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Language modelling

@ Basic idea The language model is the prior probability of the
word sequence P(W)

@ Use a language model to disambiguate between similar
acoustics when combining linguistic and acoustic evidence
recognize speech | wreck a nice beach

@ Use hand constructed networks in limited domains

@ Statistical language models: cover “ungrammatical”
utterances, computationally efficient, trainable from huge
amounts of data, can assign a probability to a sentence
fragment as well as a whole sentence
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Statistical language models

For use in speech recognition a language model must be:
statistical, have wide coverage, and be compatible with
left-to-right search algorithms

Only a few grammar-based models have met this requirement
(eg Chelba and Jelinek, 2000), and do not yet scale as well as
simple statistical models

Until very recently n-grams were the state-of-the-art
language model for ASR

Unsophisticated, linguistically implausible

Short, finite context

Model solely at the shallow word level

But: wide coverage, able to deal with “ungrammatical”
strings, statistical and scaleable

Probability of a word depends only on the identity of that
word and of the preceding n-1 words. These short sequences
of n words are called n-grams.
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Bigram language model

@ Word sequence W = wy, wo, ... wy
P(W) = P(Wl)P(W2 ‘ W1)P(W3 | wi, W2)
ce P(WM ‘ Wi, Wo, ... WM,1)
@ Bigram approximation—consider only one word of context:

P(W) ~ P(W]_)P(W2 ’ W1)P(W3 | W2)... P(WM | WM—l)
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Bigram language model

@ Word sequence W = wy, wo, ... wy

P(W) = P(w1)P(wa | wi)P(ws | wi, wp)
o Plwy | wa, wa, .o wpy—1)
@ Bigram approximation—consider only one word of context:
P(W) ~ P(wy)P(wy | wi)P(ws | wo) ... P(wy | wy—1)
@ Parameters of a bigram are the conditional probabilities
P(w; | w;)
@ Maximum likelihood estimates by counting:
c(wj, wi)
c(wj)
where c(w;j, w;) is the number of observations of w; followed

by w;, and c(w;) is the number of observations of w;
(irrespective of what follows)
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The zero probability problem

@ Maximum likelihood estimation is based on counts of words in
the training data

@ If a n-gram is not observed, it will have a count of 0—and the
maximum likelihood probability estimate will be 0

@ The zero probability problem: just because something does
not occur in the training data does not mean that it will not
occur

@ As n grows larger, so the data grow sparser, and the more
zero counts there will be
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The zero probability problem

@ Maximum likelihood estimation is based on counts of words in
the training data

@ If a n-gram is not observed, it will have a count of 0—and the
maximum likelihood probability estimate will be 0

@ The zero probability problem: just because something does
not occur in the training data does not mean that it will not
occur

@ As n grows larger, so the data grow sparser, and the more
zero counts there will be

@ Solution: smooth the probability estimates so that unobserved
events do not have a zero probability

@ Since probabilities sum to 1, this means that some probability
is redistributed from observed to unobserved n-grams
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Smoothing language models

@ What is the probability of an unseen n-gram?
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Smoothing language models

@ What is the probability of an unseen n-gram?
@ Add-one smoothing: add one to all counts and renormalize.
e “Discounts” non-zero counts and redistributes to zero counts
e Since most n-grams are unseen (for large n more types than
tokens!) this gives too much probability to unseen n-grams
(discussed in Manning and Schiitze)
@ Absolute discounting: subtract a constant from the observed
(non-zero count) n-grams, and redistribute this subtracted
probability over the unseen n-grams (zero counts)

@ Kneser-Ney smoothing: family of smoothing methods based
on absolute discounting that are at the state of the art
(Goodman, 2001)
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Backing off

@ How is the probability distributed over unseen events?

@ Basic idea: estimate the probability of an unseen n-gram using
the (n-1)-gram estimate

@ Use successively less context: trigram — bigram — unigram

@ Back-off models redistribute the probability “freed” by
discounting the n-gram counts
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Backing off

@ How is the probability distributed over unseen events?

