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Recall: Maximum likelihood estimation of HMMs

Maximum likelihood estimation (MLE) sets the parameters so
as to maximize an objective function FMLE:

FMLE =
U∑

u=1

logPλ(Xu | M(Wu))

for training utterances X1 . . .XU where Wu is the word
sequence given by the transcription of the uth utterance,
M(Wu) is the corresponding HMM, and λ is the set of HMM
parameters
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Maximum mutual information estimation

Maximum mutual information estimation (MMIE) aims to
directly maximise the posterior probability (sometimes called
conditional maximum likelihood). Using the same notation as
before, with P(w) representing the language model probability
of word sequence w :

FMMIE =
U∑

u=1

logPλ(M(Wu) | Xu)

=
U∑

u=1

log
Pλ(Xu | M(Wu))P(Wu)∑
w ′ Pλ(Xu | M(w ′))P(w ′)
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Maximum mutual information estimation

FMMIE =
U∑

u=1

log
Pλ(Xu | M(Wu))P(Wu)∑
w ′ Pλ(Xu | M(w ′))P(w ′)

Numerator: likelihood of data given correct word sequence
(“clamped” to reference alignment)

Denominator: total likelihood of the data given all possible
word sequences – equivalent to summing over all possible
word sequences estimated by the full acoustic and language
models in recognition. (“free”)

The objective function FMMIE is optimised by making the
correct word sequence likely (maximise the numerator), and
all other word sequences unlikely (minimise the denominator)
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Sequence training and lattices

Computing the denominator involves summing over all
possible word sequences – estimate by generating lattices, and
summing over all words in the lattice

In practice also compute numerator statistics using lattices
(useful for summing multiple pronunciations)

Generate numerator and denominator lattices for every
training utterance

Denominator lattice uses recognition setup (with a weaker
language model)

Each word in the lattice is decoded to give a phone
segmentation, and forward-backward is then used to compute
the state occupation probabilities

Lattices not usually re-computed during training
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MMIE is sequence discriminative training

Sequence: like forward-backward (MLE) training, the overall
objective function is at the sequence level – maximise the
posterior probability of the word sequence given the acoustics
Pλ(M(Wu) | Xu)

Discriminative: unlike forward-backward (MLE) training the
overall objective function for MMIE is discriminative – to
maximise MMI:

Maximise the numerator by increasing the likelihood of data
given the correct word sequence
Minimise the denominator by decreasing the total likelihood of
the data given all possible word sequences

This results in “pushing up” the correct word sequence, while
“pulling down” the rest
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MPE: Minimum phone error

Basic idea adjust the optimization criterion so it is directly
related to word error rate

Minimum phone error (MPE) criterion

A(W ,Wu) is the phone transcription accuracy of the sentence
W given the reference Wu

FMPE is a weighted average over all possible sentences w of
the raw phone accuracy

Although MPE optimizes a phone accuracy level, it does so in
the context of a word-level system: it is optimized by finding
probable sentences with low phone error rates
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HMM/DNN systems

DNN-based systems are discriminative – the cross-entropy
(CE) training criterion with softmax output layer “pushes up”
the correct label, and “pulls down” competing labels

CE is a frame-based criterion – we would like a sequence level
training criterion for DNNs, operating at the word sequence
level

Can we train DNN systems with an MMI-type objective
function?
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Sequence training of hybrid HMM/DNN systems

Can we train DNN systems with an MMI-type objective
function? – Yes

Forward- and back-propagation equations are structurally
similar to forward and backward recursions in HMM training

Initially train DNN framewise using cross-entropy (CE) error
function

Use CE-trained model to generate alignments and lattices for
sequence training
Use CE-trained weights to initialise weights for sequence
training

Train using back-propagation with sequence training objective
function (e.g. MMI)
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Sequence training results on Switchboard (Kaldi)

Results on Switchboard “Hub 5 ’00” test set, trained on 300h training
set, comparing maximum likelihood (ML) and discriminative (BMMI)
trained GMMs with framewise cross-entropy (CE) and sequence trained
(MMI) DNNs. GMM systems use speaker adaptive training (SAT).
All systems had 8859 tied triphone states.
GMMs – 200k Gaussians
DNNs – 6 hidden layers each with 2048 hidden units

SWB CHE Total

GMM ML (+SAT) 21.2 36.4 28.8
GMM BMMI (+SAT) 18.6 33.0 25.8

DNN CE 14.2 25.7 20.0
DNN MMI 12.9 24.6 18.8

Veseley et al, 2013.
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Robust Speech Recognition
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Additive Noise

Multiple acoustic sources are the norm rather than the
exception

From the point of view of trying to recognize a single stream
of speech, this is additive noise

Stationary noise: frequency spectrum does not change over
time (e.g. air conditioning, car noise at constant speed)

Non-stationary noise: time-dependent frequency spectrum
(e.g. breaking glass, workshop noise, music, speech)

Measure the noise level as SNR (signal-to-noise ratio),
measured in dB

30dB SNR sounds noise free
0dB SNR has equal signal and noise energy
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Feature normalization

Basic idea: Transform the features to reduce mismatch
between training and test

Cepstral Mean Normalization (CMN): subtract the mean of
the feature vectors from each feature vector, so each feature
vector element has a mean of 0

CMN makes features robust to some linear filtering of the
signal — adds robustness to varying microphones, telephone
channels, etc.

