWB+Fisher corpus. Column (d) has best performance, com-
pared against 3 different ablation variants: (a) with bottleneck
blocks and without pooling, (b) without pooling, and (c) less
depth. The size of the output of the 3 ⇥ 3 convolutions is indi-
cated for each stage.

and their performance on the testsets with small LM. We
achieved best results with basic residual blocks without bot-
tleneck, similar to the observations from [20] on CIFAR and
SVHN experiments. However, bottleneck residual blocks could
possibly be optimal with a larger computational budget. The
input to our network are vtln-warped logmel features with 64
mel bins. We perform data-balancing according to [22] with
exponent � = 0.8. We use full pre-activation identity shortcut
connections which keep a clean information path [21] without
nonlinearity after addition. For batch normalization the statis-
tics are accumulated per feature map and per frequency bin fol-
lowing [24].

In order to use residual networks for acoustic modeling, we
need to adapt the residual blocks (see Figure 2), while taking
efficient convolution on sequences into account. In ResNets for
image classification the convolutional pathway only includes
padded convolutions, so does not reduce the size of the fea-
ture maps. The addition with the shortcut pathway is trivial,
since both feature maps have the same size. In contrast, for
convolutions on sequences we can not pad along the time di-
rections. Padding along the time direction would modify the
values on the edges based on the input sliding window location,
thus making efficient convolution over a full utterance impossi-
ble (see [23]). So we do not pad the convolutions in time and
as a consequence, the convolutional pathway reduces the size
of the feature maps along the time direction. In this case, we
need to crop on the shortcut connection to match the size of the
feature maps coming out of the convolutional pathway. It is im-
portant to note that this does not impact the ability to convolve
the residual net over full utterances at once: since the values at
the edges are computed the same as everywhere else, they are

Figure 2: Residual connections on sequences. The convolu-
tions are unpadded and reduce the size of the feature maps in
the time direction (indicated with red dashed lines). To match
this reduction, we simply crop the edges along the time on the
shortcut connection.

independent of the position of the input window.
Let us now consider how to use strided pooling and strided

convolutions, and the relation to time-dilated convolutions.
First off, in the frequency direction, similar as for images, con-
volutions are padded so they do not reduce the size. Rather,
the size is reduced by a factor of 2 through convolutions with
stride 2. In Table 6, the “initStride” field on the first line of each
stage indicates the (frequency x time) stride for the first block of
that stage, where the number of feature maps is increased. This
stride applies to both the first 3 ⇥ 3 convolution of the block,
and the 1⇥1 convolution in the projection shortcut. The output
feature map size is indicated in the left column for each stage.
Secondly, along the time direction, strided convolutions and
strided pooling is optional, but was found to improve perfor-
mance [24]. In Table 6, Stage 4, column (c) and (d), bold in-
dicates striding in time. Note that, when adding time-strided
conv and pool to an architecture, we need to increase the input
context window to compensate for the additional size reduction.
For residual networks, similar as for VGG-style networks, we
indeed observe that time-strided time-pooling improves perfor-
mance, see column (b) vs (d).

When transitioning from cross-entropy (XE) to sequence
training (ST), we want to modify our network to do dense pre-
diction efficiently [24]. This means the intermediate states of
the convolutional layers and output of the ResNet should main-
tain inputs full time-resolution, i.e. it should produce an output
CD state distribution for each input frame. We can achieve this
by using time-dilated convolutions according to the same recipe
as in [24]: for each layer which originally strides in time with
factor 2, set time-stride to 1 and dilate with factor 2 all consecu-
tive convolutions, maxpooling and fully connected layers. This
includes the projection shortcut in the first block of each stage,
though dilation for these 1 ⇥ 1 convolutions is irrelevant. Af-
ter these modifications, the residual net can be used for dense
prediction on sequences.

The ResNet which we will use in further sections is in Ta-
ble 6 (d). It has 12 residual blocks, 30 weight layers and 67.1 M
parameters. We trained this model using Nesterov accelerated
gradient with learningrate 0.03 and momentum 0.99. Imple-
mentation of the CNN was also done in Torch with cuDNN v5.0
backend. Cross-entropy training took about 80 days for 1.5 bil-
lion samples, on 2 Nvidia K80 GPU’s (4 devices) with batch
size 64 per GPU and full synchronization between every mini-
batch. We sequence trained this model for 200M frames with
the boosted MMI criterion [9].

