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Deep neural network for TIMIT

Q 3x48 = 144 state outputs O

@ ~2000 hidden units O

3-8 hidden layers

Q ~2000 hidden umls@

O 9x39 MFCC lnputs Q

@ Deeper: Deep neural network

architecture — multiple hidden
layers

Wider: Use HMM state
alignment as outputs rather than
hand-labelled phones — 3-state
HMMs, so 3x48 states

Can use pretraining to improve
training accuracy of models with
many hidden layers

Training many hidden layers is
computationally expensive — use
GPUs to provide the
computational power
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@ Training multi-hidden layers directly with gradient descent is
difficult — sensitive to initialisation, gradients can be very
small after propagating back through several layers.

@ Unsupervised pretraining

e Train a stacked restricted Boltzmann machine generative
model (unsupervised, contrastive divergence training), then
finetune with backprop

e Train a stacked autoencoder, then finetune with backprop

Layer-by-layer training

e Successively train deeper networks, each time replacing output

layer with hidden layer and new output layer
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Unsupervised pretraining
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Hinton et al (2012)
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Hybrid HMM /DNN phone recognition (TIMIT)

@ Train a 'baseline’ three state monophone HMM/GMM system
(61 phones, 3 state HMMs) and Viterbi align to provide DNN
training targets (time state alignment)

@ The HMM/DNN system uses the same set of states as the
HMM/GMM system — DNN has 183 (61*3) outputs

@ Hidden layers — many experiments, exact sizes not highly
critical

e 3-8 hidden layers
e 1024-3072 units per hidden layer

@ Multiple hidden layers always work better than one hidden
layer
@ Pretraining always results in lower error rates

@ Best systems have lower phone error rate than best
HMM/GMM systems (using state-of-the-art techniques such
as discriminative training, speaker adaptive training)
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Acoustic features for NN acoustic models

e GMMs: filter bank features (spectral domain) not used as they
are strongly correlated with each other — would either require
o full covariance matrix Gaussians
e many diagonal covariance Gaussians
@ DNNs do not require the components of the feature vector to
be uncorrelated
o Can directly use multiple frames of input context (this has
been done in NN/HMM systems since 1990, and is crucial to
make them work)
e Can potentially use feature vectors with correlated components
(e.g. filter banks)

@ Experiments indicate that filter bank features result in greater
accuracy than MFCCs
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TIMIT phone error rates: effect of depth and feature type

24

Phone error rate (PER)

' [0 Toank-hid-2048-15r-cord

-0-thank-hid-2048-15fr-dev
-8 'mfcc-hid-3072-16fr-core

-B-mfcc-hid-3072-16fr-dev

ASR Lecture 9

4 5
Number of layers

(Mohamed et al (2012))



Visualising neural networks

@ How to visualise NN layers? “t-SNE” (stochastic neighbour
embedding using t-distribution) projects high dimension
vectors (e.g. the values of all the units in a layer) into 2
dimensions

@ t-SNE projection aims to keep points that are close in high
dimensions close in 2 dimensions by comparing distributions
over pairwise distances between the high dimensional and 2
dimensional spaces — the optimisation is over the positions of
points in the 2-d space
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SNE visualisation
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(Mohamed et al (2012))
Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)
MFCCs are more scattered than FBANK
FBANK has more local structure than MFCCs
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First hidden layer: t-SNE visualisation
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(Mohamed et al (2012))
Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)
Hidden layer vectors start to align more between speakers for
FBANK
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Eighth hidden layer: t-SNE visualisation
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(Mohamed et al (2012))

Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)

In the final hidden layer, the hidden layer outputs for the same

phone are well-aligned across speakers for both MFCC and FBANK
— but stronger for FBANK
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Visualising neural networks

@ How to visualise NN layers? “t-SNE" (stochastic neighbour
embedding using t-distribution) projects high dimension
vectors (e.g. the values of all the units in a layer) into 2
dimensions

@ t-SNE projection aims to keep points that are close in high
dimensions close in 2 dimensions by comparing distributions
over pairwise distances between the high dimensional and 2
dimensional spaces — the optimisation is over the positions of
points in the 2-d space

Are the differences due to FBANK being higher dimension
(41 x 3 =123) than MFCC (13 x 3 = 39)?
@ No — Using higher dimension MFCCs, or just adding noisy
dimmensions to MFCCs results in higher error rate
@ Why? — In FBANK the useful information is distributed over
all the features; in MFCC it is concentrated in_the first few.



