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Languages of the World

@ Over 6,000 languages globally....
@ In Europe alone

e 24 official languages and 5 “semi-official” languages

o Over 100 further regional /minority languages

o If we rank the 50 most used languages in Europe, then there
are {50 million speakers of languages 2650 (Finnish
Montenegrin)

@ 3,000 of the world's languages are endangered

o Google cloud speech API covers 45 languages and a further 45
accents/dialects of those languages; Apple Siri covers 21
languages and a further 21 accents/dialects
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Under-resourced languages

Under-resourced (or low-resourced) languages have some or all of
the following characteristics

@ limited web presence
@ lack of linguistic expertise

@ lack of digital resources: acoustic and text corpora,
pronunciation lexica, ...

Under-resourced languages thus provide a challenge for speech
technology
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Speech recognition of under-resourced languages

@ Training acoustic and language models with limited training
data

@ Transferring knowledge between languages
@ Constructing pronunciation lexica

e Dealing with language specific characteristics (e.g.
morphology)
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Multilingual and cross-lingual acoustic models

How to share information from acoustic models in different
languages?

@ General principal — use neural network hidden layers to learn a
multilingual representation

Hidden layers are multilingual — shared between languages

Output layer is monolingual language specific

Hat swap use a network with multilingual hidden
representations directly in a hybrid DNN/HMM systems

Multilingual bottleneck use a bottleneck hidden layer
(trained in a multilingual) way as features for either a GMM-
or NN-based system
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Hat Swap — architecture
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Hat Swap — experiment
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Multilingual bottleneck features — architecture
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Multilingual bottleneck features — experiments

GMM-based acoustic models. (Similar results obtained using
multilingual bottleneck features with NN-based acoustic models.)
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Graphemes and phonemes

@ Can represent pronunciations as a sequence of graphemes
(letters) rather than a sequence of phones
@ Advantages of grapheme-based pronunciations
o No need to construct/generate phone-based pronunciations
o Can use unicode attributes to assist in decision tree
construction
o Disadvantages: not always direct link between graphemes and
sounds (most of in English)
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Grapheme-based ASR results for 6 low-resource languages

WER (%)
Language ID  System i@ ‘ +en ‘ one
Kurmanji Phonetic 67.6 | 65.8
Kurdish 205 Graphemic || 67.0 | 65.3 64.1
Tok Pisin 207 Phonetic 41.8 | 40.6 39.4

Graphemic || 42.1 | 41.1

Phonetic 55.5 | 54.0
Cebuano 301 1 ohemic || 55.5 | 542 | 220

Phonetic 549 | 53.5
Kazakh 302 G ohemic || 54.0 | 527 | 21

Phonetic 70.6 | 69.1
Telugu 303 Graphemic || 709 | 69.5 | 7

. . Phonetic 51.5 | 50.2
Lithuanian 304 Graphemic || 50.9 | 49.5 48.3

IARPA Babel, 40h acoustic training data per language,
monolingual training; cnc is confusion network combination,
combining the grapheme- and phone-based systems

Gales et al (2015)
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Morphology

@ Many languages are morphologically richer than English: this
has a major effect of vocabulary construction and language
modelling

e Compounding (eg German): decompose compund words into
constituent parts, and carry out pronunciation and language
modelling on the decomposed parts

e Highly inflected languages (eg Arabic, Slavic languages):
specific components for modelling inflection (eg factored
language models)

@ Inflecting and compounding languages (eg Finnish)

@ All approaches aim to reduce ASR errors by reducing the
OOV rate through modelling at the morph level; also
addresses data sparsity

ASR Lecture 16 12



Vocabulary size for different languages
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New words in test set [%]
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Segmenting into morphs

@ Linguistic rule-based approaches — require a lot of work for an
under-resourced language!

@ Automatic approaches — use automatically segment and
cluster words into their constitutent morphs
e Morfessor (http://www.cis.hut.fi/projects/morpho/)

e “Morfessor is an unsupervised data-driven method for the
segmentation of words into morpheme-like units.”

e Aims to identify frequently occurring substrings of letters
within either a word list (type-based) or a corpus of text
(token-based)

e Uses a probabilistic framework to balance between few, short
morphs and many, longer morphs

@ Morph-based language modelling uses words instead morphs —
may require longer context (since multiple morphs correspond
to one word)
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Morph-based vs Word-based ASR

Speech recognition accuracies on Finnish (Finl-Fin4), Estonian
(Est), Turkish (Tur), and Egyptian Arabic (ECA) tasks, using
morph-based and word-based n-gram language models.
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Speech recognition systems for low-resource languages

@ Transferring data between acoustic models based on
multilingual hidden representations

@ Grapheme-based pronunciation lexica

@ Morph-based language modeling
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