@ Basic idea: estimate the probability of an unseen n-gram using
the (n-1)-gram estimate

@ Use successively less context: trigram — bigram — unigram

@ Back-off models redistribute the probability “freed” by
discounting the n-gram counts

@ For a bigram

hwi)—D .
P(w; | w)) = % if c(wj,w;) > c
= P(w;)by, otherwise

¢ is the count threshold, and D is the discount. by, is the
backoff weight required for normalization
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Interpolation

Basic idea: Mix the probability estimates from all the
estimators: estimate the trigram probability by mixing
together trigram, bigram, unigram estimates

Simple interpolation

A

P(Wn | Wn—2, anl) =
)\3P(Wn | Wn—2, anl) + )\2P(Wn | anl) =+ )‘1P(Wn)
With S0, = 1

Interpolation with coefficients conditioned on the context

A

P(Wn ’ Wn-2, Wn—l) =
)\3(Wn—2> Wn—l)P(Wn ’ Wn—2, Wn—1)+
)\2(an27 anl)P(Wn | anl) + )\1(an27 anl)P(Wn)

Set A values to maximise the likelihood of the interpolated

language model generating a held-out corpus (possible to use
EM to do this)
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Perplexity

Measure the quality of a language model by how well it
predicts a test set W (i.e. estimated probability of word
sequence)

Perplexity (PP(W)) — inverse probability of the test set WV,
normalized by the number of words N

PP(W) = P(W)T = P(wiws...wy) N
Perplexity of a bigram LM
PP(W) = (P(W]_)P(WQ’W]_)P(W3‘W2) e P(W/\/’W/\/,l))iw:l

Example perplexities for different n-gram LMs trained on Wall
St Journal (38M words)

e Unigram — 962

e Bigram - 170

e Trigram — 109

ASR Lecture 11 10



Practical language modelling

@ Work in log probabilities

@ The ARPA language model format is commonly used to store
n-gram language models (unless they are very big)

@ Many toolkits: SRILM, IRSTLM, KenLM, Cambridge-CMU
toolkit, ...

@ Some research issues:

e Advanced smoothing
Adaptation to new domains
Incorporating topic information
Long-distance dependencies
Distributed representations
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Distributed representation for language modelling

@ Each word is associated with a learned distributed
representation (feature vector)

@ Use a neural network to estimate the conditional probability of
the next word given the the distributed representations of the
context words

@ Learn the distributed representations and the weights of the
conditional probability estimate jointly by maximising the log
likelihood of the training data

e Similar words (distributionally) will have similar feature vectors
— small change in feature vector will result in small change in
probability estimate (since the NN is a smooth function)
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Neural Probabilistic Language Model

i-th output = P(wy = i| context)
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Neural Probabilistic Language Model

@ Train using stochastic gradient ascent to maximise log
likelihood

@ Number of free parameters (weights) scales

e Linearly with vocabulary size
o Linearly with context size

@ Can be (linearly) interpolated with n-gram model

@ Perplexity results on AP News (14M words training).

|V| =18k
model ‘ n ‘ perplexity
NPLM(100,60) | 6 109
n-gram (KN) 3 127
n-gram (KN) 4 119
n-gram (KN) 5 117
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Recurrent Neural Network (RNN) LM

@ Rather than fixed input context, recurrently connected hidden
units provide memory

@ Model learns “how to remember” from the data

@ Recurrent hidden layer allows clustering of variable length
histories
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RNN training: back-propagation through time
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Reducing computation at the output layer

Majority of the weights (hence majority of the computation) is in
the output layer — potentially V' units wide, where V is vocabulary
size
@ Model fewer words
o Shortlist: use the NN to model only the most frequent words

@ Structure the output layer

o Factorization of the output layer: first estimate the
probability over word classes then over words within the
selected class

o Hiearchical softmax: structure the output layer as a binary
tree

© Efficiently estimate the normalised outputs

o Noise contrastive estimation: train each output unit as an

independent binary classifier
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Shortlists

@ Reduce computation by only including the s most frequent
words at the output — the shortlist (S) (full vocabulary still
used for context)

@ Use an n-gram model to estimate probabilities of words not in
the shortlist

@ Neural network thus redistributes probability for the words in
the shortlist

Ps(he) = P(wlh)

weS
o PNN(Wt|ht)PS(ht) Ith S 5
P(welhe) = { Py (we|he) else

@ In a |V| =50k task a 1024 word shortlist covers 89% of
4-grams, 4096 words covers 97%
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NPLM — ASR results

Speech recognition results on Switchboard
7M / 12M / 27M words in domain data.
500M words background data (broadcast news)
Vocab size |V| = b1k, Shortlist size |S| = 12k

WER/%
in-domain words | 7M | 12M | 27M
KN (in-domain) | 25.3 | 23.0 | 20.0
NN (in-domain) | 24.5 | 22.2 | 19.1
KN (+b/g) | 24.1 | 22.3 | 19.3
NN (+b/g) | 23.7 | 21.8 | 18.9
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Factorised RNN LM

Mikolov 2011

~ 7 >
(delayed)

c(t)
P(w;lhist) = P(ci|s(t))P(wilci, s(t))
@ Compute a probability distribution over C classes

@ Compute a probability distribution over V/ < V words in the
class

ASR Lecture 11 21



Factorised RNN LM

~__."7 >
(delayed)

o
P(w;|hist) = P(ci|s(t))P(wi|ci,s(t))

@ Instead of doing softmax over V elements, only C + V’
outputs have to be computed, and the softmax function is
applied separately to the classes and the words in that class.

