Multilingual Speech Recognition

Steve Renals

Automatic Speech Recognition – ASR Lecture 16 20 March 2017

ASR Lecture 16 Multilingual Speech Recognition

æ

< ≣ ▶

- Over 6,000 languages globally....
- In Europe alone
 - 24 official languages and 5 "semi-official" languages
 - Over 100 further regional/minority languages
 - If we rank the 50 most used languages in Europe, then there are ¿50 million speakers of languages 2650 (Finnish Montenegrin)
- 3,000 of the world's languages are endangered
- Google cloud speech API covers 45 languages and a further 45 accents/dialects of those languages; Apple Siri covers 21 languages and a further 21 accents/dialects

Under-resourced (or low-resourced) languages have some or all of the following characteristics

- limited web presence
- lack of linguistic expertise
- lack of digital resources: acoustic and text corpora, pronunciation lexica, ...

Under-resourced languages thus provide a challenge for speech technology

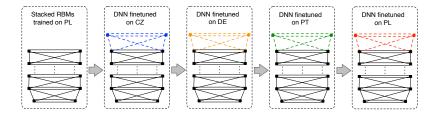
- Training acoustic and language models with limited training data
- Transferring knowledge between languages
- Constructing pronunciation lexica
- Dealing with language specific characteristics (e.g. morphology)

Multilingual and cross-lingual acoustic models

How to share information from acoustic models in different languages?

- General principal use neural network hidden layers to learn a multilingual representation
- Hidden layers are multilingual shared between languages
- Output layer is monolingual language specific
- Hat swap use a network with multilingual hidden representations directly in a hybrid DNN/HMM systems
- Multilingual bottleneck use a bottleneck hidden layer (trained in a multilingual) way as features for either a GMMor NN-based system

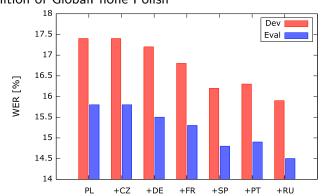
< □ > < □ >



Ghoshal et al, 2013

イロン イヨン イヨン イヨン

Э



Recognition of GlobalPhone Polish

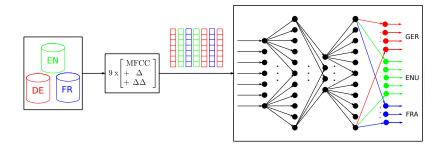
Ghoshal et al, 2013

< ∃⇒

A.

Э

Multilingual bottleneck features – architecture



Tüske et al, 2013

A 1

GMM-based acoustic models. (Similar results obtained using multilingual bottleneck features with NN-based acoustic models.)

· · · · · · · · · · · · · · · · · · ·						WER		MFCC+BN				
WER [%]		MFCC	MFCC+BN				[%] MFCC		BN trained on			
			Bottleneck trained on			_			GER	ENU	+ ENU	+ GER
			GER	ENU	FRA	-	GER	34.58	33.39	34.07	+ERA 32.74	<u>ENU+FRA</u> 31.72
Test language	GER	29.97	27.50	29.63	30.38	۰		(3.4)	(1.5)	(5.3)	(8.3)	
			(8.2)	(1.1)	(-1.4)		est language		ENU	GER	+GER FRA	GER +ENU+FRA
	ENU	21.69	21.31	18.85	22.63	-			23.54	24.81	23.68	21.79
			(1.8)	(13.1)	(-4.3)				(9.9)	(5.1)	(9.4)	(16.6)
			<u>`</u>	· /	· /	- E	-		FRA	GER	GER + ENU	GER +ENU+FRA
	FRA	37.78	37.76	38.72	33.95		FRA		40.51	43.65	41.96	1 39.98
			(0.1)	(-2.5)	(10.1)				(6.9)	(-0.3)	(3.6)	(8.1)

Tüske et al, 2013

- Can represent pronunciations as a sequence of graphemes (letters) rather than a sequence of phones
- Advantages of grapheme-based pronunciations
 - No need to construct/generate phone-based pronunciations
 - Can use unicode attributes to assist in decision tree construction
- Disadvantages: not always direct link between graphemes and sounds (most of in English)

