
Neural Networks for Acoustic Modelling part 2;
Sequence discriminative training

Steve Renals

Automatic Speech Recognition – ASR Lecture 9
16 February 2017

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training1

DNN Acoustic Models

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training2

Deep neural network for TIMIT

3-8 hidden layers

~2000 hidden units

3x48 = 144 state outputs

~2000 hidden units

9x39 MFCC inputs

Deeper: Deep neural network
architecture – multiple hidden
layers

Wider: Use HMM state
alignment as outputs rather than
hand-labelled phones – 3-state
HMMs, so 3×48 states

Can use pretraining to improve
training accuracy of models with
many hidden layers

Training many hidden layers is
computationally expensive – use
GPUs to provide the
computational power

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training3

Pretraining

Training multi-hidden layers directly with gradient descent is
difficult — sensitive to initialisation, gradients can be very
small after propagating back through several layers.

Unsupervised pretraining
Train a stacked restricted Boltzmann machine generative
model (unsupervised, contrastive divergence training), then
finetune with backprop
Train a stacked autoencoder, then finetune with backprop

Layer-by-layer training
Successively train deeper networks, each time replacing output
layer with hidden layer and new output layer

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training4

Unsupervised pretraining

IEEE SIGNAL PROCESSING MAGAZINE [87] NOVEMBER 2012

INTERFACING A DNN WITH AN HMM
After it has been discriminatively fine-tuned, a DNN outputs
probabilities of the form HMMstate AcousticInput()p ; . But to
compute a Viterbi alignment or to run the forward-backward
algorithm within the HMM framework, we require the likeli-
hood (AcousticInput HMMstate)p ; . The posterior probabilities
that the DNN outputs can be converted into the scaled likeli-
hood by dividing them by the frequencies of the HMM states in
the forced alignment that is used for fine-tuning the DNN [9].
All of the likelihoods produced in this way are scaled by the
same unknown factor of AcousticInput()p , but this has no
effect on the alignment. Although this conversion appears to
have little effect on some recognition tasks, it can be important
for tasks where training labels are highly unbalanced (e.g., with
many frames of silences).

PHONETIC CLASSIFICATION
AND RECOGNITION ON TIMIT
The TIMIT data set provides a simple and convenient way of test-
ing new approaches to speech recognition. The training set is
small enough to make it feasible to try many variations of a new
method and many existing techniques have already been bench-
marked on the core test set, so it is easy to see if a new approach
is promising by comparing it with existing techniques that have
been implemented by their proponents [23]. Experience has
shown that performance improvements on TIMIT do not neces-
sarily translate into performance improvements on large vocab-
ulary tasks with less controlled recording conditions and much
more training data. Nevertheless, TIMIT provides a good start-

ing point for developing a new approach, especially one that
requires a challenging amount of computation.

Mohamed et. al. [12] showed that a DBN-DNN acoustic
model outperformed the best published recognition results on
TIMIT at about the same time as Sainath et. al. [23] achieved a
similar improvement on TIMIT by applying state-of-the-art
techniques developed for large vocabulary recognition.
Subsequent work combined the two approaches by using state-
of-the-art, DT speaker-dependent features as input to the DBN-
DNN [24], but this produced little further improvement,
probably because the hidden layers of the DBN-DNN were
already doing quite a good job of progressively eliminating
speaker differences [25].

The DBN-DNNs that worked best on the TIMIT data formed
the starting point for subsequent experiments on much more
challenging large vocabulary tasks that were too computational-
ly intensive to allow extensive exploration of variations in the
architecture of the neural network, the representation of the
acoustic input, or the training procedure.

For simplicity, all hidden layers always had the same size,
but even with this constraint it was impossible to train all possi-
ble combinations of number of hidden layers [1, 2, 3, 4, 5, 6, 7,
8], number of units per layer [512, 1,024, 2,048, 3,072], and
number of frames of acoustic data in the input layer [7, 11, 15,
17, 27, 37]. Fortunately, the performance of the networks on
the TIMIT core test set was fairly insensitive to the precise
details of the architecture and the results in [13] suggest that
any combination of the numbers in boldface probably has an
error rate within about 2% of the very best combination. This

GRBM

RBM

RBM DBN

DBN-DNN

Copy

Copy

W1

W2

W3 W3

W4 = 0

W2

W1

W3
T

W2
T

W1
T

[FIG1] The sequence of operations used to create a DBN with three hidden layers and to convert it to a pretrained DBN-DNN. First, a
GRBM is trained to model a window of frames of real-valued acoustic coefficients. Then the states of the binary hidden units of the
GRBM are used as data for training an RBM. This is repeated to create as many hidden layers as desired. Then the stack of RBMs is
converted to a single generative model, a DBN, by replacing the undirected connections of the lower level RBMs by top-down, directed
connections. Finally, a pretrained DBN-DNN is created by adding a “softmax” output layer that contains one unit for each possible state
of each HMM. The DBN-DNN is then discriminatively trained to predict the HMM state corresponding to the central frame of the input
window in a forced alignment.

Hinton et al (2012)

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training5

Hybrid HMM/DNN phone recognition (TIMIT)

Train a ‘baseline’ three state monophone HMM/GMM system
(61 phones, 3 state HMMs) and Viterbi align to provide DNN
training targets (time state alignment)

The HMM/DNN system uses the same set of states as the
HMM/GMM system — DNN has 183 (61*3) outputs

Hidden layers — many experiments, exact sizes not highly
critical

3–8 hidden layers
1024–3072 units per hidden layer

Multiple hidden layers always work better than one hidden
layer

Pretraining always results in lower error rates

Best systems have lower phone error rate than best
HMM/GMM systems (using state-of-the-art techniques such
as discriminative training, speaker adaptive training)

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training6

Acoustic features for NN acoustic models

GMMs: filter bank features (spectral domain) not used as they
are strongly correlated with each other – would either require

full covariance matrix Gaussians
many diagonal covariance Gaussians

DNNs do not require the components of the feature vector to
be uncorrelated

Can directly use multiple frames of input context (this has
been done in NN/HMM systems since 1990, and is crucial to
make them work)
Can potentially use feature vectors with correlated components
(e.g. filter banks)