DNN acoustic model for Switchboard

O 9304 CD state outputs O

Q 2048 hidden units Q

7 hidden layers

O 2048 hidden units O

O 9x39 = 351 PLP inputs

(Hinton et al (2012))
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Example: hybrid HMM /DNN large vocabulary

conversational speech recognition (Switchboard)

@ Recognition of American English conversational telephone
speech (Switchboard)
@ Baseline context-dependent HMM/GMM system

o 9,304 tied states

o Discriminatively trained (BMMI — similar to MPE)
o 39-dimension PLP (+ derivatives) features

e Trained on 309 hours of speech

e Hybrid HMM/DNN system

o Context-dependent — 9304 output units obtained from Viterbi
alignment of HMM/GMM system
e 7 hidden layers, 2048 units per layer

@ DNN-based system results in significant word error rate
reduction compared with GMM-based system

@ Pretraining not necessary on larger tasks (empirical result)
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DNN vs GMM on large vocabulary tasks (Experiments

from 2012)

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND
GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

HOURS OF GMM-HMM GMM-HMM
TASK TRAINING DATA DNN-HMM WITH SAME DATA WITH MORE DATA
SWITCHBOARD (TEST SET 1) 309 18.5 27.4 18.6 (2,000 H)
SWITCHBOARD (TEST SET 2) 309 16.1 23.6 17.1(2,000 H)
ENGLISH BROADCAST NEWS 50 17.5 18.8
BING VOICE SEARCH
(SENTENCE ERROR RATES) 24 30.4 36.2
GOOGLE VOICE INPUT 5,870 12.3 16.0 (>> 5,870 H)
YOUTUBE 1,400 47.6 523

(Hinton et al (2012))
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Sequence Discriminative Training
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Training HMM/GMM acoustic models

@ Use forward-backward algorithm to estimate the state
occupation probabilities (E-step), which are used to
re-estimate the parameters (M-step)

@ Maximum likelihood estimation: estimate the parameters so
that the model reproduces the training data with the greatest
probability (maximum likelihood)

@ Discriminative training: directly estimate the parameters so as
to make the fewest classification errors (optimize the word
error rate)

e Focus on learning boundaries between classes
o Consider incorrect word sequences as well as correct word

sequences
e This is related to direct optimisation of the posterior
probability of the words given the acoustics P(W | X)
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Hybrid HMM /NN acoustic models

@ Neural networks are discriminatively trained at the frame level

o Consider a context-dependent DNN
o Output is a softmax over HMM states
e Training involves increasing the probability of the correct state
— and hence decreasing the probabilities of the others, since
probabilities sum to 1
o Frame-level discrimination — the network learns to optimise
discrimination at the frame level by choosing the best state at
each time frame
@ Sequence discrimination — train the system to select the
best sequence of frames by increasing the probability of the
best sequence and decreasing the probability of all competing
sequences

@ Can train both GMM and DNN based models using sequence
discrimination
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Hybrid HMM /NN acoustic models

@ Neural networks are discriminatively trained at the frame level
o Consider a context-dependent DNN
o Output is a softmax over HMM states
e Training involves increasing the probability of the correct state
— and hence decreasing the probabilities of the others, since
probabilities sum to 1
o Frame-level discrimination — the network learns to optimise
discrimination at the frame level by choosing the best state at
each time frame
@ Sequence discrimination — train the system to select the
best sequence of frames by increasing the probability of the
best sequence and decreasing the probability of all competing
sequences

@ Can train both GMM and DNN based models using sequence
discrimination
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Recall: Maximum likelihood estimation (MLE)

@ Maximum likelihood estimation (MLE) sets the parameters so
as to maximize an objective function Fyg:

U

Fmie = Y log Pa(Xy | M(W,))
u=1

for training utterances Xj ... Xy where W, is the word
sequence given by the transcription of the uth utterance,
M(W,) is the corresponding HMM, and A is the set of HMM
parameters
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Maximum mutual information estimation

@ Maximum mutual information estimation (MMIE) aims to
directly maximise the posterior probability (sometimes called
conditional maximum likelihood). Using the same notation as
before, with P(w) representing the language model probability
of word sequence w:

& PaXy | M(WL)P(W,)
= 2108 =5 X, | M(w)P(w)
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Maximum mutual information estimation

@ Maximum mutual information estimation (MMIE) aims to
directly maximise the posterior probability (sometimes called
conditional maximum likelihood). Using the same notation as
before, with P(w) representing the language model probability
of word sequence w:

U
Famie = 3 log PA(M(W,,) | X,)
u=1
X, | M(W,))P(W,)
FuLe = Z"’g zwf PA(X, | M(w)P(w)
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Maximum mutual information estimation

P)\(xu ’ M(Wu))P(Wu)
2w PAXu | M(w))P(w')

U
Fmmie = log
u=1
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Maximum mutual information estimation