Model combination

3.3. Model combination

In Table 7 we report the performance of the best individual mod-
els described in the previous paragraphs as well as the results
after frame-level score fusion across all testsets. All decodings
are done with an 85K word vocabulary and a 4-gram language
model with 36M n-grams. We note that LSTMs and ResNets
exhibit a strong complementarity which improves the WER for
all testsets.

Model SWB CH RT’02 RT’03 RT’04 DEV’04f
LSTM1 (SA-MTL) 7.6 13.6 11.5 11.0 10.7 10.1
LSTM2 (Feat. fusion) 7.2 12.7 10.7 10.2 10.1 9.6
ResNet 7.6 14.5 12.2 12.2 11.5 11.1
ResNet+LSTM2 6.8 12.2 10.2 10.0 9.7 9.4
ResNet+LSTM1+LSTM2 6.7 12.1 10.1 10.0 9.7 9.2

Table 7: Word error rates for LSTMs and ResNet and frame-
level score fusion results across all testsets (36M n-gram LM).

3.4. Language modeling improvements

In addition to n-gram and model-M used in our previous sys-
tem [5], we introduced LSTM-based as well as convolution-
based LMs in this paper.

We experimented with four LSTM LMs, namely Word-
LSTM, Char-LSTM, Word-LSTM-MTL, and Char-LSTM-MTL.
The Word-LSTM had one word-embeddings layer, two LSTM
layers, one fully-connected layer, and one softmax layer, as
shown in Figure 3. The upper LSTM layer and the fully-
connected layer were wrapped by residual connections [6].
Dropout was only applied to the vertical dimension and not ap-
plied to the time dimension [25]. The Char-LSTM added an ad-
ditional LSTM layer to estimate word-embeddings from charac-
ter sequences as illustrated in Figure 4 [26]. Both Word-LSTM
and Char-LSTM used the cross-entropy loss of predicting the
next word given its history as objective function, similar to con-
ventional LMs. In addition, we introduced multi-task learning
(MTL) in Word-LSTM-MTL and Char-LSTM-MTL. We first
clustered the vocabulary using Brown clustering [27]. When
training Word-LSTM-MTL and Char-LSTM-MTL, weighted
summation of cross-entropy of predicting next word given its
history and next class given its history was used as objective
function.

Inspired by the complementarity of convolutional and
non-convolutional acoustic models, we experimented with a
convolution-based LM in the form of dilated causal convolution
as used in WAVENET [28]. The resulting model is called Word-
DCC and consists of word-embeddings layer, causal convolu-
tion layers with dilation, convolution layers, fully-connected
layers, softmax layer, and residual connections. The actual
number of layers and dilation/window sizes were determined
using heldout data (Figure 5 has a simple configuration for il-
lustration purposes).

For these five LMs, the training data and training proce-
dures are common and described below:

• We used the same vocabulary of 85K words from [5].
• We first train the LM with a corpus of 560M words

consisting of publicly available text data from LDC, in-
cluding Switchboard, Fisher, Gigaword, and Brodcast
News and Conversations. Then, starting from the trained
model, we further train the LM with only the transcripts
of the 1975 hours audio data used to train the acoustic
model, consisting of 24M words.

WER [%]
SWB CH

n-gram 6.7 12.1
n-gram + model-M 6.1 11.2
n-gram + model-M + Word-LSTM 5.6 10.4
n-gram + model-M + Char-LSTM 5.7 10.6
n-gram + model-M + Word-LSTM-MTL 5.6 10.3
n-gram + model-M + Char-LSTM-MTL 5.6 10.4
n-gram + model-M + Word-DCC 5.8 10.8
n-gram + model-M + 4 LSTMs + DCC 5.5 10.3

Table 8: WER on SWB and CH with various LM configurations.

• We controlled the leaning rate by ADAM [29] and intro-
duced a self-stabilization term to coordinate the layer-
wise learning rates [30].

• For all models, we tuned the hyper-parameters based on
the perplexity of the heldout data which is a subset of the
acoustic transcripts. The approximate number of param-
eters for each model was 90M to 130M.

We first generated word lattices with the n-gram LM and
our best acoustic model consisting of ResNet and two LSTMs.
Then we rescored the word lattices with the model-M and gen-
erated n-best lists from the rescored lattice. Finally, we applied
the four LSTM-based LMs and the convolution-based LM. Note
that LM probabilities were linearly interpolated and the interpo-
lation weights of all LMs were estimated using the heldout data.