Experiments indicate that filter bank features result in greater
accuracy than MFCCs

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training7

TIMIT phone error rates: effect of depth and feature type

continuous features. A very important feature of neural networks
is their ”distributed representation” of the input, i.e., many neurons
are active simultaneously to represent each input vector. This makes
neural networks exponentially more compact than GMMs. Suppose,
for example, that N significantly different patterns can occur in one
sub-band andM significantly different patterns can occur in another.
Suppose also the patterns occur in each sub-band roughly indepen-
dently. A GMM model requires NM components to model this
structure because each component of the mixture must generate both
sub-bands; each piece of data has only a single latent cause. On the
other hand, a model that explains the data using multiple causes only
requiresN+M components, each of which is specific to a particular
sub-band. This property allows neural networks to model a diversity
of speaking styles and background conditions with much less train-
ing data because each neural network parameter is constrained by a
much larger fraction of the training data than a GMM parameter.

3.2. The advantage of being deep

The second key idea of DBNs is “being deep.” Deep acoustic mod-
els are important because the low level, local, characteristics are
taken care of using the lower layers while higher-order and highly
non-linear statistical structure in the input is modeled by the higher
layers. This fits with human speech recognition which appears to
use many layers of feature extractors and event detectors [7]. The
state-of-the-art ASR systems use a sequence of feature transforma-
tions (e.g., LDA, STC, fMLLR, fBMMI), cross model adaptation,
and lattice-rescoring which could be seen as carefully hand-designed
deep models. Table 1 compares the PERs of a shallow network with
one hidden layer of 2048 units modelling 11 frames of MFCCs to a
deep network with four hidden layers each containing 512 units. The
comparison shows that, for a fixed number of trainable parameters,
a deep model is clearly better than a shallow one.

Table 1. The PER of a shallow and a deep network.

Model 1 layer of 2048 4 layers of 512
dev 23% 21.9%
core 24.5% 23.6%

3.3. The advantage of generative pre-training

One of the major motivations for generative training is the belief
that the discriminations we want to perform are more directly related
to the underlying causes of the acoustic data than to the individual
elements of the data itself. Assuming that representations that are
good for modeling p(data) are likely to use latent variables that are
more closely related to the true underlying causes of the data, these
representations should also be good for modeling p(label|data).
DBNs initialize their weights generatively by layerwise training of
each hidden layer to maximize the likelihood of the input from the
layer below. Exact maximum likelihood learning is infeasible in net-
works with large hidden layers because it is exponentially expen-
sive to compute the derivative of the log probability of the training
data. Nevertheless, each layer can be trained efficiently using an
approximate training procedure called “contrastive divergence” [8].
Training a DBN without the generative pre-training step to model 15
frames of fbank coefficients caused the PER to jump by about 1%
as shown in figure(1). We can think of the generative pre-training
phase as a strong regularizer that keeps the final parameters close to
a good generative model. We can also think of the pre-training as

an optimization trick that initializes the parameters near a good local
maximum of p(label|data).

1 2 3 4 5 6 7 8
18

19

20

21

22

23

24

Number of layers

P
h

o
n

e
 e

rr
o
r

ra
te

 (
P

E
R

)

 pretrain−hid−2048−15fr−core
pretrain−hid−2048−15fr−dev
rand−hid−2048−15fr−core
rand−hid−2048−15fr−dev

Fig. 1. PER as a function of the number of layers.

4. WHICH FEATURES TO USE WITH DBNS

State-of-the-art ASR systems do not use fbank coefficients as the in-
put representation because they are strongly correlated so modeling
themwell requires either full covariance Gaussians or a huge number
of diagonal Gaussians which is computationally expensive at decod-
ing time. MFCCs offer a more suitable alternative as their individual
components tend to be independent so they are much easier to model
using a mixture of diagonal covariance Gaussians. DBNs do not
require uncorrelated data so we compared the PER of the best per-
forming DBNs trained with MFCCs (using 17 frames as input and
3072 hidden units per layer) and the best performing DBNs trained
with fbank features (using 15 frames as input and 2048 hidden units
per layer) as in figure 2. The performance of fbank features is about
1.7% better than MFCCs which might be wrongly attributed to the
fact that fbank features have more dimensions than MFCCs. Dimen-
sionality of the input is not the crucial property (see p. 3).

1 2 3 4 5 6 7 8
18

19

20

21

22

23

24

25

Number of layers

P
h

o
n

e
 e

rr
o

r
ra

te
 (

P
E

R
)

fbank−hid−2048−15fr−core
fbank−hid−2048−15fr−dev
mfcc−hid−3072−16fr−core
mfcc−hid−3072−16fr−dev

Fig. 2. PER as a function of the number of layers.
To understand this result we need to visualize the input vectors

(i.e. a complete window of say 15 frames) as well as the learned hid-
den activity vectors in each layer for the two systems (DBNs with
8 hidden layers plus a softmax output layer were used for both sys-
tems). A recently introduced visualization method called “t-SNE”
[9] was used for producing 2-D embeddings of the input vectors
or the hidden activity vectors. t-SNE produces 2-D embeddings
in which points that are close in the high-dimensional vector space

(Mohamed et al (2012))

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training8

Visualising neural networks

How to visualise NN layers? “t-SNE” (stochastic neighbour
embedding using t-distribution) projects high dimension
vectors (e.g. the values of all the units in a layer) into 2
dimensions

t-SNE projection aims to keep points that are close in high
dimensions close in 2 dimensions by comparing distributions
over pairwise distances between the high dimensional and 2
dimensional spaces – the optimisation is over the positions of
points in the 2-d space

