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Language modelling

Basic idea The language model is the prior probability of the
word sequence P(W )

Use a language model to disambiguate between similar
acoustics when combining linguistic and acoustic evidence
recognize speech / wreck a nice beach

Use hand constructed networks in limited domains

Statistical language models: cover “ungrammatical”
utterances, computationally efficient, trainable from huge
amounts of data, can assign a probability to a sentence
fragment as well as a whole sentence
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Statistical language models

For use in speech recognition a language model must be:
statistical, have wide coverage, and be compatible with
left-to-right search algorithms

Only a few grammar-based models have met this requirement
(eg Chelba and Jelinek, 2000), and do not yet scale as well as
simple statistical models

Until very recently n-grams were the state-of-the-art
language model for ASR

Unsophisticated, linguistically implausible
Short, finite context
Model solely at the shallow word level
But: wide coverage, able to deal with “ungrammatical”
strings, statistical and scaleable

Probability of a word depends only on the identity of that
word and of the preceding n-1 words. These short sequences
of n words are called n-grams.
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Bigram language model

Word sequence W = w1,w2, . . .wM

P(W) = P(w1)P(w2 | w1)P(w3 | w1,w2)

. . .P(wM | w1,w2, . . .wM−1)

Bigram approximation—consider only one word of context:

P(W) ' P(w1)P(w2 | w1)P(w3 | w2) . . .P(wM | wM−1)

Parameters of a bigram are the conditional probabilities
P(wi | wj)

Maximum likelihood estimates by counting:

P(wi |wj) ∼
c(wj ,wi )

c(wj)

where c(wj ,wi ) is the number of observations of wj followed
by wi , and c(wj) is the number of observations of wj

(irrespective of what follows)
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The zero probability problem

Maximum likelihood estimation is based on counts of words in
the training data

If a n-gram is not observed, it will have a count of 0—and the
maximum likelihood probability estimate will be 0

The zero probability problem: just because something does
not occur in the training data does not mean that it will not
occur

As n grows larger, so the data grow sparser, and the more
zero counts there will be

Solution: smooth the probability estimates so that unobserved
events do not have a zero probability

Since probabilities sum to 1, this means that some probability
is redistributed from observed to unobserved n-grams
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Smoothing language models

What is the probability of an unseen n-gram?

Add-one smoothing: add one to all counts and renormalize.

“Discounts” non-zero counts and redistributes to zero counts
Since most n-grams are unseen (for large n more types than
tokens!) this gives too much probability to unseen n-grams
(discussed in Manning and Schütze)

Absolute discounting: subtract a constant from the observed
(non-zero count) n-grams, and redistribute this subtracted
probability over the unseen n-grams (zero counts)

Kneser-Ney smoothing: family of smoothing methods based
on absolute discounting that are at the state of the art
(Goodman, 2001)
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Backing off

How is the probability distributed over unseen events?

Basic idea: estimate the probability of an unseen n-gram using
the (n-1)-gram estimate

Use successively less context: trigram → bigram → unigram

Back-off models redistribute the probability “freed” by
discounting the n-gram counts

For a bigram

P(wi | wj) =
c(wj ,wi )− D

c(wj)
if c(wj ,wi ) > c

= P(wi )bwj otherwise

c is the count threshold, and D is the discount. bwj is the
backoff weight required for normalization
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Interpolation

Basic idea: Mix the probability estimates from all the
estimators: estimate the trigram probability by mixing
together trigram, bigram, unigram estimates
Simple interpolation

P̂(wn | wn−2,wn−1) =

λ3P(wn | wn−2,wn−1) + λ2P(wn | wn−1) + λ1P(wn)

With
∑

i λi = 1
Interpolation with coefficients conditioned on the context

P̂(wn | wn−2,wn−1) =

λ3(wn−2,wn−1)P(wn | wn−2,wn−1)+

λ2(wn−2,wn−1)P(wn | wn−1) + λ1(wn−2,wn−1)P(wn)

Set λ values to maximise the likelihood of the interpolated
language model generating a held-out corpus (possible to use
EM to do this)
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Perplexity

Measure the quality of a language model by how well it
predicts a test set W (i.e. estimated probability of word
sequence)

Perplexity (PP(W )) – inverse probability of the test set W ,
normalized by the number of words N

PP(W ) = P(W )
−1
N = P(w1w2 . . .wN)

−1
N

Perplexity of a bigram LM

PP(W ) = (P(w1)P(w2|w1)P(w3|w2) . . .P(wN |wN−1))
−1
N

Example perplexities for different n-gram LMs trained on Wall
St Journal (38M words)

Unigram – 962
Bigram – 170
Trigram – 109
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Practical language modelling

Work in log probabilities

The ARPA language model format is commonly used to store
n-gram language models (unless they are very big)

Many toolkits: SRILM, IRSTLM, KenLM, Cambridge-CMU
toolkit, ...

