Introduction to Neural Networks

Steve Renals

Automatic Speech Recognition – ASR Lecture 7
9 February 2017
Local Phonetic Scores and Sequence Modelling

- DTW - local distances (Euclidean)
- HMM - emission probabilities (Gaussian or GMM)

Compute the phonetic score (acoustic-frame, phone-model) – this does the detailed matching at the frame-level

Chain phonetic scores together in a sequence - DTW, HMM
Phonetic scores

Task: given an input acoustic frame, output a score for each phone

\[
\begin{align*}
/aa/ & \quad .01 \\
/ae/ & \quad .03 \\
/ax/ & \quad .01 \\
/ao/ & \quad .04 \\
/b/ & \quad .09 \\
/ch/ & \quad .67 \\
/d/ & \quad .06 \\
/zh/ & \quad .15 \\
\end{align*}
\]
Compute the phonetic scores using a single layer neural network

Each output computes its score as a weighted sum of the current inputs.
Phonetic scores

Compute the phonetic scores using a single layer neural network

- Write the estimated phonetic scores as a vector
 \[f = (f_1, f_2, \ldots, f_Q) \]
- Then if the acoustic frame at time \(t \) is \(X = (x_1, x_2, \ldots, x_d) \):
 \[f_j = w_{j1}x_1 + w_{j2}x_2 + \ldots + w_{jd}x_d + b_j \]
 or, write it using summation notation:
 \[f_j = \sum_{i=1}^{d} w_{ji}x_i + b_j \]
 or, write it as vectors:
 \[f = Wx + b \]

where we call \(W \) the *weight matrix*, and \(b \) the *bias vector*.

- Check your understanding:
 What are the dimensions of \(W \) and \(b \)?
How do we learn the parameters W and b?

- **Minimise an Error Function**: Define a function which is 0 when the output $f(n)$ equals the target output $r(n)$ for all n.
- **Target output**: for TIMIT the target output corresponds to the phone label for each frame.
- **Mean square error**: define the error function E as the mean square difference between output and the target:

$$E = \frac{1}{2} \cdot \frac{1}{N} \sum_{n=1}^{N} \|f(n) - r(n)\|^2$$

where there are N frames of training data in total.
Notes on the error function

- f is a function of the acoustic data x and the weights and biases of the network (W and b)
- This means that as well as depending on the training data (x and r), E is also a function of the weights and biases, since it is a function of f
- We want to minimise the error function given a fixed training set: we must set W and b to minimise E
- **Weight space:** given the training set we can imagine a space where every possible value of W and b results in a specific value of E. We want to find the minimum of E in this weight space.
- **Gradient descent:** find the minimum iteratively – given a current point in weight space find the direction of steepest descent, and change W and b to move in that direction
Gradient Descent

- Iterative update – after seeing some training data, we adjust the weights and biases to reduce the error. Repeat until convergence.

- To update a parameter so as to reduce the error, we move downhill in the direction of steepest descent. Thus to train a network we must compute the gradient of the error with respect to the weights and biases:

\[
\begin{pmatrix}
\frac{\partial E}{\partial w_{10}} & \frac{\partial E}{\partial w_{1i}} & \frac{\partial E}{\partial w_{1d}} \\
\frac{\partial E}{\partial w_{j0}} & \cdots & \frac{\partial E}{\partial w_{jd}} \\
\frac{\partial E}{\partial w_{Q0}} & \cdots & \frac{\partial E}{\partial w_{Qd}}
\end{pmatrix}
\begin{pmatrix}
\frac{\partial E}{\partial b_1} \\
\frac{\partial E}{\partial b_j} \\
\frac{\partial E}{\partial b_Q}
\end{pmatrix}
\]
Gradient Descent Procedure

1. Initialise weights and biases with small random numbers
2. For each batch of training data
 1. Initialise total gradients: $\Delta w_{ki} = 0$, $\Delta b_k = 0$
 2. For each training example n in the batch:
 - Compute the error E^n
 - For all k, i: Compute the gradients $\partial E^n / \partial w_{ki}$, $\partial E^n / \partial b_k$
 - Update the total gradients by accumulating the gradients for example n
 \[
 \Delta w_{ki} \leftarrow \Delta w_{ki} + \frac{\partial E^n}{\partial w_{ki}} \quad \forall k, i
 \]
 \[
 \Delta b_k \leftarrow \Delta b_k + \frac{\partial E^n}{\partial b_k} \quad \forall k
 \]
3. Update weights:
 \[
 w_{ki} \leftarrow w_{ki} - \eta \Delta w_{ki} \quad \forall k, i
 \]
 \[
 b_k \leftarrow b_k - \eta \Delta b_k \quad \forall k
 \]

Terminate either after a fixed number of epochs, or when the error stops decreasing by more than a threshold.
Gradient in SLN

How do we compute the gradients $\frac{\partial E^n}{\partial w_{ki}}$ and $\frac{\partial E^n}{\partial b_k}$?

$$E^n = \frac{1}{2} \sum_{k=1}^{K} (f^n_k - r^n_k)^2 = \frac{1}{2} \sum_{k=1}^{K} \left(\sum_{i=1}^{d} (w_{ki} x^n_i + b_k) - r^n_k \right)^2$$

$$\frac{\partial E^n}{\partial w_{ki}} = (f^n_k - r^n_k) x^n_i = \delta^n_k x^n_i \quad \delta^n_k = f^n_k - r^n_k$$

The **delta rule**: gradient of the error with respect to a weight w_{ki} is the product of the error (delta) at the output of the weight (r_k) multiplied by the value of the unit at the input to the weight (x_i).