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training9

Feature vector (input layer): t-SNE visualisation

are also close in the 2-D space. It starts by converting the pairwise
distances, dij in the high-dimensional space to joint probabilities
pij ∝ exp(−d2

ij). It then performs an iterative search for corre-
sponding points in the 2-D space which give rise to a similar set of
joint probabilities. To cope with the fact that there is much more vol-
ume near to a high dimensional point than a low dimensional one,
t-SNE computes the joint probability in the 2-D space by using a
heavy tailed probability distribution qij ∝ (1 + d2

ij)
−1. This leads

to 2-D maps that exhibit structure at many scales [9].
For visualization only (they were not used for training or test-

ing), we used SA utterances from the TIMIT core test set speakers.
These are the two utterances that were spoken by all 24 different
speakers. Figures 3 and 4 show visualizations of fbank and MFCC
features for 6 speakers. Crosses refer to one utterance and circles re-
fer to the other one, while different colours refer to different speak-
ers. We removed the data points of the other 18 speakers to make the
map less cluttered.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−150

−100

−50

0

50

100

150

Fig. 3. t-SNE 2-D map of fbank feature vectors

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 4. t-SNE 2-D map of MFCC feature vectors
MFCC vectors tend to be scattered all over the space as they have

decorrelated elements while fbank feature vectors have stronger sim-
ilarities and are often aligned between different speakers for some

voiceless sounds (e.g. /s/, /sh/). This suggests that the fbank feature
vectors are easier to model generatively as the data have stronger
local structure than MFCC vectors. We can also see that DBNs are
doing some implicit normalization of feature vectors across different
speakers when fbank features are used because they contain both the
spoken content and style of the utterance which allows the DBN (be-
cause of its distributed representations) to partially separate content
and style aspects of the input during the pre-training phase. This
makes it easier for the discriminative fine-tuning phase to enhance
the propagation of content aspects to higher layers. Figures 5, 6, 7
and 8 show the 1st and 8th layer features of fine-tuned DBNs trained
with fbank and MFCC respectively. As we go higher in the network,
hidden activity vectors from different speakers for the same segment
align in both theMFCC and fbank cases but the alignment is stronger
in the fbank case.

−150 −100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 5. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using fbank inputs.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 6. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using fbank inputs.

To refute the hypothesis that fbank features yield lower PER
because of their higher dimensionality, we consider dct features,
which are the same as fbank features except that they are trans-

are also close in the 2-D space. It starts by converting the pairwise
distances, dij in the high-dimensional space to joint probabilities
pij ∝ exp(−d2

ij). It then performs an iterative search for corre-
sponding points in the 2-D space which give rise to a similar set of
joint probabilities. To cope with the fact that there is much more vol-
ume near to a high dimensional point than a low dimensional one,
t-SNE computes the joint probability in the 2-D space by using a
heavy tailed probability distribution qij ∝ (1 + d2

ij)
−1. This leads

to 2-D maps that exhibit structure at many scales [9].
For visualization only (they were not used for training or test-

ing), we used SA utterances from the TIMIT core test set speakers.
These are the two utterances that were spoken by all 24 different
speakers. Figures 3 and 4 show visualizations of fbank and MFCC
features for 6 speakers. Crosses refer to one utterance and circles re-
fer to the other one, while different colours refer to different speak-
ers. We removed the data points of the other 18 speakers to make the
map less cluttered.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−150

−100

−50

0

50

100

150

Fig. 3. t-SNE 2-D map of fbank feature vectors

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 4. t-SNE 2-D map of MFCC feature vectors
MFCC vectors tend to be scattered all over the space as they have

decorrelated elements while fbank feature vectors have stronger sim-
ilarities and are often aligned between different speakers for some

voiceless sounds (e.g. /s/, /sh/). This suggests that the fbank feature
vectors are easier to model generatively as the data have stronger
local structure than MFCC vectors. We can also see that DBNs are
doing some implicit normalization of feature vectors across different
speakers when fbank features are used because they contain both the
spoken content and style of the utterance which allows the DBN (be-
cause of its distributed representations) to partially separate content
and style aspects of the input during the pre-training phase. This
makes it easier for the discriminative fine-tuning phase to enhance
the propagation of content aspects to higher layers. Figures 5, 6, 7
and 8 show the 1st and 8th layer features of fine-tuned DBNs trained
with fbank and MFCC respectively. As we go higher in the network,
hidden activity vectors from different speakers for the same segment
align in both theMFCC and fbank cases but the alignment is stronger
in the fbank case.

−150 −100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 5. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using fbank inputs.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 6. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using fbank inputs.

To refute the hypothesis that fbank features yield lower PER
because of their higher dimensionality, we consider dct features,
which are the same as fbank features except that they are trans-

MFCC FBANK
(Mohamed et al (2012))

Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)
MFCCs are more scattered than FBANK
FBANK has more local structure than MFCCs

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training10

First hidden layer: t-SNE visualisation

−150 −100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 7. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using MFCC inputs.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−50

0

50

100

150

Fig. 8. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using MFCC inputs.

formed using the discrete cosine transform, which encourages decor-
related elements. We rank-order the dct features from lower-order
(slow-moving) features to higher-order ones. For the generative pre-
training phase, the dct features are disadvantaged because they are
not as strongly structured as the fbank features. To avoid a con-
founding effect, we skipped pre-training and performed the compar-
ison using only the fine-tuning from random initial weights. Table 2
shows PER for fbank, dct, and MFCC inputs (11 input frames and
1024 hidden units per layer) in 1, 2, and 3 hidden-layer neural net-
works. dct features are worse than both fbank features and MFCC
features. This prompts us to ask why a lossless transformation causes
the input representation to perform worse (even when we skip a gen-
erative pre-training step that favours more structured input), and how
dct features can be worse than MFCC features, which are a subset
of them. We believe the answer is that higher-order dct features are
useless and distracting because all the important information is con-
centrated in the first few features. In the fbank case the discriminant
information is distributed across all coefficients. We conclude that
the DBN has difficulty ignoring irrelevant input features. To test

this claim, we padded the MFCC vector with random noise to be of
the same dimensionality as the dct features and then used them for
network training (MFCC+noise row in table 2). The MFCC perfor-
mance was degraded by padding with noise. So it is not the higher
dimensionality that matters but rather how the discriminant informa-
tion is distributed over these dimensions.