Some research issues:

Advanced smoothing
Adaptation to new domains
Incorporating topic information
Long-distance dependencies
Distributed representations
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Distributed representation for language modelling

Each word is associated with a learned distributed
representation (feature vector)

Use a neural network to estimate the conditional probability of
the next word given the the distributed representations of the
context words

Learn the distributed representations and the weights of the
conditional probability estimate jointly by maximising the log
likelihood of the training data

Similar words (distributionally) will have similar feature vectors
— small change in feature vector will result in small change in
probability estimate (since the NN is a smooth function)
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Neural Probabilistic Language Model

Bengio et al (2006)
ASR Lecture 11 Language Modelling 13



Neural Probabilistic Language Model

Train using stochastic gradient ascent to maximise log
likelihood

Number of free parameters (weights) scales

Linearly with vocabulary size
Linearly with context size

Can be (linearly) interpolated with n-gram model

Perplexity results on AP News (14M words training).
|V | = 18k

model n perplexity
NPLM(100,60) 6 109
n-gram (KN) 3 127
n-gram (KN) 4 119
n-gram (KN) 5 117
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Recurrent Neural Network (RNN) LM

Rather than fixed input context, recurrently connected hidden
units provide memory

Model learns “how to remember” from the data

Recurrent hidden layer allows clustering of variable length
histories
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RNN LM
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ABSTRACT
We present several modifications of the original recurrent neural net-
work language model (RNN LM). While this model has been shown
to significantly outperform many competitive language modeling
techniques in terms of accuracy, the remaining problem is the com-
putational complexity. In this work, we show approaches that lead
to more than 15 times speedup for both training and testing phases.
Next, we show importance of using a backpropagation through time
algorithm. An empirical comparison with feedforward networks is
also provided. In the end, we discuss possibilities how to reduce the
amount of parameters in the model. The resulting RNN model can
thus be smaller, faster both during training and testing, and more
accurate than the basic one.

Index Terms— language modeling, recurrent neural networks,
speech recognition

1. INTRODUCTION

Statistical models of natural language are a key part of many systems
today. The most widely known applications are automatic speech
recognition (ASR), machine translation (MT) and optical charac-
ter recognition (OCR). In the past, there was always a struggle be-
tween those who follow the statistical way, and those who claim that
we need to adopt linguistics and expert knowledge to build mod-
els of natural language. The most serious criticism of statistical ap-
proaches is that there is no true understanding occurring in these
models, which are typically limited by the Markov assumption and
are represented by n-gram models. Prediction of the next word is
often conditioned just on two preceding words, which is clearly in-
sufficient to capture semantics. On the other hand, the criticism of
linguistic approaches was even more straightforward: despite all the
efforts of linguists, statistical approaches were dominating when per-
formance in real world applications was a measure.

Thus, there has been a lot of research effort in the field of statis-
tical language modeling. Among models of natural language, neural
network based models seemed to outperform most of the competi-
tion [1] [2], and were also showing steady improvements in state of
the art speech recognition systems [3]. The main power of neural
network based language models seems to be in their simplicity: al-
most the same model can be used for prediction of many types of
signals, not just language. These models perform implicitly cluster-
ing of words in low-dimensional space. Prediction based on this
compact representation of words is then more robust. No additional
smoothing of probabilities is required.

This work was partly supported by European project DIRAC (FP6-
027787), Grant Agency of Czech Republic project No. 102/08/0707, Czech
Ministry of Education project No. MSM0021630528 and by BUT FIT grant
No. FIT-10-S-2.
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Fig. 1. Simple recurrent neural network.

Among many following modifications of the original model, the
recurrent neural network based language model [4] provides further
generalization: instead of considering just several preceding words,
neurons with input from recurrent connections are assumed to repre-
sent short term memory. The model learns itself from the data how
to represent memory. While shallow feedforward neural networks
(those with just one hidden layer) can only cluster similar words,
recurrent neural network (which can be considered as a deep archi-
tecture [5]) can perform clustering of similar histories. This allows
for instance efficient representation of patterns with variable length.

In this work, we show the importance of the Backpropagation
through time algorithm for learning appropriate short term memory.
Then we show how to further improve the original RNN LM by de-
creasing its computational complexity. In the end, we briefly discuss
possibilities of reducing the size of the resulting model.

2. MODEL DESCRIPTION

The recurrent neural network described in [4] is also called Elman
network [6]. Its architecture is shown in Figure 1. The vector x(t) is
formed by concatenating the vector w(t) that represents the current
word while using 1 of N coding (thus its size is equal to the size of
the vocabulary) and vector s(t − 1) that represents output values in
the hidden layer from the previous time step. The network is trained
by using the standard backpropagation and contains input, hidden
and output layers. Values in these layers are computed as follows:

x(t) = [w(t)T s(t − 1)T ]T (1)

sj(t) = f

 

X

i

xi(t)uji

!

(2)

yk(t) = g

 

X

j

sj(t)vkj

!

(3)
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Mikolov (2011)
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RNN training: back-propagation through timeTraining of RNNLM - Backpropagation Through Time
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Figure: Recurrent neural network unfolded as a deep feedforward
network, here for 3 time steps back in time.