Pr(Xu | M(W,))P(Wa)
2w PAXu | M(w))P(w')

U
Fmmie = log
u=1

@ Numerator: likelihood of data given correct word sequence
(“clamped” to reference alignment)
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Maximum mutual information estimation

P)\(xu ’ M(Wu))'D(Wu)
2w PAXy | M(w'))P(w’)

U
Fmmie = log
u=1

@ Numerator: likelihood of data given correct word sequence
(“clamped” to reference alignment)

e Denominator: total likelihood of the data given all possible
word sequences — equivalent to summing over all possible
word sequences estimated by the full acoustic and language
models in recognition. (“free”)

Estimate by generating lattices, and summing over all words
in the lattice
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Maximum mutual information estimation

S Pa(Xu | M(WL))P(W)
Faie = 308 = 5 o (w)) P ()

@ Numerator: likelihood of data given correct word sequence
(“clamped” to reference alignment)

e Denominator: total likelihood of the data given all possible
word sequences — equivalent to summing over all possible
word sequences estimated by the full acoustic and language
models in recognition. (“free”)

Estimate by generating lattices, and summing over all words
in the lattice

@ The objective function Fyp g is optimised by making the
correct word sequence likely (maximise the numerator), and
all other word sequences unlikely (minimise the denominator)
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MPE: Minimum phone error

@ Basic idea adjust the optimization criterion so it is directly
related to word error rate

@ Minimum phone error (MPE) criterion
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MPE: Minimum phone error

@ Basic idea adjust the optimization criterion so it is directly
related to word error rate

@ Minimum phone error (MPE) criterion

U
&, S A | MOW))PW)A(W, W)
Fupe = _1og =5 o (%, T MW} (W)

o A(W,W,) is the phone transcription accuracy of the sentence
W given the reference W,
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MPE: Minimum phone error

@ Basic idea adjust the optimization criterion so it is directly
related to word error rate

@ Minimum phone error (MPE) criterion

2w PAXu [ M(WT))P(W)

FMM.E_Z|OngPA Xy | M(Wa))P(Wo) AW, W,)

o A(W,W,) is the phone transcription accuracy of the sentence
W given the reference W,
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MPE: Minimum phone error

@ Basic idea adjust the optimization criterion so it is directly
related to word error rate

@ Minimum phone error (MPE) criterion

U
&, S A | MOW))PW)A(W, W)
Fupe = _1og =5 o (%, T MW} (W)

o A(W,W,) is the phone transcription accuracy of the sentence
W given the reference W,

e FpmpE is a weighted average over all possible sentences w of
the raw phone accuracy

@ Although MPE optimizes a phone accuracy level, it does so in
the context of a word-level system: it is optimized by finding
probable sentences with low phone error rates

ASR Lecture 9



Sequence training of hybrid HMM /DNN systems

@ It is possible to train HMM/NN systems using a MMI-type
objective function

@ Forward- and back-propagation equations are structurally
similar to forward and backward recursions in HMM training
o Initially train DNN framewise using cross-entropy (CE) error
function
o Use CE-trained model to generate alignments and lattices for
sequence training
e Use CE-trained weights to initialise weights for sequence
training
@ Train using back-propagation with sequence training objective
function (e.g. MMI)
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Sequence training results on Switchboard (Kaldi)

Results on Switchboard “Hub 5 '00" test set, trained on 300h training
set, comparing maximum likelihood (ML) and discriminative (BMMI)
trained GMMs with framewise cross-entropy (CE) and sequence trained
(MMI) DNNs. GMM systems use speaker adaptive training (SAT).

All systems had 8859 tied triphone states.

GMMs — 200k Gaussians

DNNs — 6 hidden layers each with 2048 hidden units

SWB | CHE | Total
GMM ML (+SAT) | 21.2 | 36.4 | 28.8
GMM BMMI (4SAT) | 18.6 | 33.0 | 25.8
DNN CE | 14.2 | 25.7 | 20.0

DNN MMI | 129 | 24.6 | 18.8

Veseley et al, 2013.
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e DNN/HMM systems (hybrid systems) give a significant
improvement over GMM/HMM systems
o Compared with 1990s NN/HMM systems, DNN/HMM
systems
e model context-dependent tied states with a much wider output
layer
e are deeper — more hidden layers
e can use correlated features (e.g. FBANK)
@ Sequence training: discriminatively optimise GMM or DNN to
a sentence (sequence) level criterion rather than a frame level
criterion

Next lecture: Speaker adaptation
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chapter 27, 539-557. http://www.inf.ed.ac.uk/teaching/
courses/asr/2010-11/restrict/Young. pdf
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