Table 2. The PER deep nets using different features

Feature Dim 1lay 2lay 3lay
fbank 123 23.5% 22.6% 22.7%
dct 123 26.0% 23.8% 24.6%

MFCC 39 24.3% 23.7% 23.8%
MFCC+noise 123 26.3% 24.3% 25.1%

5. CONCLUSIONS

A DBN acoustic model has three main properties: It is a neural
network, it has many layers of non-linear features, and it is pre-
trained as a generative model. In this paper we investigated how
each of these three properties contributes to good phone recognition
on TIMIT. Additionally, we examined different types of input rep-
resentation for DBNs by comparing recognition rates and also by
visualising the similarity structure of the input vectors and the hid-
den activity vectors. We concluded that log filter-bank features are
the most suitable for DBNs because they better utilize the ability of
the neural net to discover higher-order structure in the input data.

6. REFERENCES

[1] H. Bourlard and N. Morgan, Connectionist Speech Recognition:
A Hybrid Approach, Kluwer Academic Publishers, 1993.

[2] H. Hermansky, D. Ellis, and S. Sharma, “Tandem connectionist
feature extraction for conventional HMM systems,” in ICASSP,
2000, pp. 1635–1638.

[3] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algo-
rithm for deep belief nets,” Neural Computation, vol. 18, no. 7,
pp. 1527–1554, 2006.

[4] A. Mohamed, G. Dahl, and G. Hinton, “Acoustic modeling us-
ing deep belief networks,” IEEE Transactions on Audio, Speech,
and Language Processing, 2011.

[5] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large vocabulary speech
recognition,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 2011.

[6] T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P. No-
vak, and A. Mohamed, “Making deep belief networks effective
for large vocabulary continuous speech recognition,” in ASRU,
2011.

[7] J.B. Allen, “How do humans process and recognize speech?,”
IEEE Trans. Speech Audio Processing, vol. 2, no. 4, pp. 567–
577, 1994.

[8] G. E. Hinton, “Training products of experts by minimizing con-
trastive divergence,” Neural Computation, vol. 14, no. 8, pp.
1711–1800, 2002.

[9] L.J.P. van der Maaten and G.E. Hinton, “Visualizing high-
dimensional data using t-sne,” Journal of Machine Learning
Research, vol. 9, pp. 2579–2605, 2008.

are also close in the 2-D space. It starts by converting the pairwise
distances, dij in the high-dimensional space to joint probabilities
pij ∝ exp(−d2

ij). It then performs an iterative search for corre-
sponding points in the 2-D space which give rise to a similar set of
joint probabilities. To cope with the fact that there is much more vol-
ume near to a high dimensional point than a low dimensional one,
t-SNE computes the joint probability in the 2-D space by using a
heavy tailed probability distribution qij ∝ (1 + d2

ij)
−1. This leads

to 2-D maps that exhibit structure at many scales [9].
For visualization only (they were not used for training or test-

ing), we used SA utterances from the TIMIT core test set speakers.
These are the two utterances that were spoken by all 24 different
speakers. Figures 3 and 4 show visualizations of fbank and MFCC
features for 6 speakers. Crosses refer to one utterance and circles re-
fer to the other one, while different colours refer to different speak-
ers. We removed the data points of the other 18 speakers to make the
map less cluttered.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−150

−100

−50

0

50

100

150

Fig. 3. t-SNE 2-D map of fbank feature vectors

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 4. t-SNE 2-D map of MFCC feature vectors
MFCC vectors tend to be scattered all over the space as they have

decorrelated elements while fbank feature vectors have stronger sim-
ilarities and are often aligned between different speakers for some

voiceless sounds (e.g. /s/, /sh/). This suggests that the fbank feature
vectors are easier to model generatively as the data have stronger
local structure than MFCC vectors. We can also see that DBNs are
doing some implicit normalization of feature vectors across different
speakers when fbank features are used because they contain both the
spoken content and style of the utterance which allows the DBN (be-
cause of its distributed representations) to partially separate content
and style aspects of the input during the pre-training phase. This
makes it easier for the discriminative fine-tuning phase to enhance
the propagation of content aspects to higher layers. Figures 5, 6, 7
and 8 show the 1st and 8th layer features of fine-tuned DBNs trained
with fbank and MFCC respectively. As we go higher in the network,
hidden activity vectors from different speakers for the same segment
align in both theMFCC and fbank cases but the alignment is stronger
in the fbank case.

−150 −100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 5. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using fbank inputs.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 6. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using fbank inputs.

To refute the hypothesis that fbank features yield lower PER
because of their higher dimensionality, we consider dct features,
which are the same as fbank features except that they are trans-

MFCC FBANK
(Mohamed et al (2012))

Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)
Hidden layer vectors start to align more between speakers for
FBANK

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training11

Eighth hidden layer: t-SNE visualisation

−150 −100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 7. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using MFCC inputs.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−50

0

50

100

150

Fig. 8. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using MFCC inputs.

formed using the discrete cosine transform, which encourages decor-
related elements. We rank-order the dct features from lower-order
(slow-moving) features to higher-order ones. For the generative pre-
training phase, the dct features are disadvantaged because they are
not as strongly structured as the fbank features. To avoid a con-
founding effect, we skipped pre-training and performed the compar-
ison using only the fine-tuning from random initial weights. Table 2
shows PER for fbank, dct, and MFCC inputs (11 input frames and
1024 hidden units per layer) in 1, 2, and 3 hidden-layer neural net-
works. dct features are worse than both fbank features and MFCC
features. This prompts us to ask why a lossless transformation causes
the input representation to perform worse (even when we skip a gen-
erative pre-training step that favours more structured input), and how
dct features can be worse than MFCC features, which are a subset
of them. We believe the answer is that higher-order dct features are
useless and distracting because all the important information is con-
centrated in the first few features. In the fbank case the discriminant
information is distributed across all coefficients. We conclude that
the DBN has difficulty ignoring irrelevant input features. To test

this claim, we padded the MFCC vector with random noise to be of
the same dimensionality as the dct features and then used them for
network training (MFCC+noise row in table 2). The MFCC perfor-
mance was degraded by padding with noise. So it is not the higher
dimensionality that matters but rather how the discriminant informa-
tion is distributed over these dimensions.