17 / 59
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Reducing computation at the output layer

Majority of the weights (hence majority of the computation) is in
the output layer – potentially V units wide, where V is vocabulary
size

1 Model fewer words

Shortlist: use the NN to model only the most frequent words

2 Structure the output layer

Factorization of the output layer: first estimate the
probability over word classes then over words within the
selected class
Hiearchical softmax: structure the output layer as a binary
tree

3 Efficiently estimate the normalised outputs

Noise contrastive estimation: train each output unit as an
independent binary classifier
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Shortlists

Reduce computation by only including the s most frequent
words at the output — the shortlist (S) (full vocabulary still
used for context)

Use an n-gram model to estimate probabilities of words not in
the shortlist

Neural network thus redistributes probability for the words in
the shortlist

PS(ht) =
∑
w∈S

P(w |ht)

P(wt |ht) =

{
PNN(wt |ht)PS(ht) ifwt ∈ S
PKN(wt |ht) else

In a |V | = 50k task a 1024 word shortlist covers 89% of
4-grams, 4096 words covers 97%
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NPLM — ASR results

Speech recognition results on Switchboard

7M / 12M / 27M words in domain data.

500M words background data (broadcast news)

Vocab size |V | = 51k , Shortlist size |S | = 12k

WER/%
in-domain words 7M 12M 27M

KN (in-domain) 25.3 23.0 20.0
NN (in-domain) 24.5 22.2 19.1

KN (+b/g) 24.1 22.3 19.3
NN (+b/g) 23.7 21.8 18.9
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Factorised RNN LM

Mikolov 2011

4. SPEEDUP TECHNIQUES

The time complexity of one training step is proportional to

O = (1 + H) × H × τ + H × V (5)

where H is the size of the hidden layer, V size of the vocabulary
and τ the amount of steps we backpropagate the error back in time1.
Usually H << V , so the computational bottleneck is between the
hidden and output layers. This has motivated several researchers
to investigate possibilities how to reduce this huge weight matrix.
Originally, Bengio [1] has merged all low frequency words into one
special token in the output vocabulary, which usually results in 2-3
times speedup without significant degradation of the performance.
This idea was later extended - instead of using unigram distribution
for words that belong to the special token, Schwenk [3] used proba-
bilities from a backoff model for the rare words.

An even more promising approach was based on the assump-
tion that words can be mapped to classes [13] [14]. If we assume
that each word belongs to exactly one class, we can first estimate the
probability distribution over the classes using RNN and then com-
pute the probability of a particular word from the desired class while
assuming unigram distribution of words within the class:

P (wi|history) = P (ci|history)P (wi|ci) (6)

This reduces computational complexity to

O = (1 + H) × H × τ + H × C, (7)

where C is the number of classes. While this architecture has obvi-
ous advantages over the previously mentioned approaches as C can
be order of magnitude smaller than V without sacrificing much of
accuracy, the performance depends heavily on our ability to estimate
classes precisely. The classical Brown clustering is usually not very
useful, as its computational complexity is too high and it is often
faster to estimate the full neural network model.

4.1. Factorization of the output layer

We can go further and assume that the probabilities of words within a
certain class do not depend just on the probability of the class itself,
but also on the history - in context of neural networks, that is the
hidden layer s(t). We can change Equation 6 to

P (wi|history) = P (ci|s(t))P (wi|ci, s(t)) (8)

The corresponding RNN architecture is shown in Figure 4. This
idea has been already explored by Morin [13] (and in the context
of Maximum Entropy models by Goodman [14]), who extended it
further by assuming that the vocabulary can be represented by a hi-
erarchical binary tree. The drawback of Morin’s approach was the
dependence on WordNet for obtaining word similarity information,
which can be unavailable for certain domains or languages.

In our work, we have implemented simple factorization of the
output layer using classes. Words are assigned to classes proportion-
ally, while respecting their frequencies (this is sometimes referred
to as ’frequency binning’). The amount of classes is a parameter.
For example, if we choose 20 classes, words that correspond to the
first 5% of the unigram probability distribution would be mapped to
class 1 (with Penn Corpus, this would correspond to token ’the’ as

1As suggested to us by Y. Bengio, the τ term can practically disappear
from the computational complexity, provided that the update of weights is
not done at every time step [11].
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Fig. 4. RNN with output layer factorized by class layer.

its unigram probability is about 5%), the words that correspond to
the next 5% of the unigram probability mass would be mapped to
class 2, etc. Thus, the first classes can hold just single words, while
the last classes cover thousands of low-frequency words2.

Instead of computing a probability distribution over all words as
it is specified in (3), we first estimate a probability distribution over
the classes and then a distribution over the words from a single class,
the one that contains the predicted word:

cl(t) = g

 

X

j

sj(t)wlj

!

(9)

yc(t) = g

 

X

j

sj(t)vcj

!