Table 8 shows WER on SWB and CH with various LM
configurations. The LSTM-based LMs show significant im-
provements over the strong n-gram + model-M results. The
Word-DCC also has a marginal improvement over the n-gram
+ model-M. The effect of multi-task learning was confirmed es-
pecially on CH. Among the five LSTM-based and convolution-
based LMs, word-LSTM-MTL achieved the best WER of 5.6%
and 10.3% on SWB and CH respectively. By combining five
LMs on top of n-gram + model-M, we achieved 5.5% and
10.3% WER for SWB and CH respectively. Lastly, we sum-
marize the improvements due to the various language model
rescoring steps across all testsets in Table 9. We noticed that
the testset references have inconsistent transcription conven-
tions with regards to spellings which are not followed by pe-
riods for SWB and CH (e.g. T V) and followed by periods for
the other testsets (such as T. V.). The last line of Table 9 shows
the WERs when periods are removed from both the references
and system outputs by adding the filtering rules A. => A ... Z.
=> Z to the GLM file.

More details about the language modeling are given in a
companion paper [31].

SWB CH RT’02 RT’03 RT’04 DEV’04f
n-gram 6.7 12.1 10.1 10.0 9.7 9.2
+ model-M 6.1 11.2 9.4 9.4 9.0 8.8
+ LSTM + DCC 5.5 10.3 8.3 8.3 8.0 8.0
’.’ removal 5.5 10.3 8.3 8.0 7.7 7.1

Table 9: Word error rates for the different LM rescoring steps
across all testsets. Last line shows WERs after ’.’ removal from
the references and system outputs.

LSTM Language Models

be

able

able

to

Emb.

LSTM

FC

Emb.

LSTM

FC

LSTM LSTM

SoftMax SoftMax

Figure 3: Word-LSTM

e

able

a

to

LSTM

LSTM

FC

LSTM

LSTM

FC

b b l e

LSTM LSTMLSTMLSTM

Emb. Emb.Emb. Emb.Emb.Emb.

LSTM LSTM

Softmax Softmax

Figure 4: Char-LSTM

be able

to

Emb. Emb.

Conv.

FC

Conv.

SoftMax

wanted to

Emb. Emb.

Conv.

Figure 5: Word-DCC

4. Conclusion
We have presented a set of acoustic and language modeling im-
provements to our English Switchboard system that resulted in
a new record word error rate on this task. On the acoustic side,
two things were instrumental in reaching this level of perfor-
mance. The first one is a steady improvement in bidirectional
LSTM modeling, chief among them being a simple feature fu-
sion experiment. The second one is the replacement of VGG
nets with residual nets which are a more effective architec-
ture on the ImageNet classification task. When combined to-
gether, these recurrent and convolutional nets show good com-
plementarity and enhanced accuracy on a variety of testsets.
On the language modeling side, we exploited the same com-
plementarity between recurrent and convolutional architectures
by adding word and character-based LSTM LMs and a convo-
lutional WaveNet LM.

The second and perhaps more important point made in this
paper is that, unlike what was claimed in [1], we do not believe
that human parity has been reached on this task. The reasons
why we came to the opposite conclusion are twofold. First, the
Hub5’00 SWB testset has a large overlap between training and
test speakers which results in ASR systems having deceptively
good performance. A more realistic level of ASR performance
is the average WER across all testsets which is around 8% for
our system. The second and more direct argument is that the
human WER of expert transcribers that were asked to do a high-
quality job is simply lower than what was previously reported.
On an optimistic note, this means that the future of research in
conversational speech recognition looks bright for at least a few
more years.

5. References
[1] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer,

A. Stolcke, D. Yu, and G. Zweig, “Achieving human par-
ity in conversational speech recognition,” arXiv preprint
arXiv:1610.05256, 2016.

[2] R. P. Lippmann, “Speech recognition by machines and hu-
mans,” Speech communication, vol. 22, no. 1, pp. 1–15,
1997.

[3] J. Fiscus, W. M. Fisher, A. F. Martin, M. A. Przybocki,
and D. S. Pallett, “2000 nist evaluation of conversational
speech recognition over the telephone: English and man-
darin performance results,” in Proc. Speech Transcription
Workshop. Citeseer, 2000, pp. 1–5.