Check your understanding: Show that

$$\frac{\partial E^n}{\partial b_k} = \delta^n_k$$
Applying gradient descent to a single-layer network

\[f_2 = \sum_{i=1}^{5} w_{2i} x_i \]

\[\Delta w_{24} = \sum_{n} (f_2^n - r_2^n) x_4^n \]
Acoustic context

Use multiple frames of acoustic context

Acoustic input

\[X(t) \] with +/-3 frames of context

Phonetic Scores (at time t)

\[f(t) \]

- /aa/ 0.11
- /ae/ 0.09
- /ax/ 0.04
- /ao/ 0.04
- /b/ 0.01
- /i/ 0.65
- /zh/ 0.01
Hidden units

- Single layer networks have limited computational power – each output unit is trained to match a spectrogram directly (a kind of discriminative template matching).
- But there is a lot of variation in speech (as previously discussed) – rate, coarticulation, speaker characteristics, acoustic environment.
- Introduce an intermediate feature representation – “hidden units” – more robust than template matching.
- Intermediate features represented by hidden units.
Hidden units extracting features

\[
X(t-3) \rightarrow \ldots \rightarrow X(t+3) \rightarrow /aa/.11 \\
/ae/.09 \\
/ax/.04 \\
/ao/.04 \\
/b/.01 \\
/i/.65 \\
/zh/.01
\]
Hidden Units

\[h_j = g \left(\sum_{i=1}^{d} w_{ji} x_i + b_j \right) \]

\[f_k = \text{softmax} \left(\sum_{j=1}^{H} v_{kj} h_j + b_k \right) \]
Sigmoid function

Logistic sigmoid activation function \[g(a) = \frac{1}{1+\exp(-a)} \]
Softmax

\[
y_k = \frac{\exp(a_k)}{\sum_{j=1}^{K} \exp(a_j)}
\]

\[
a_k = \sum_{j=1}^{H} v_{kj} h_j + b_k
\]

- This form of activation has the following properties
 - Each output will be between 0 and 1
 - The denominator ensures that the \(K \) outputs will sum to 1
- Using softmax we can interpret the network output \(y_k^n \) as an estimate of \(P(k|x^n) \)
Cross-entropy error function

- Cross-entropy error function:

\[E^n = - \sum_{k=1}^{C} r^n_k \ln f^n_k \]

Optimise the weights \(W \) to maximise the log probability – or to minimise the negative log probability.

- A neat thing about softmax: if we train with cross-entropy error function, we get a simple form for the gradients of the output weights:

\[
\frac{\partial E^n}{\partial v_{kj}} = \left(f_k - r_k \right) h_j
\]
Training multilayered networks – output layer
Training multilayered networks – output layer

\[
\begin{align*}
\text{Outputs} & \quad f_1 & \quad f_\ell & \quad f_K \\
\delta_1 & \quad v_{1j} & \quad \delta_\ell & \quad v_{\ell j} & \quad \delta_K \\
\text{Hidden units} & \quad g & \quad h_j & \quad v_{kj} & \quad \frac{\partial E}{\partial v_{kj}} = \delta_k h_j \\
& \quad \omega_{ji} & \quad x_i
\end{align*}
\]
Hidden units make training the weights more complicated, since the hidden units affect the error function indirectly via all the outputs.

The Credit assignment problem: what is the “error” of a hidden unit? How important is input-hidden weight w_{ji} to output unit k?

Solution: *back-propagate* the deltas through the network.

δ_j for a hidden unit is the weighted sum of the deltas of the connected output units. (Propagate the δ values backwards through the network.)

Backprop provides a way of estimating the error of each hidden unit.
Backprop

\[\delta_j = \left(\sum_{\ell} \delta_{\ell} v_{\ell j} \right) g' \]

\[\frac{\partial E}{\partial w_{ji}} = \delta_j x_i \]

\[\frac{\partial E}{\partial v_{kj}} = \delta_k h_j \]
The back-propagation of error algorithm is summarised as follows:

1. Apply an input vectors from the training set, x, to the network and forward propagate to obtain the output vector f
2. Using the target vector r compute the error E^n
3. Evaluate the error signals δ_k for each output unit
4. Evaluate the error signals δ_j for each hidden unit using back-propagation of error
5. Evaluate the derivatives for each training pattern

Back-propagation can be extended to multiple hidden layers, in each case computing the δs for the current layer as a weighted sum of the δs of the next layer.
Summary and Reading

- Single-layer and multi-layer neural networks
- Error functions, weight space and gradient descent training
- Multilayer networks and back-propagation
- Transfer functions – sigmoid and softmax
- Acoustic context
- M Nielsen, *Neural Networks and Deep Learning*, http://neuralnetworksanddeeplearning.com (chapters 1, 2, and 3)

Next lecture: Neural network acoustic models