(10)

The activation function g for both these distributions is again
softmax (Equation 4). Thus, we have the probability distribution
both for classes and for words within class that we are interested
in, and we can evaluate Equation 8. The error vector is computed
for both distributions and then we follow the backpropagation algo-
rithm, so the errors computed in the word-based and the class-based
parts of the network are summed together in the hidden layer. The
advantage of this approach is that the network still uses the whole
hidden layer to estimate a (potentially) full probability distribution
over the full vocabulary, while factorization allows us to evaluate just
a subset of the output layer both during the training and during the
test phases. Based on the results shown in Table 3, we can conclude
that fast evaluation of the output layer via classes leads to around
15 times speedup against model that uses full vocabulary (10K), at
a small cost of accuracy. The non-linear behaviour of reported time
complexity is caused by the constant term (1+H)×H ×τ and also
by suboptimal usage of cache with large matrices. With C = 1 and
C = V , the model is equivalent to the full RNN model.

4.2. Compression layer

Alternatively, we can think about the two parts of the original re-
current network separately: first, there is a matrix U responsible for
the input and for the recurrent connections that maintain short term

2After this paper was written, we have found that Emami [18] has pro-
posed a similar technique for reducing computational complexity, by assign-
ing words into statistically derived classes. The novelty of our approach is
thus in showing that simple frequency binning is adequate to obtain reason-
able performance.

����

P(wi |hist) = P(ci |s(t))P(wi |ci , s(t))

1 Compute a probability distribution over C classes

2 Compute a probability distribution over V ′ ≤ V words in the
class
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����

P(wi |hist) = P(ci |s(t))P(wi |ci , s(t))

Instead of doing softmax over V elements, only C + V ′

outputs have to be computed, and the softmax function is
applied separately to the classes and the words in that class.

C is constant; V can be variable.
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Classes for a factorised RNN LM

4. SPEEDUP TECHNIQUES

The time complexity of one training step is proportional to

O = (1 + H) × H × τ + H × V (5)

where H is the size of the hidden layer, V size of the vocabulary
and τ the amount of steps we backpropagate the error back in time1.
Usually H << V , so the computational bottleneck is between the
hidden and output layers. This has motivated several researchers
to investigate possibilities how to reduce this huge weight matrix.
Originally, Bengio [1] has merged all low frequency words into one
special token in the output vocabulary, which usually results in 2-3
times speedup without significant degradation of the performance.
This idea was later extended - instead of using unigram distribution
for words that belong to the special token, Schwenk [3] used proba-
bilities from a backoff model for the rare words.

An even more promising approach was based on the assump-
tion that words can be mapped to classes [13] [14]. If we assume
that each word belongs to exactly one class, we can first estimate the
probability distribution over the classes using RNN and then com-
pute the probability of a particular word from the desired class while
assuming unigram distribution of words within the class:

P (wi|history) = P (ci|history)P (wi|ci) (6)

This reduces computational complexity to

O = (1 + H) × H × τ + H × C, (7)

where C is the number of classes. While this architecture has obvi-
ous advantages over the previously mentioned approaches as C can
be order of magnitude smaller than V without sacrificing much of
accuracy, the performance depends heavily on our ability to estimate
classes precisely. The classical Brown clustering is usually not very
useful, as its computational complexity is too high and it is often
faster to estimate the full neural network model.

4.1. Factorization of the output layer

We can go further and assume that the probabilities of words within a
certain class do not depend just on the probability of the class itself,
but also on the history - in context of neural networks, that is the
hidden layer s(t). We can change Equation 6 to

P (wi|history) = P (ci|s(t))P (wi|ci, s(t)) (8)

The corresponding RNN architecture is shown in Figure 4. This
idea has been already explored by Morin [13] (and in the context
of Maximum Entropy models by Goodman [14]), who extended it
further by assuming that the vocabulary can be represented by a hi-
erarchical binary tree. The drawback of Morin’s approach was the
dependence on WordNet for obtaining word similarity information,
which can be unavailable for certain domains or languages.

In our work, we have implemented simple factorization of the
output layer using classes. Words are assigned to classes proportion-
ally, while respecting their frequencies (this is sometimes referred
to as ’frequency binning’). The amount of classes is a parameter.
For example, if we choose 20 classes, words that correspond to the
first 5% of the unigram probability distribution would be mapped to
class 1 (with Penn Corpus, this would correspond to token ’the’ as

1As suggested to us by Y. Bengio, the τ term can practically disappear
from the computational complexity, provided that the update of weights is
not done at every time step [11].
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Fig. 4. RNN with output layer factorized by class layer.

its unigram probability is about 5%), the words that correspond to
the next 5% of the unigram probability mass would be mapped to
class 2, etc. Thus, the first classes can hold just single words, while
the last classes cover thousands of low-frequency words2.

Instead of computing a probability distribution over all words as
it is specified in (3), we first estimate a probability distribution over
the classes and then a distribution over the words from a single class,
the one that contains the predicted word:

cl(t) = g

 

X

j

sj(t)wlj

!

(9)

yc(t) = g

 

X

j

sj(t)vcj

!