Table 2. The PER deep nets using different features

Feature Dim 1lay 2lay 3lay
fbank 123 23.5% 22.6% 22.7%
dct 123 26.0% 23.8% 24.6%

MFCC 39 24.3% 23.7% 23.8%
MFCC+noise 123 26.3% 24.3% 25.1%

5. CONCLUSIONS

A DBN acoustic model has three main properties: It is a neural
network, it has many layers of non-linear features, and it is pre-
trained as a generative model. In this paper we investigated how
each of these three properties contributes to good phone recognition
on TIMIT. Additionally, we examined different types of input rep-
resentation for DBNs by comparing recognition rates and also by
visualising the similarity structure of the input vectors and the hid-
den activity vectors. We concluded that log filter-bank features are
the most suitable for DBNs because they better utilize the ability of
the neural net to discover higher-order structure in the input data.

6. REFERENCES

[1] H. Bourlard and N. Morgan, Connectionist Speech Recognition:
A Hybrid Approach, Kluwer Academic Publishers, 1993.

[2] H. Hermansky, D. Ellis, and S. Sharma, “Tandem connectionist
feature extraction for conventional HMM systems,” in ICASSP,
2000, pp. 1635–1638.

[3] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algo-
rithm for deep belief nets,” Neural Computation, vol. 18, no. 7,
pp. 1527–1554, 2006.

[4] A. Mohamed, G. Dahl, and G. Hinton, “Acoustic modeling us-
ing deep belief networks,” IEEE Transactions on Audio, Speech,
and Language Processing, 2011.

[5] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large vocabulary speech
recognition,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 2011.

[6] T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P. No-
vak, and A. Mohamed, “Making deep belief networks effective
for large vocabulary continuous speech recognition,” in ASRU,
2011.

[7] J.B. Allen, “How do humans process and recognize speech?,”
IEEE Trans. Speech Audio Processing, vol. 2, no. 4, pp. 567–
577, 1994.

[8] G. E. Hinton, “Training products of experts by minimizing con-
trastive divergence,” Neural Computation, vol. 14, no. 8, pp.
1711–1800, 2002.

[9] L.J.P. van der Maaten and G.E. Hinton, “Visualizing high-
dimensional data using t-sne,” Journal of Machine Learning
Research, vol. 9, pp. 2579–2605, 2008.

are also close in the 2-D space. It starts by converting the pairwise
distances, dij in the high-dimensional space to joint probabilities
pij ∝ exp(−d2

ij). It then performs an iterative search for corre-
sponding points in the 2-D space which give rise to a similar set of
joint probabilities. To cope with the fact that there is much more vol-
ume near to a high dimensional point than a low dimensional one,
t-SNE computes the joint probability in the 2-D space by using a
heavy tailed probability distribution qij ∝ (1 + d2

ij)
−1. This leads

to 2-D maps that exhibit structure at many scales [9].
For visualization only (they were not used for training or test-

ing), we used SA utterances from the TIMIT core test set speakers.
These are the two utterances that were spoken by all 24 different
speakers. Figures 3 and 4 show visualizations of fbank and MFCC
features for 6 speakers. Crosses refer to one utterance and circles re-
fer to the other one, while different colours refer to different speak-
ers. We removed the data points of the other 18 speakers to make the
map less cluttered.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−150

−100

−50

0

50

100

150

Fig. 3. t-SNE 2-D map of fbank feature vectors

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 4. t-SNE 2-D map of MFCC feature vectors
MFCC vectors tend to be scattered all over the space as they have

decorrelated elements while fbank feature vectors have stronger sim-
ilarities and are often aligned between different speakers for some

voiceless sounds (e.g. /s/, /sh/). This suggests that the fbank feature
vectors are easier to model generatively as the data have stronger
local structure than MFCC vectors. We can also see that DBNs are
doing some implicit normalization of feature vectors across different
speakers when fbank features are used because they contain both the
spoken content and style of the utterance which allows the DBN (be-
cause of its distributed representations) to partially separate content
and style aspects of the input during the pre-training phase. This
makes it easier for the discriminative fine-tuning phase to enhance
the propagation of content aspects to higher layers. Figures 5, 6, 7
and 8 show the 1st and 8th layer features of fine-tuned DBNs trained
with fbank and MFCC respectively. As we go higher in the network,
hidden activity vectors from different speakers for the same segment
align in both theMFCC and fbank cases but the alignment is stronger
in the fbank case.

−150 −100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 5. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using fbank inputs.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 6. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using fbank inputs.

To refute the hypothesis that fbank features yield lower PER
because of their higher dimensionality, we consider dct features,
which are the same as fbank features except that they are trans-

MFCC FBANK
(Mohamed et al (2012))

Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)
In the final hidden layer, the hidden layer outputs for the same
phone are well-aligned across speakers for both MFCC and FBANK
– but stronger for FBANK

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training12

Visualising neural networks

How to visualise NN layers? “t-SNE” (stochastic neighbour
embedding using t-distribution) projects high dimension
vectors (e.g. the values of all the units in a layer) into 2
dimensions

t-SNE projection aims to keep points that are close in high
dimensions close in 2 dimensions by comparing distributions
over pairwise distances between the high dimensional and 2
dimensional spaces – the optimisation is over the positions of
points in the 2-d space

Are the differences due to FBANK being higher dimension
(41× 3 = 123) than MFCC (13× 3 = 39)?

No – Using higher dimension MFCCs, or just adding noisy
dimmensions to MFCCs results in higher error rate

Why? – In FBANK the useful information is distributed over
all the features; in MFCC it is concentrated in the first few.