~

@ C is constant; V can be variable.
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Classes for a factorised RNN LM

(delayed)

c(t
P(w;lhist) = P(ci|s(t))P(w;jlci, s(t))
@ Each word is assigned to a single class based on unigram
probabilities — “frequency binning”
@ Most frequent words in class 1: V'’ is small for that class

@ Rarest words in class C: V' is large for that class but the
words are infrequent

-
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Perplexity Results

Table 2. Comparison of different neural network architectures on
Penn Corpus (1M words) and Switchboard (4M words).

Penn Corpus Switchboard
Model NN [ NN+KN [| NN | NN+KN
KNS5 (baseline) - 141 - 92.9
feedforward NN 141 118 85.1 77.5
RNN trained by BP 137 113 81.3 75.4
RNN trained by BPTT || 123 106 77.5 72.5

Factorised output layer an speedup training by 25x for 100k
vocabulary, with minimal effect on perplexity
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Hierarchical Softmax

Bengio 2006
@ Push the class-based factorization idea to the limit
o Class-based factorization is 1-level structuring
@ "Classes of classes” — 2 level structuring
@ Balanced binary tree — n level structuring (n ~ log, V), each

leaf is a word

Each node of the tree is a 2-class classifier — make
probabilistic binary decisions

Need only consider the log, V nodes on the path from the
root to the leaf for each word

P(w|hist) = HP V) b1(v), ..., bj_1(v), hist)
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Noise contrastive estimation (NCE)

Chen et al (2015) (not the original source, but a clear application to ASR)

@ Aim: avoid directly computing the normalisation term
(denominator) in softmax (involves summing over V units)

@ Method: treat each output unit separately, as sigmoid
classifier between the observed data (for that word) and a
“noise” distribution

@ Assume that data for a history h generated by a mixture of an
RNNLM distribution Pgyn(:|h) and a noise distribution
P(:|h) — typically, P, is a unigram

@ Each node computes the posterior probability of whether a
word sample w comes from the RNNLM or the noise:

Prun(w|h)
P(CRNN = 1|w, h) = RV
( W, B) = B ) + kPo(w])

P(C" =1|w,h) =1— P(CENN = 1w, h)
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Noise contrastive estimation (NCE)

@ NCE training minimises this cost function:

N k
1 w
= 1 InPCRNN—llwh—i—z;InP " —1|w, h)
i= J

@ k samples drawn from the unigram noise distribution for the
current word; typically k ~ 10

@ The RNNLM distribution is given by

exp(vs(t))

Pryun(wilh) = >

The normalisation term Z is learned; in practice it may be set
to a constant for all contexts
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State-of-the-art (2016)

Jozefowicz et al (2016), “Exploring the Limits of Language
Modeling”, http://arxiv.org/abs/1602.02410. (Google)

@ Experiments on One Billion Word Benchmark data set, with
800k vocabulary
@ Large-scale language modeling experiments, comparing

5-gram model (interpolated Kneser-Ney smoothing)
o RNN with sigmoid transfer functions
Various LSTM recurrent network models
@ "Size matters... The best models are the largest we were able
to fit into a GPU memory.”
@ Best performing model had two LSTM recurrent layers with
8192 and 1024 units (~ 1.8 billion parameters)
RNN models used a variant of NCE at the output layer
Also obtained more compact and slightly better performing
models using convolutional layers over characters at input and
output
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Results: Single models

MODEL TEST PERPLEXITY
SIGMOID-RNN-2048 (JIET AL., 2015A) 68.3
INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (CHELBA ET AL., 2013) 67.6
SPARSE NON-NEGATIVE MATRIX LM (SHAZEER ET AL., 2015) 52.9
RNN-1024 + MAXENT 9-GRAM FEATURES (CHELBA ET AL., 2013) 51.3
LSTM-512-512 54.1
LSTM-1024-512 48.2
LSTM-2048-512 43.7
LSTM-8192-2048 (NO DROPOUT) 37.9
LSTM-8192-2048 (50% DROPOUT) 32.2
2-LAYER LSTM-8192-1024 (BIG LSTM) 30.6
BIG LSTM+CNN INPUTS 30.0
BIG LSTM+CNN INPUTS + CNN SOFTMAX 39.8
BIG LSTM+CNN INPUTS + CNN SOFTMAX + 128-DIM CORRECTION 35.8
BIG LSTM+CNN INPUTS + CHAR LSTM PREDICTIONS 47.9
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Results: Ensembles of models