(10)

The activation function g for both these distributions is again
softmax (Equation 4). Thus, we have the probability distribution
both for classes and for words within class that we are interested
in, and we can evaluate Equation 8. The error vector is computed
for both distributions and then we follow the backpropagation algo-
rithm, so the errors computed in the word-based and the class-based
parts of the network are summed together in the hidden layer. The
advantage of this approach is that the network still uses the whole
hidden layer to estimate a (potentially) full probability distribution
over the full vocabulary, while factorization allows us to evaluate just
a subset of the output layer both during the training and during the
test phases. Based on the results shown in Table 3, we can conclude
that fast evaluation of the output layer via classes leads to around
15 times speedup against model that uses full vocabulary (10K), at
a small cost of accuracy. The non-linear behaviour of reported time
complexity is caused by the constant term (1+H)×H ×τ and also
by suboptimal usage of cache with large matrices. With C = 1 and
C = V , the model is equivalent to the full RNN model.

4.2. Compression layer

Alternatively, we can think about the two parts of the original re-
current network separately: first, there is a matrix U responsible for
the input and for the recurrent connections that maintain short term

2After this paper was written, we have found that Emami [18] has pro-
posed a similar technique for reducing computational complexity, by assign-
ing words into statistically derived classes. The novelty of our approach is
thus in showing that simple frequency binning is adequate to obtain reason-
able performance.

����

P(wi |hist) = P(ci |s(t))P(wi |ci , s(t))

Each word is assigned to a single class based on unigram
probabilities – “frequency binning”

Most frequent words in class 1: V ′ is small for that class

Rarest words in class C : V ′ is large for that class but the
words are infrequent
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Perplexity Results

Table 1. Comparison of different language modeling techniques on
Penn Corpus. Models are interpolated with KN backoff model.

Model PPL
KN5 141
Random forest (Peng Xu) [8] 132
Structured LM (Filimonov) [9] 125
Syntactic NN LM (Emami) [10] 107
RNN trained by BP 113
RNN trained by BPTT 106
4x RNN trained by BPTT (mixture) 98

where f(z) and g(z) are sigmoid and softmax activation functions
(the softmax function in the output layer is used to make sure that
the outputs form a valid probability distribution, i.e. all outputs are
greater than 0 and their sum is 1):

f(z) =
1

1 + e−z
, g(zm) =

ezm

P

k ezk
(4)

The cross entropy criterion is used to obtain an error vector in
the output layer, which is then backpropagated to the hidden layer.
The training algorithm uses validation data for early stopping and
to control learning rate. Training iterates over all the training data
in several epochs before convergence is achieved - usually, 10-20
epochs are needed. However, a valid question is whether the simple
backpropagation (BP) is sufficient to train the network properly -
if we assume that the prediction of the next word is influenced by
information which was present several time steps back, there is no
guarantee that the network will learn to keep this information in the
hidden layer. While the network can remember such information, it
is more by luck than by design.

3. BACKPROPAGATION THROUGH TIME

Backpropagation through time (BPTT) [11] can be seen as an exten-
sion of the backpropagation algorithm for recurrent networks. With
truncated BPTT, the error is propagated through recurrent connec-
tions back in time for a specific number of time steps (here referred
to as τ ). Thus, the network learns to remember information for sev-
eral time steps in the hidden layer when it is learned by the BPTT.
Additional information and practical advices for implementation of
BPTT algorithm are described in [7].

The data used in the following experiments were obtained from
Penn Tree Bank: sections 0-20 were used as training data (about
930K tokens), sections 21-22 as validation data (74K) and sections
23-24 as test data (82K). The vocabulary is limited to 10K words.
The processing of the data is exactly the same as used by [10] and
other researchers. For a comparison of techniques, see Table 1.
KN5 denotes the baseline: interpolated 5-gram model with modified
Kneser Ney smoothing and no count cutoffs.

To improve results, it is often better to train several networks
(that differ either in random initialization of weights or also in the
numbers of parameters) than having one huge network. The combi-
nation of these networks is done by linear interpolation with equal
weights assigned to each model (note similarity to random forests
that are composed of different decision trees [8]). The combination
of various amounts of models is shown in Figure 2.

Figure 3 shows the importance of number of time steps τ in
BPTT. To reduce noise, results are reported as an average of perplex-
ity given by four models with different RNN configurations (250,
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Fig. 2. Linear interpolation of different RNN models trained by
BPTT.
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Fig. 3. Effect of BPTT training on Penn Corpus. BPTT=1 corre-
sponds to standard backpropagation.

300, 350 and 400 neurons in the hidden layer). Also, a combina-
tion of these models is shown (again, linear interpolation was used).
As can be seen, 4-5 steps of BPTT training seems to be sufficient.
Note that while complexity of the training phase increases with the
amount of steps for which the error is propagated back in time, the
complexity of the test phase is constant.

Table 2 shows comparison of the feedforward [12], simple recur-
rent [4] and BPTT-trained recurrent neural network language models
on two corpora. Perplexity is shown on the test sets for configura-
tions of networks that were working the best on the development
sets. We can see that the simple recurrent neural network already
outperforms the standard feedforward network, while BPTT train-
ing provides another significant improvement.

Table 2. Comparison of different neural network architectures on
Penn Corpus (1M words) and Switchboard (4M words).