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training13

DNN acoustic model for Switchboard

7 hidden layers

2048 hidden units

9304 CD state outputs

2048 hidden units

9x39 = 351 PLP inputs

(Hinton et al (2012))

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training14

Example: hybrid HMM/DNN large vocabulary
conversational speech recognition (Switchboard)

Recognition of American English conversational telephone
speech (Switchboard)

Baseline context-dependent HMM/GMM system

9,304 tied states
Discriminatively trained (BMMI — similar to MPE)
39-dimension PLP (+ derivatives) features
Trained on 309 hours of speech

Hybrid HMM/DNN system

Context-dependent — 9304 output units obtained from Viterbi
alignment of HMM/GMM system
7 hidden layers, 2048 units per layer

DNN-based system results in significant word error rate
reduction compared with GMM-based system

Pretraining not necessary on larger tasks (empirical result)

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training15

DNN vs GMM on large vocabulary tasks (Experiments
from 2012)

IEEE SIGNAL PROCESSING MAGAZINE [92] NOVEMBER 2012

and model-space discriminative training is applied using the
BMMI or MPE criterion.

Using alignments from a baseline system, [32] trained a
DBN-DNN acoustic model on 50 h of data from the 1996 and
1997 English Broadcast News Speech Corpora [37]. The
 DBN-DNN was trained with the
best-performing LVCSR features,
specifically the SAT+DT features.
The DBN-DNN architecture con-
sisted of six hidden layers with
1,024 units per layer and a final
softmax layer of 2,220 context-
dependent states. The SAT+DT
feature input into the first layer
used a context of nine frames.
Pretraining was performed fol-
lowing a recipe similar to [42].

Two phases of fine-tuning were performed. During the first
phase, the cross entropy loss was used. For cross entropy train-
ing, after each iteration through the whole training set, loss is
measured on a held-out set and the learning rate is annealed
(i.e., reduced) by a factor of two if the held-out loss has grown
or improves by less than a threshold of 0.01% from the previ-
ous iteration. Once the learning rate has been annealed five
times, the first phase of fine-tuning stops. After weights are
learned via cross entropy, these weights are used as a starting
point for a second phase of fine-tuning using a sequence crite-
rion [37] that utilizes the MPE objective function, a discrimi-
native objective function similar to MMI [7] but which takes
into account phoneme error rate.

A strong SAT+DT GMM-HMM baseline system, which con-
sisted of 2,220 context-dependent states and 50,000 Gaussians,
gave a WER of 18.8% on the EARS Dev-04f set, whereas the
DNN-HMM system gave 17.5% [50].

SUMMARY OF THE MAIN RESULTS FOR
DBN-DNN ACOUSTIC MODELS ON LVCSR TASKS
Table 3 summarizes the acoustic modeling results described
above. It shows that DNN-HMMs consistently outperform
GMM-HMMs that are trained on the same amount of data,
sometimes by a large margin. For some tasks, DNN-HMMs
also outperform GMM-HMMs that are trained on much
more data.

SPEEDING UP DNNs AT RECOGNITION TIME
State pruning or Gaussian selection methods can be used to
make GMM-HMM systems computationally efficient at recogni-
tion time. A DNN, however, uses virtually all its parameters at
every frame to compute state likelihoods, making it potentially

much slower than a GMM with a
comparable number of parame-
ters. Fortunately, the time that a
DNN-HMM system requires to
recognize 1 s of speech can be
reduced from 1.6 s to 210 ms,
without decreasing recognition
accuracy, by quantizing the
weights down to 8 b and using
the very fast SIMD primitives for
fixed-point computation that are
provided by a modern x86 cen-

tral processing unit [49]. Alternatively, it can be reduced to
66 ms by using a graphics processing unit (GPU).

ALTERNATIVE PRETRAINING METHODS FOR DNNs
Pretraining DNNs as generative models led to better recognition
results on TIMIT and subsequently on a variety of LVCSR tasks.
Once it was shown that DBN-DNNs could learn good acoustic
models, further research revealed that they could be trained in
many different ways. It is possible to learn a DNN by starting with
a shallow neural net with a single hidden layer. Once this net has
been trained discriminatively, a second hidden layer is interposed
between the first hidden layer and the softmax output units and
the whole network is again discriminatively trained. This can be
continued until the desired number of hidden layers is reached,
after which full backpropagation fine-tuning is applied.

This type of discriminative pretraining works well in prac-
tice, approaching the accuracy achieved by generative DBN pre-
training and further improvement can be achieved by stopping
the discriminative pretraining after a single epoch instead of
multiple epochs as reported in [45]. Discriminative pretraining
has also been found effective for the architectures called “deep
convex network” [51] and “deep stacking network” [52], where
pretraining is accomplished by convex optimization involving
no generative models.

Purely discriminative training of the whole DNN from ran-
dom initial weights works much better than had been thought,

provided the scales of the initial
weights are set carefully, a large
amount of labeled training data is
available, and minibatch sizes over
training epochs are set appropri-
ately [45], [53]. Nevertheless, gen-
erative pretraining still improves
test performance, sometimes by a
significant amount.

Layer-by-layer generative pre-
training was originally done
using RBMs, but various types of

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND
GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

TASK
HOURS OF
TRAINING DATA DNN-HMM

GMM-HMM
WITH SAME DATA

GMM-HMM
WITH MORE DATA

SWITCHBOARD (TEST SET 1) 309 18.5 27.4 18.6 (2,000 H)

SWITCHBOARD (TEST SET 2) 309 16.1 23.6 17.1 (2,000 H)

ENGLISH BROADCAST NEWS 50 17.5 18.8

BING VOICE SEARCH
(SENTENCE ERROR RATES) 24 30.4 36.2

GOOGLE VOICE INPUT 5,870 12.3 16.0 (22 5,870 H)

YOUTUBE 1,400 47.6 52.3

DISCRIMINATIVE PRETRAINING
HAS ALSO BEEN FOUND EFFECTIVE
FOR THE ARCHITECTURES CALLED
“DEEP CONVEX NETWORK” AND

“DEEP STACKING NETWORK,” WHERE
PRETRAINING IS ACCOMPLISHED BY
CONVEX OPTIMIZATION INVOLVING

NO GENERATIVE MODELS.