MODEL TEST PERPLEXITY
LARGE ENSEMBLE (CHELBA ET AL., 2013) 43.8
RNN+KN-5 (WILLIAMS ET AL., 2015) 42.4
RNN+KN-5 (JTET AL., 2015A) 42.0
RNN+SNM10-SKIP (SHAZEER ET AL., 2015) 41.3
LARGE ENSEMBLE (SHAZEER ET AL., 2015) 41.0
OUR 10 BEST LSTM MODELS (EQUAL WEIGHTS) 26.3
OUR 10 BEST LSTM MODELS (OPTIMAL WEIGHTS) 26.1
10 LSTMs + KN-5 (EQUAL WEIGHTS) 25.3
10 LSTMS + KN-5 (OPTIMAL WEIGHTS) 25.1
10 LSTMsS + SNM10-SKIP (SHAZEER ET AL., 2015) 23.7
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@ Jurafsky and Martin, chapter 4

@ Y Bengio et al (2006), “Neural probabilistic language models”
(sections 6.1, 6.2, 6.3, 6.6, 6.7, 6.8), Studies in Fuzziness and Soft
Computing Volume 194, Springer, chapter 6. http:
//link.springer.com/chapter/10.1007/3-540-33486-6_6

@ T Mikolov et al (2011), “Extensions of recurrent neural network
language model”, ICASSP-2011.
http://ieeexplore.ieee.org/document/5947611

@ X Chen et al (2015), “Recurrent neural network language model
training with noise contrastive estimation for speech recognition”,
ICASSP-2015. http://mi.eng.cam.ac.uk/~xc257/papers/
ICASSP2015-rnnlm-nce.pdf

@ R Jozefowicz et al (2016), “Exploring the Limits of Language
Modeling”, http://arxiv.org/abs/1602.02410.
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Annex: LSTM Recurrent Networks
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LSTM

e Internal recurrent state (“cell”) c(t) combines previous
state c(t — 1) and LSTM input g(t)
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LSTM — Internal recurrent state

N ==

o o lcm _ !
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LSTM

e Internal recurrent state (“cell”) c(t) combines previous
state c(t — 1) and LSTM input g(t)

o Gates - weights dependent on the current input and the
previous state

e Input gate: controls how much input to the unit g(t) is
written to the internal state c(t)

o Forget gate: controls how much of the previous internal
state c¢(t — 1) is written to the internal state c(t)

e Input and forget gates together allow the network to control
what information is stored and overwritten at each step
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LSTM — Input Gate

S

c(t-1)

, h(t-1))
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LSTM - Forget Gate

S

OC(t- 1) F; x(t), h(t-1))] R 1 i

%

, h(t-1))
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LSTM — Input and Forget Gates
M

OC(H) F(t; x(1), h(t—1ﬂ > HC(T) v

%

I(t; x(1), h(t-1))

9t)

37

Whn Vha
/ \
——————————————— > h(t-1) X(t)

|(t) =0 (W;XX(t) + W,'hh(t — 1) + b,) g(t) = thx(t) + Whhh(t — 1) + by

F(t) = o (Wex(t) + Wgh(t —1) +br) c(t) =F(t)oc(t — 1)+ I(t) o g(t)
o is the sigmoid function o is element-wise vector multiply
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LSTM

e Internal recurrent state (“cell”) c(t) combines previous
state c(t — 1) and LSTM input g(t)

o Gates - weights dependent on the current input and the
previous state

e Input gate: controls how much input to the unit g(t) is
written to the internal state c(t)

o Forget gate: controls how much of the previous internal
state c¢(t — 1) is written to the internal state c(t)

e Input and forget gates together allow the network to control
what information is stored and overwritten at each step
@ Output gate: controls how much of each unit's activation is
output by the hidden state — it allows the LSTM cell to kepp
information that is not relevant at the current time, but may
be relevant later
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LSTM — Input and Forget Gates

S

OC(t- 1) F; x(t), h(t-1))] R 10(1) v

%
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LSTM — Output Gate

N ==
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LSTM — Output Gate

s S
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_E%
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O(t) = o (Woxx(t) + Worh(t — 1) + b,) h(t) = tanh (O(t) o c(t))
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OC(H) Fit X0, he1)] C(tj T V

——————————————— > h(t-1) X(t)

o (Wikx(t) + Wish(t — 1) + b;)  g(t) = Whex(t) + Wpsh(t — 1) + by
F(t) = o (Wax(t) + Wght — 1) +bf)  c(t) =F(t)oc(t — 1) + I(t) o g(t)
o (Woxx(t) + Worh(t — 1) + bo) h(t) = tanh (O(t) o c(t))
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