Penn Corpus Switchboard
Model NN NN+KN NN NN+KN
KN5 (baseline) - 141 - 92.9
feedforward NN 141 118 85.1 77.5
RNN trained by BP 137 113 81.3 75.4
RNN trained by BPTT 123 106 77.5 72.5

5529

Factorised output layer an speedup training by 25x for 100k
vocabulary, with minimal effect on perplexity
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Hierarchical Softmax

Bengio 2006

Push the class-based factorization idea to the limit

Class-based factorization is 1-level structuring

“Classes of classes” – 2 level structuring

Balanced binary tree – n level structuring (n ∼ log2 V ), each
leaf is a word

Each node of the tree is a 2-class classifier – make
probabilistic binary decisions

Need only consider the log2 V nodes on the path from the
root to the leaf for each word

P(w |hist) =
n∏

j=1

P(bj(v)|b1(v), . . . , bj−1(v), hist)
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Noise contrastive estimation (NCE)

Chen et al (2015) (not the original source, but a clear application to ASR)

Aim: avoid directly computing the normalisation term
(denominator) in softmax (involves summing over V units)
Method: treat each output unit separately, as sigmoid
classifier between the observed data (for that word) and a
“noise” distribution
Assume that data for a history h generated by a mixture of an
RNNLM distribution PRNN(·|h) and a noise distribution
Pn(·|h) – typically, Pn is a unigram
Each node computes the posterior probability of whether a
word sample w comes from the RNNLM or the noise:

P(CRNN
w = 1|w , h) =

PRNN(w |h)

PRNN(w |h) + kPn(w |h)

P(Cn
w = 1|w , h) = 1− P(CRNN

w = 1|w , h)
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Noise contrastive estimation (NCE)

NCE training minimises this cost function:

E = − 1

Nw

Nw∑
i=1

lnP(CRNN
w = 1|w , h) +

k∑
j=1

lnP(Cn
w = 1|w , h)


k samples drawn from the unigram noise distribution for the
current word; typically k ∼ 10

The RNNLM distribution is given by

PRNN(wi |h) =
exp(v s(t))

Z

The normalisation term Z is learned; in practice it may be set
to a constant for all contexts
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State-of-the-art (2016)

Jozefowicz et al (2016), “Exploring the Limits of Language
Modeling”, http://arxiv.org/abs/1602.02410. (Google)

Experiments on One Billion Word Benchmark data set, with
800k vocabulary

Large-scale language modeling experiments, comparing

5-gram model (interpolated Kneser-Ney smoothing)
RNN with sigmoid transfer functions
Various LSTM recurrent network models

“Size matters... The best models are the largest we were able
to fit into a GPU memory.”
Best performing model had two LSTM recurrent layers with
8192 and 1024 units (∼ 1.8 billion parameters)

RNN models used a variant of NCE at the output layer
Also obtained more compact and slightly better performing
models using convolutional layers over characters at input and
output
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Results: Single models

Exploring the Limits of Language Modeling

Table 1. Best results of single models on the 1B word benchmark. Our results are shown below previous work.

MODEL TEST PERPLEXITY NUMBER OF PARAMS [BILLIONS]

SIGMOID-RNN-2048 (JI ET AL., 2015A) 68.3 4.1
INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (CHELBA ET AL., 2013) 67.6 1.76
SPARSE NON-NEGATIVE MATRIX LM (SHAZEER ET AL., 2015) 52.9 33
RNN-1024 + MAXENT 9-GRAM FEATURES (CHELBA ET AL., 2013) 51.3 20

LSTM-512-512 54.1 0.82
LSTM-1024-512 48.2 0.82
LSTM-2048-512 43.7 0.83
LSTM-8192-2048 (NO DROPOUT) 37.9 3.3
LSTM-8192-2048 (50% DROPOUT) 32.2 3.3
2-LAYER LSTM-8192-1024 (BIG LSTM) 30.6 1.8
BIG LSTM+CNN INPUTS 30.0 1.04

BIG LSTM+CNN INPUTS + CNN SOFTMAX 39.8 0.29
BIG LSTM+CNN INPUTS + CNN SOFTMAX + 128-DIM CORRECTION 35.8 0.39
BIG LSTM+CNN INPUTS + CHAR LSTM PREDICTIONS 47.9 0.23

Table 2. Best results of ensembles on the 1B Word Benchmark.

MODEL TEST PERPLEXITY

LARGE ENSEMBLE (CHELBA ET AL., 2013) 43.8
RNN+KN-5 (WILLIAMS ET AL., 2015) 42.4
RNN+KN-5 (JI ET AL., 2015A) 42.0
RNN+SNM10-SKIP (SHAZEER ET AL., 2015) 41.3
LARGE ENSEMBLE (SHAZEER ET AL., 2015) 41.0

OUR 10 BEST LSTM MODELS (EQUAL WEIGHTS) 26.3
OUR 10 BEST LSTM MODELS (OPTIMAL WEIGHTS) 26.1
10 LSTMS + KN-5 (EQUAL WEIGHTS) 25.3
10 LSTMS + KN-5 (OPTIMAL WEIGHTS) 25.1
10 LSTMS + SNM10-SKIP (SHAZEER ET AL., 2015) 23.7

4.4. Training Procedure

The models were trained until convergence with an Ada-
Grad optimizer using a learning rate of 0.2. In all the exper-
iments the RNNs were unrolled for 20 steps without ever
resetting the LSTM states. We used a batch size of 128.
We clip the gradients of the LSTM weights such that their
norm is bounded by 1.0 (Pascanu et al., 2012).