(Hinton et al (2012))

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training16

Sequence Discriminative Training

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training17

Training HMM/GMM acoustic models

Use forward-backward algorithm to estimate the state
occupation probabilities (E-step), which are used to
re-estimate the parameters (M-step)

Maximum likelihood estimation: estimate the parameters so
that the model reproduces the training data with the greatest
probability (maximum likelihood)

Discriminative training: directly estimate the parameters so as
to make the fewest classification errors (optimize the word
error rate)

Focus on learning boundaries between classes
Consider incorrect word sequences as well as correct word
sequences
This is related to direct optimisation of the posterior
probability of the words given the acoustics P(W | X)

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training18

Hybrid HMM/NN acoustic models

Neural networks are discriminatively trained at the frame level

Consider a context-dependent DNN

Output is a softmax over HMM states
Training involves increasing the probability of the correct state
– and hence decreasing the probabilities of the others, since
probabilities sum to 1
Frame-level discrimination – the network learns to optimise
discrimination at the frame level by choosing the best state at
each time frame

Sequence discrimination – train the system to select the
best sequence of frames by increasing the probability of the
best sequence and decreasing the probability of all competing
sequences

Can train both GMM and DNN based models using sequence
discrimination

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training19

Hybrid HMM/NN acoustic models

Neural networks are discriminatively trained at the frame level

Consider a context-dependent DNN

Output is a softmax over HMM states
Training involves increasing the probability of the correct state
– and hence decreasing the probabilities of the others, since
probabilities sum to 1
Frame-level discrimination – the network learns to optimise
discrimination at the frame level by choosing the best state at
each time frame

Sequence discrimination – train the system to select the
best sequence of frames by increasing the probability of the
best sequence and decreasing the probability of all competing
sequences

Can train both GMM and DNN based models using sequence
discrimination

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training19

Recall: Maximum likelihood estimation (MLE)

Maximum likelihood estimation (MLE) sets the parameters so
as to maximize an objective function FMLE:

FMLE =
U∑

u=1

logPλ(Xu | M(Wu))

for training utterances X1 . . .XU where Wu is the word
sequence given by the transcription of the uth utterance,
M(Wu) is the corresponding HMM, and λ is the set of HMM
parameters

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training20

Maximum mutual information estimation

Maximum mutual information estimation (MMIE) aims to
directly maximise the posterior probability (sometimes called
conditional maximum likelihood). Using the same notation as
before, with P(w) representing the language model probability
of word sequence w :

FMMIE =
U∑

u=1

logPλ(M(Wu) | Xu)

=
U∑

u=1

log
Pλ(Xu | M(Wu))P(Wu)∑
w ′ Pλ(Xu | M(w ′))P(w ′)

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training21

Maximum mutual information estimation

Maximum mutual information estimation (MMIE) aims to
directly maximise the posterior probability (sometimes called
conditional maximum likelihood). Using the same notation as
before, with P(w) representing the language model probability
of word sequence w :

FMMIE =
U∑

u=1

logPλ(M(Wu) | Xu)

FMLE =
U∑

u=1

log
Pλ(Xu | M(Wu))P(Wu)∑
w ′ Pλ(Xu | M(w ′))P(w ′)

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training21

Maximum mutual information estimation

FMMIE =
U∑

u=1

log
Pλ(Xu | M(Wu))P(Wu)∑
w ′ Pλ(Xu | M(w ′))P(w ′)

Numerator: likelihood of data given correct word sequence
(“clamped” to reference alignment)

Denominator: total likelihood of the data given all possible
word sequences – equivalent to summing over all possible
word sequences estimated by the full acoustic and language
models in recognition. (“free”)
Estimate by generating lattices, and summing over all words
in the lattice

The objective function FMMIE is optimised by making the
correct word sequence likely (maximise the numerator), and
all other word sequences unlikely (minimise the denominator)

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training22

Maximum mutual information estimation

FMMIE =
U∑

u=1

log
Pλ(Xu | M(Wu))P(Wu)∑
w ′ Pλ(Xu | M(w ′))P(w ′)

Numerator: likelihood of data given correct word sequence
(“clamped” to reference alignment)

Denominator: total likelihood of the data given all possible
word sequences – equivalent to summing over all possible
word sequences estimated by the full acoustic and language
models in recognition. (“free”)
Estimate by generating lattices, and summing over all words
in the lattice

The objective function FMMIE is optimised by making the
correct word sequence likely (maximise the numerator), and
all other word sequences unlikely (minimise the denominator)

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training22

Maximum mutual information estimation

FMMIE =
U∑

u=1

log
Pλ(Xu | M(Wu))P(Wu)∑
w ′ Pλ(Xu | M(w ′))P(w ′)

Numerator: likelihood of data given correct word sequence
(“clamped” to reference alignment)

Denominator: total likelihood of the data given all possible
word sequences – equivalent to summing over all possible
word sequences estimated by the full acoustic and language
models in recognition. (“free”)
Estimate by generating lattices, and summing over all words
in the lattice

The objective function FMMIE is optimised by making the
correct word sequence likely (maximise the numerator), and
all other word sequences unlikely (minimise the denominator)

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training22

Maximum mutual information estimation

FMMIE =
U∑

u=1

log
Pλ(Xu | M(Wu))P(Wu)∑
w ′ Pλ(Xu | M(w ′))P(w ′)

Numerator: likelihood of data given correct word sequence
(“clamped” to reference alignment)

Denominator: total likelihood of the data given all possible
word sequences – equivalent to summing over all possible
word sequences estimated by the full acoustic and language
models in recognition. (“free”)
Estimate by generating lattices, and summing over all words
in the lattice