Cepstral Variance Normalization (CVN): Divide feature vector
by standard deviation of feature vectors, so each feature
vector element has a variance of 1

Cepstral mean and variance normalisation, CMN/CVN:

x̂i =
xi − µ(x)

σ(x)
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Feature compensation: Spectral subtraction

Basic idea: Estimate the noise spectrum and subtract it from
the observed spectra

Any feature vector can then be computed from the
noise-subtracted spectrum

Problems:

Need to estimate noise spectrum from a period of non-speech:
requires good speech/non-speech detection
Errors in the noise estimate (perhaps arising from
speech/non-speech separation errors) result in
over-/under-compensation of the spectrum

Low computational cost, widely used in practice

“ETSI adavanced front end” uses spectral subtraction and
CMN
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Multi-condition Training

Basic idea: Don’t train on clean speech, but train on speech
with a similar noise level (and noise type)

Matched condition — training in the same noise conditions as
testing — is rarely possible since the test conditions are nearly
always partly unknown

Multi-condition training — train with speech data in a variety
of noise conditions

It is possible to artificially mix recorded noise with clean
speech at any desired SNR to create a multi-style training set

Advantage: training data much better matched to test
conditions

Disadvantage: acoustic model components become less
discriminative and less well matched to the training data

Model adaptation — can further reduce errors using an
adaptation technique such as MLLR

Seltzer (2013)
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GMMs and DNNs at varying SNRs

WERs on Microsoft voice search data at varying SNRs
(Huang 2014)

Deep Neural Networks raise all boats…

• All SNRs improve

[Huang 2014]

REVERB 2014 11
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Current approaches to robust speech recognition

Decoupled preprocessing: Acoustic processing independent of
downstream activity

Pro: simple

Con: removes variability

Example: beamforming for multi-microphone distant speech
recognition

Approach 1: Decoupled Preprocessing

• Processing independent of downstream activity
• Pro: simple
• Con: removes variability 
• Biggest success: beamforming [Swietojanski 2013]

Preprocessing

REVERB 2014 29

Slide from Mike Seltzer
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Current approaches to robust speech recognition

Integrated processing: Treat acoustic processing as initial layers
of the network – optimise parameters with back propagation

Pro: should be “optimal” for the model

Con: computationally expensive,

Example: direct waveform systems

Approach 2: Integrated Preprocessing

• Treat preprocessing as initial “layers” of model
• Optimize parameters with back propagation

• Examples: Mask estimation [Narayanan 2014], Mel optimization [Sainath 2013]
• Pro: should be “optimal” for the model 
• Con: expensive, hard to “move the  needle” 

Preprocessing Back-prop

REVERB 2014 30

Slide from Mike Seltzer
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Current approaches to robust speech recognition

Augmented information:
Add additional side in-
formation to the network
(additional nodes, different
objective function, ...)

Pros: preserves
variability, adds
knowledge, maintains
representation

Con: not a physical
model

Example: noise-aware
training, factorised
“noise codes”
(iVectors)

Approach 3: Augmented information

• Augment model with 
informative side information

• Nodes (input, hidden, output)
• Objective function

• Pros: 
• preserves variability
• adds knowledge
• operates on representation

• Con: 
• No physical model

Knowledge +
Auxiliary information

REVERB 2014 31

Slide from Mike Seltzer
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Summary

Sequence training: discriminatively optimise GMM or DNN to
a sentence (sequence) level criterion rather than a frame level
criterion

Noise robustness

Important for practical applications of speech recognition
Achieve robustness through feature invariance
Achieve invariance through large training sets and deep
networks
Much active research in developiong architectures for robust
ASR
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Reading

HMM discriminative training: Sec 27.3.1 of: S Young (2008),
“HMMs and Related Speech Recognition Technologies”, in Springer
Handbook of Speech Processing, Benesty, Sondhi and Huang (eds),
chapter 27, 539–557. http://www.inf.ed.ac.uk/teaching/

courses/asr/2010-11/restrict/Young.pdf

NN sequence training: K Vesely et al (2013),
“Sequence-discriminative training of deep neural networks”,
Interspeech-2013, http://homepages.inf.ed.ac.uk/aghoshal/
pubs/is13-dnn_seq.pdf

DNNs for robust ASR: M Seltzer et al (2013), “An Investigation of
Deep Neural Networks for Noise Robust Speech Recognition”,
https://www.microsoft.com/en-us/research/publication/

an-investigation-of-deep-neural-networks-for-noise-robust-speech-recognition/

Y Huang et al (2014), “A comparative analytic study on the
Gaussian mixture and context-dependent deep neural network
hidden Markov models”, Interspeech-2014. http://www.

isca-speech.org/archive/interspeech_2014/i14_1895.html
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