Using these hyper-parameters we found large LSTMs to be
relatively easy to train. The same learning rate was used in
almost all of the experiments. In a few cases we had to re-
duce it by an order of magnitude. Unless otherwise stated,
the experiments were performed with 32 GPU workers and
asynchronous gradient updates. Further details will be fully
specified with the code upon publication.

Training a model for such large target vocabulary (793471
words) required to be careful with some details about the
approximation to full Softmax using importance sampling.

We used a large number of negative (or noise) samples:
8192 such samples were drawn per step, but were shared
across all the target words in the batch (2560 total, i.e. 128
times 20 unrolled steps). This results in multiplying (2560
x 1024) times (1024 x (8192+1)) (instead of (2560 x 1024)
times (1024 x 793471)), i.e. about 100-fold less computa-
tion.

5. Results and Analysis
In this section we summarize the results of our experiments
and do an in-depth analysis. Table 1 contains all results for
our models compared to previously published work. Ta-
ble 2 shows previous and our own work on ensembles of
models. We hope that our encouraging results, which im-
proved the best perplexity of a single model from 51.3 to
30.0 (whilst reducing the model size considerably), and set
a new record with ensembles at 23.7, will enable rapid re-
search and progress to advance Language Modeling. For
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Results: Ensembles of models

Exploring the Limits of Language Modeling

Table 1. Best results of single models on the 1B word benchmark. Our results are shown below previous work.

MODEL TEST PERPLEXITY NUMBER OF PARAMS [BILLIONS]

SIGMOID-RNN-2048 (JI ET AL., 2015A) 68.3 4.1
INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (CHELBA ET AL., 2013) 67.6 1.76
SPARSE NON-NEGATIVE MATRIX LM (SHAZEER ET AL., 2015) 52.9 33
RNN-1024 + MAXENT 9-GRAM FEATURES (CHELBA ET AL., 2013) 51.3 20

LSTM-512-512 54.1 0.82
LSTM-1024-512 48.2 0.82
LSTM-2048-512 43.7 0.83
LSTM-8192-2048 (NO DROPOUT) 37.9 3.3
LSTM-8192-2048 (50% DROPOUT) 32.2 3.3
2-LAYER LSTM-8192-1024 (BIG LSTM) 30.6 1.8
BIG LSTM+CNN INPUTS 30.0 1.04

BIG LSTM+CNN INPUTS + CNN SOFTMAX 39.8 0.29
BIG LSTM+CNN INPUTS + CNN SOFTMAX + 128-DIM CORRECTION 35.8 0.39
BIG LSTM+CNN INPUTS + CHAR LSTM PREDICTIONS 47.9 0.23

Table 2. Best results of ensembles on the 1B Word Benchmark.

MODEL TEST PERPLEXITY

LARGE ENSEMBLE (CHELBA ET AL., 2013) 43.8
RNN+KN-5 (WILLIAMS ET AL., 2015) 42.4
RNN+KN-5 (JI ET AL., 2015A) 42.0
RNN+SNM10-SKIP (SHAZEER ET AL., 2015) 41.3
LARGE ENSEMBLE (SHAZEER ET AL., 2015) 41.0

OUR 10 BEST LSTM MODELS (EQUAL WEIGHTS) 26.3
OUR 10 BEST LSTM MODELS (OPTIMAL WEIGHTS) 26.1
10 LSTMS + KN-5 (EQUAL WEIGHTS) 25.3
10 LSTMS + KN-5 (OPTIMAL WEIGHTS) 25.1
10 LSTMS + SNM10-SKIP (SHAZEER ET AL., 2015) 23.7

4.4. Training Procedure

The models were trained until convergence with an Ada-
Grad optimizer using a learning rate of 0.2. In all the exper-
iments the RNNs were unrolled for 20 steps without ever
resetting the LSTM states. We used a batch size of 128.
We clip the gradients of the LSTM weights such that their
norm is bounded by 1.0 (Pascanu et al., 2012).

Using these hyper-parameters we found large LSTMs to be
relatively easy to train. The same learning rate was used in
almost all of the experiments. In a few cases we had to re-
duce it by an order of magnitude. Unless otherwise stated,
the experiments were performed with 32 GPU workers and
asynchronous gradient updates. Further details will be fully
specified with the code upon publication.

Training a model for such large target vocabulary (793471
words) required to be careful with some details about the
approximation to full Softmax using importance sampling.