Grapheme-based ASR results for 6 low-resource languages

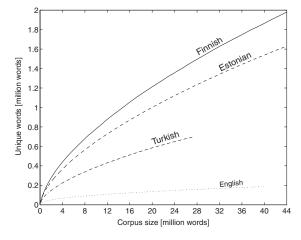
Language	ID	System	WER (%)			
		System	tg	+cn	cnc	
Kurmanji	205	Phonetic	67.6	65.8	64.1	
Kurdish	205	Graphemic	67.0	65.3		
Tok Pisin	207	Phonetic	41.8	40.6	39.4	
TOK FISH		Graphemic	42.1	41.1		
Cebuano	301	Phonetic	55.5	54.0	52.6	
Cebuano		Graphemic	55.5	54.2		
Kazakh	302	Phonetic	54.9	53.5	51.5	
Kazakii	502	Graphemic	54.0	52.7		
Telugu	303	Phonetic	70.6	69.1	67.5	
Telugu	505	Graphemic	70.9	69.5		
Lithuanian	304	Phonetic	51.5	50.2	48.3	
Liuiuaillail		Graphemic	50.9	49.5	+0.5	

IARPA Babel, 40h acoustic training data per language, monolingual training; cnc is confusion network combination, combining the grapheme- and phone-based systems Gales et al (2015)

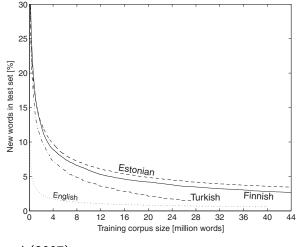
- Many languages are morphologically richer than English: this has a major effect of vocabulary construction and language modelling
- Compounding (eg German): decompose compund words into constituent parts, and carry out pronunciation and language modelling on the decomposed parts
- Highly inflected languages (eg Arabic, Slavic languages): specific components for modelling inflection (eg factored language models)
- Inflecting and compounding languages (eg Finnish)
- All approaches aim to reduce ASR errors by reducing the OOV rate through modelling at the morph level; also addresses data sparsity

・ロト ・回ト ・ヨト ・ヨト

Vocabulary size for different languages



Creutz et al (2007)



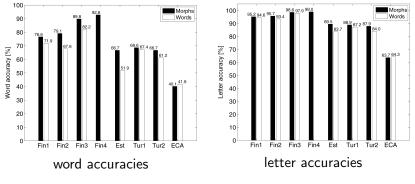
Creutz et al (2007)

Segmenting into morphs

- Linguistic rule-based approaches require a lot of work for an under-resourced language!
- Automatic approaches use automatically segment and cluster words into their constitutent morphs
- Morfessor (http://www.cis.hut.fi/projects/morpho/)
 - "Morfessor is an unsupervised data-driven method for the segmentation of words into morpheme-like units."
 - Aims to identify frequently occurring substrings of letters within either a word list (type-based) or a corpus of text (token-based)
 - Uses a probabilistic framework to balance between few, short morphs and many, longer morphs
- Morph-based language modelling uses words instead morphs may require longer context (since multiple morphs correspond to one word)

(4回) (4回) (4回)

Speech recognition accuracies on Finnish (Fin1-Fin4), Estonian (Est), Turkish (Tur), and Egyptian Arabic (ECA) tasks, using morph-based and word-based n-gram language models.



Creutz et al (2007)

- Transferring data between acoustic models based on multilingual hidden representations
- Grapheme-based pronunciation lexica
- Morph-based language modeling

Reading

- L Besaciera et al (2014). "Automatic speech recognition for under-resourced languages: A survey", Speech Communication, 56:85-100. http://www.sciencedirect.com/science/article/pii/ S0167639313000988
- Z Tüske et al (2013). "Investigation on cross- and multilingual MLP features under matched and mismatched acoustical conditions", IEEE ICASSP-2013.

http://ieeexplore.ieee.org/abstract/document/6639090/

• A Ghoshal et al (2013). "Multilingual training of deep neural networks", IEEE ICASSP-2013.

http://ieeexplore.ieee.org/abstract/document/6639084/

- M Gales et al (2015). "Unicode-based graphemic systems for limited resource languages", IEEE ICASSP-2015. http://ieeexplore.ieee.org/document/7178960/
- M Creutz et al (2007). "Morph-based speech recognition and modeling OOV words across languages", ACM Trans Speech and Language Processing, 5(1), art. 3.

http://doi.acm.org/10.1145/1322391.1322394

æ

(1日) (日) (日)