[4] K. Simonyan and A. Zisserman, “Very deep convolu-

tional networks for large-scale image recognition,” CoRR
arXiv:1409.1556, 2014.

[5] G. Saon, T. Sercu, S. Rennie, and H.-K. Kuo, “The IBM
2016 English conversational speech recognition system,”
in Seventeenth Annual Conference of the International
Speech Communication Association, 2016.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learn-
ing for image recognition,” in Proc. CVPR, 2016, pp. 770–
778.

[7] H. Soltau, G. Saon, and T. N. Sainath, “Joint training of
convolutional and non-convolutional neural networks,” to
Proc. ICASSP, 2014.

[8] G. Saon, H.-K. Kuo, S. Rennie, and M. Picheny, “The
IBM 2015 English conversational speech recognition sys-
tem,” in Sixteenth Annual Conference of the International
Speech Communication Association, 2015.

[9] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhad-
ran, G. Saon, and K. Visweswariah, “Boosted MMI for
model and feature-space discriminative training,” in Proc.
of ICASSP, 2008, pp. 4057–4060.

[10] H. Su, G. Li, D. Yu, and F. Seide, “Error back propagation
for sequence training of context-dependent deep networks
for conversational speech transcription,” Proc. ICASSP,
2013.

[11] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7:
A matlab-like environment for machine learning,” in
BigLearn, NIPS Workshop, no. EPFL-CONF-192376,
2011.

[12] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain,
H. Larochelle, F. Laviolette, M. Marchand, and V. Lem-
pitsky, “Domain-adversarial training of neural networks,”
Journal of Machine Learning Research, vol. 17, no. 59,
pp. 1–35, 2016.

[13] Y. Shinohara, “Adversarial multi-task learning of deep
neural networks for robust speech recognition,” Inter-
speech 2016, pp. 2369–2372, 2016.

[14] Y. Miao, M. Gowayyed, and F. Metze, “Eesen: End-to-end
speech recognition using deep rnn models and wfst-based
decoding,” arXiv preprint arXiv:1507.08240, 2015.

[15] H. Sak, A. Senior, K. Rao, O. Irsoy, A. Graves, F. Beau-
fays, and J. Schalkwyk, “Learning acoustic frame labeling
for speech recognition with recurrent neural networks,” in
Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on. IEEE, 2015, pp.
4280–4284.

Results with different LMs

3.3. Model combination

In Table 7 we report the performance of the best individual mod-
els described in the previous paragraphs as well as the results
after frame-level score fusion across all testsets. All decodings
are done with an 85K word vocabulary and a 4-gram language
model with 36M n-grams. We note that LSTMs and ResNets
exhibit a strong complementarity which improves the WER for
all testsets.

Model SWB CH RT’02 RT’03 RT’04 DEV’04f
LSTM1 (SA-MTL) 7.6 13.6 11.5 11.0 10.7 10.1
LSTM2 (Feat. fusion) 7.2 12.7 10.7 10.2 10.1 9.6
ResNet 7.6 14.5 12.2 12.2 11.5 11.1
ResNet+LSTM2 6.8 12.2 10.2 10.0 9.7 9.4
ResNet+LSTM1+LSTM2 6.7 12.1 10.1 10.0 9.7 9.2

Table 7: Word error rates for LSTMs and ResNet and frame-
level score fusion results across all testsets (36M n-gram LM).

3.4. Language modeling improvements

In addition to n-gram and model-M used in our previous sys-
tem [5], we introduced LSTM-based as well as convolution-
based LMs in this paper.

We experimented with four LSTM LMs, namely Word-
LSTM, Char-LSTM, Word-LSTM-MTL, and Char-LSTM-MTL.
The Word-LSTM had one word-embeddings layer, two LSTM
layers, one fully-connected layer, and one softmax layer, as
shown in Figure 3. The upper LSTM layer and the fully-
connected layer were wrapped by residual connections [6].
Dropout was only applied to the vertical dimension and not ap-
plied to the time dimension [25]. The Char-LSTM added an ad-
ditional LSTM layer to estimate word-embeddings from charac-
ter sequences as illustrated in Figure 4 [26]. Both Word-LSTM
and Char-LSTM used the cross-entropy loss of predicting the
next word given its history as objective function, similar to con-
ventional LMs. In addition, we introduced multi-task learning
(MTL) in Word-LSTM-MTL and Char-LSTM-MTL. We first
clustered the vocabulary using Brown clustering [27]. When
training Word-LSTM-MTL and Char-LSTM-MTL, weighted
summation of cross-entropy of predicting next word given its
history and next class given its history was used as objective
function.