The objective function FMMIE is optimised by making the
correct word sequence likely (maximise the numerator), and
all other word sequences unlikely (minimise the denominator)

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training22

MPE: Minimum phone error

Basic idea adjust the optimization criterion so it is directly
related to word error rate

Minimum phone error (MPE) criterion

A(W ,Wu) is the phone transcription accuracy of the sentence
W given the reference Wu

FMPE is a weighted average over all possible sentences w of
the raw phone accuracy

Although MPE optimizes a phone accuracy level, it does so in
the context of a word-level system: it is optimized by finding
probable sentences with low phone error rates

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training23

MPE: Minimum phone error

Basic idea adjust the optimization criterion so it is directly
related to word error rate

Minimum phone error (MPE) criterion

FMPE =
U∑

u=1

log

∑
W Pλ(Xu | M(W))P(W)A(W ,Wu)∑

W ′ Pλ(Xu | M(W ′))P(W ′)

A(W ,Wu) is the phone transcription accuracy of the sentence
W given the reference Wu

FMPE is a weighted average over all possible sentences w of
the raw phone accuracy

Although MPE optimizes a phone accuracy level, it does so in
the context of a word-level system: it is optimized by finding
probable sentences with low phone error rates

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training23

MPE: Minimum phone error

Basic idea adjust the optimization criterion so it is directly
related to word error rate

Minimum phone error (MPE) criterion

FMMIE =
U∑

u=1

log

∑
WPλ(Xu | M(Wu))P(Wu)A(W ,Wu)∑

W ′ Pλ(Xu | M(W ′))P(W ′)

A(W ,Wu) is the phone transcription accuracy of the sentence
W given the reference Wu

FMPE is a weighted average over all possible sentences w of
the raw phone accuracy

Although MPE optimizes a phone accuracy level, it does so in
the context of a word-level system: it is optimized by finding
probable sentences with low phone error rates

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training23

MPE: Minimum phone error

Basic idea adjust the optimization criterion so it is directly
related to word error rate

Minimum phone error (MPE) criterion

FMPE =
U∑

u=1

log

∑
W Pλ(Xu | M(W))P(W)A(W ,Wu)∑

W ′ Pλ(Xu | M(W ′))P(W ′)

A(W ,Wu) is the phone transcription accuracy of the sentence
W given the reference Wu

FMPE is a weighted average over all possible sentences w of
the raw phone accuracy

Although MPE optimizes a phone accuracy level, it does so in
the context of a word-level system: it is optimized by finding
probable sentences with low phone error rates

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training23

Sequence training of hybrid HMM/DNN systems

It is possible to train HMM/NN systems using a MMI-type
objective function

Forward- and back-propagation equations are structurally
similar to forward and backward recursions in HMM training

Initially train DNN framewise using cross-entropy (CE) error
function

Use CE-trained model to generate alignments and lattices for
sequence training
Use CE-trained weights to initialise weights for sequence
training

Train using back-propagation with sequence training objective
function (e.g. MMI)

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training24

Sequence training results on Switchboard (Kaldi)

Results on Switchboard “Hub 5 ’00” test set, trained on 300h training
set, comparing maximum likelihood (ML) and discriminative (BMMI)
trained GMMs with framewise cross-entropy (CE) and sequence trained
(MMI) DNNs. GMM systems use speaker adaptive training (SAT).
All systems had 8859 tied triphone states.
GMMs – 200k Gaussians
DNNs – 6 hidden layers each with 2048 hidden units

SWB CHE Total

GMM ML (+SAT) 21.2 36.4 28.8
GMM BMMI (+SAT) 18.6 33.0 25.8

DNN CE 14.2 25.7 20.0
DNN MMI 12.9 24.6 18.8

Veseley et al, 2013.

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training25

Summary

DNN/HMM systems (hybrid systems) give a significant
improvement over GMM/HMM systems

Compared with 1990s NN/HMM systems, DNN/HMM
systems

model context-dependent tied states with a much wider output
layer
are deeper – more hidden layers
can use correlated features (e.g. FBANK)

Sequence training: discriminatively optimise GMM or DNN to
a sentence (sequence) level criterion rather than a frame level
criterion

Next lecture: Speaker adaptation

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training26

Reading

G Hinton et al (Nov 2012). “Deep neural networks for acoustic
modeling in speech recognition”, IEEE Signal Processing Magazine,
29(6), 82–97.
http://ieeexplore.ieee.org/document/6296526

A Mohamed et al (2012). “Unserstanding how deep belief networks
perform acoustic modelling”, Proc ICASSP-2012. http:

//www.cs.toronto.edu/~asamir/papers/icassp12_dbn.pdf

HMM discriminative training: Sec 27.3.1 of: S Young (2008),
“HMMs and Related Speech Recognition Technologies”, in Springer
Handbook of Speech Processing, Benesty, Sondhi and Huang (eds),
chapter 27, 539–557. http://www.inf.ed.ac.uk/teaching/

courses/asr/2010-11/restrict/Young.pdf

NN sequence training: K Vesely et al (2013),
“Sequence-discriminative training of deep neural networks”,
Interspeech-2013, http://homepages.inf.ed.ac.uk/aghoshal/
pubs/is13-dnn_seq.pdf

ASR Lecture 9 Neural Networks for Acoustic Modelling part 2; Sequence discriminative training27

http://ieeexplore.ieee.org/document/6296526
http://www.cs.toronto.edu/~asamir/papers/icassp12_dbn.pdf
http://www.cs.toronto.edu/~asamir/papers/icassp12_dbn.pdf
http://www.inf.ed.ac.uk/teaching/courses/asr/2010-11/restrict/Young.pdf
http://www.inf.ed.ac.uk/teaching/courses/asr/2010-11/restrict/Young.pdf
http://homepages.inf.ed.ac.uk/aghoshal/pubs/is13-dnn_seq.pdf
http://homepages.inf.ed.ac.uk/aghoshal/pubs/is13-dnn_seq.pdf