We used a large number of negative (or noise) samples:
8192 such samples were drawn per step, but were shared
across all the target words in the batch (2560 total, i.e. 128
times 20 unrolled steps). This results in multiplying (2560
x 1024) times (1024 x (8192+1)) (instead of (2560 x 1024)
times (1024 x 793471)), i.e. about 100-fold less computa-
tion.

5. Results and Analysis
In this section we summarize the results of our experiments
and do an in-depth analysis. Table 1 contains all results for
our models compared to previously published work. Ta-
ble 2 shows previous and our own work on ensembles of
models. We hope that our encouraging results, which im-
proved the best perplexity of a single model from 51.3 to
30.0 (whilst reducing the model size considerably), and set
a new record with ensembles at 23.7, will enable rapid re-
search and progress to advance Language Modeling. For
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Annex: LSTM Recurrent Networks
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LSTM

Internal recurrent state (“cell”) c(t) combines previous
state c(t − 1) and LSTM input g(t)
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LSTM

x(t)h(t-1)

h(t)

+

h(t-1)

Whh Whx

g(t)
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LSTM – Internal recurrent state

x(t)h(t-1)

h(t)

+

h(t-1)

c(t-1) c(t)

Whh Whx

g(t)

+
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LSTM

Internal recurrent state (“cell”) c(t) combines previous
state c(t − 1) and LSTM input g(t)

Gates - weights dependent on the current input and the
previous state

Input gate: controls how much input to the unit g(t) is
written to the internal state c(t)

Forget gate: controls how much of the previous internal
state c(t − 1) is written to the internal state c(t)

Input and forget gates together allow the network to control
what information is stored and overwritten at each step
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LSTM

x(t)h(t-1)

h(t)

+

h(t-1)

c(t-1) c(t)

Whh Whx

g(t)

+
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LSTM – Input Gate

x(t)h(t-1)

h(t)

+

h(t-1)

c(t-1) c(t)

I(t; x(t), h(t-1))

Whh Whx

g(t)

+

+

ASR Lecture 11 Language Modelling 36



LSTM – Forget Gate

x(t)h(t-1)

h(t)

+

h(t-1)

c(t-1) c(t)

I(t; x(t), h(t-1))

F(t; x(t), h(t-1))

Whh Whx

g(t)

+
+

+
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LSTM – Input and Forget Gates

x(t)h(t-1)

h(t)

+

h(t-1)

c(t-1) c(t)

I(t; x(t), h(t-1))

F(t; x(t), h(t-1))

Whh Whx

g(t)

+
+

+

I(t) = σ (Wixx(t) + Wihh(t − 1) + bi )

F(t) = σ (Wfxx(t) + Wfhh(t − 1) + bf )
σ is the sigmoid function

g(t) = Whxx(t) + Whhh(t − 1) + bh

c(t) = F(t) ◦ c(t − 1) + I(t) ◦ g(t)
◦ is element-wise vector multiply
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LSTM

Internal recurrent state (“cell”) c(t) combines previous
state c(t − 1) and LSTM input g(t)

Gates - weights dependent on the current input and the
previous state

Input gate: controls how much input to the unit g(t) is
written to the internal state c(t)

Forget gate: controls how much of the previous internal
state c(t − 1) is written to the internal state c(t)

Input and forget gates together allow the network to control
what information is stored and overwritten at each step

Output gate: controls how much of each unit’s activation is
output by the hidden state – it allows the LSTM cell to kepp
information that is not relevant at the current time, but may
be relevant later
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LSTM – Input and Forget Gates

x(t)h(t-1)

h(t)

+

h(t-1)

c(t-1) c(t)

I(t; x(t), h(t-1))

F(t; x(t), h(t-1))

Whh Whx

g(t)

+
+

+
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LSTM – Output Gate

x(t)h(t-1)

h(t)

+

h(t-1)

c(t-1) c(t)

I(t; x(t), h(t-1))

O(t; x(t), h(t-1))
F(t; x(t), h(t-1))

Whh Whx

g(t)

+
+

+

+
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LSTM – Output Gate

x(t)h(t-1)

h(t)

+

h(t-1)

c(t-1) c(t)

I(t; x(t), h(t-1))

O(t; x(t), h(t-1))
F(t; x(t), h(t-1))

Whh Whx

g(t)

+
+

+

+

O(t) = σ (Woxx(t) + Wohh(t − 1) + bo) h(t) = tanh (O(t) ◦ c(t))
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LSTM

x(t)h(t-1)

h(t)

+

h(t-1)

c(t-1) c(t)

I(t; x(t), h(t-1))

O(t; x(t), h(t-1))
F(t; x(t), h(t-1))

Whh Whx

g(t)

+

I(t) = σ (Wixx(t) + Wihh(t − 1) + bi )

F(t) = σ (Wfxx(t) + Wfhht − 1) + bf )

O(t) = σ (Woxx(t) + Wohh(t − 1) + bo)

g(t) = Whxx(t) + Whhh(t − 1) + bh

c(t) = F(t) ◦ c(t − 1) + I(t) ◦ g(t)

h(t) = tanh (O(t) ◦ c(t))
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