Inspired by the complementarity of convolutional and
non-convolutional acoustic models, we experimented with a
convolution-based LM in the form of dilated causal convolution
as used in WAVENET [28]. The resulting model is called Word-
DCC and consists of word-embeddings layer, causal convolu-
tion layers with dilation, convolution layers, fully-connected
layers, softmax layer, and residual connections. The actual
number of layers and dilation/window sizes were determined
using heldout data (Figure 5 has a simple configuration for il-
lustration purposes).

For these five LMs, the training data and training proce-
dures are common and described below:

• We used the same vocabulary of 85K words from [5].
• We first train the LM with a corpus of 560M words

consisting of publicly available text data from LDC, in-
cluding Switchboard, Fisher, Gigaword, and Brodcast
News and Conversations. Then, starting from the trained
model, we further train the LM with only the transcripts
of the 1975 hours audio data used to train the acoustic
model, consisting of 24M words.

WER [%]
SWB CH

n-gram 6.7 12.1
n-gram + model-M 6.1 11.2
n-gram + model-M + Word-LSTM 5.6 10.4
n-gram + model-M + Char-LSTM 5.7 10.6
n-gram + model-M + Word-LSTM-MTL 5.6 10.3
n-gram + model-M + Char-LSTM-MTL 5.6 10.4
n-gram + model-M + Word-DCC 5.8 10.8
n-gram + model-M + 4 LSTMs + DCC 5.5 10.3

Table 8: WER on SWB and CH with various LM configurations.

• We controlled the leaning rate by ADAM [29] and intro-
duced a self-stabilization term to coordinate the layer-
wise learning rates [30].

• For all models, we tuned the hyper-parameters based on
the perplexity of the heldout data which is a subset of the
acoustic transcripts. The approximate number of param-
eters for each model was 90M to 130M.

We first generated word lattices with the n-gram LM and
our best acoustic model consisting of ResNet and two LSTMs.
Then we rescored the word lattices with the model-M and gen-
erated n-best lists from the rescored lattice. Finally, we applied
the four LSTM-based LMs and the convolution-based LM. Note
that LM probabilities were linearly interpolated and the interpo-
lation weights of all LMs were estimated using the heldout data.

Table 8 shows WER on SWB and CH with various LM
configurations. The LSTM-based LMs show significant im-
provements over the strong n-gram + model-M results. The
Word-DCC also has a marginal improvement over the n-gram
+ model-M. The effect of multi-task learning was confirmed es-
pecially on CH. Among the five LSTM-based and convolution-
based LMs, word-LSTM-MTL achieved the best WER of 5.6%
and 10.3% on SWB and CH respectively. By combining five
LMs on top of n-gram + model-M, we achieved 5.5% and
10.3% WER for SWB and CH respectively. Lastly, we sum-
marize the improvements due to the various language model
rescoring steps across all testsets in Table 9. We noticed that
the testset references have inconsistent transcription conven-
tions with regards to spellings which are not followed by pe-
riods for SWB and CH (e.g. T V) and followed by periods for
the other testsets (such as T. V.). The last line of Table 9 shows
the WERs when periods are removed from both the references
and system outputs by adding the filtering rules A. => A ... Z.
=> Z to the GLM file.

More details about the language modeling are given in a
companion paper [31].

SWB CH RT’02 RT’03 RT’04 DEV’04f
n-gram 6.7 12.1 10.1 10.0 9.7 9.2
+ model-M 6.1 11.2 9.4 9.4 9.0 8.8
+ LSTM + DCC 5.5 10.3 8.3 8.3 8.0 8.0
’.’ removal 5.5 10.3 8.3 8.0 7.7 7.1

Table 9: Word error rates for the different LM rescoring steps
across all testsets. Last line shows WERs after ’.’ removal from
the references and system outputs.

Conclusions
• Acoustic model improvements

• deep bidirectional LSTM, with feature fusion

• deep residual networks

• Language modelling

• recurrent and convolutional networks

• word-based and character-based

• Parity with human performance not yet reached

