Hidden Markov Models and Gaussian Mixture Models

Hiroshi Shimodaira and Steve Renals

Automatic Speech Recognition— ASR Lectures 4&5 26&30 January 2017

HMMs and GMMs

- Key models and algorithms for HMM acoustic models
- Gaussians
- GMMs: Gaussian mixture models
- HMMs: Hidden Markov models
- HMM algorithms
 - Likelihood computation (forward algorithm)
 - Most probable state sequence (Viterbi algorithm)
 - Estimting the parameters (EM algorithm)

Fundamental Equation of Statistical Speech Recognition

If **X** is the sequence of acoustic feature vectors (observations) and **W** denotes a word sequence, the most likely word sequence \mathbf{W}^* is given by

$$\mathbf{W}^* = rg\max_{\mathbf{W}} P(\mathbf{W} \,|\, \mathbf{X})$$

Applying Bayes' Theorem:

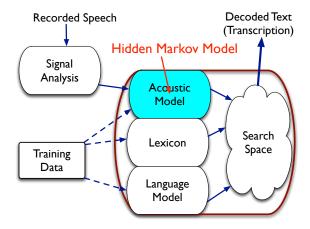
$$P(\mathbf{W} | \mathbf{X}) = \frac{p(\mathbf{X} | \mathbf{W}) P(\mathbf{W})}{p(\mathbf{X})}$$

$$\propto p(\mathbf{X} | \mathbf{W}) P(\mathbf{W})$$

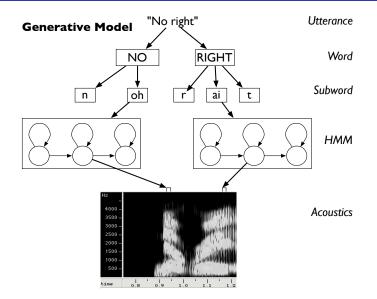
$$\mathbf{W}^* = \arg \max_{\mathbf{W}} \underbrace{p(\mathbf{X} | \mathbf{W})}_{\text{Acoustic}} \underbrace{P(\mathbf{W})}_{\text{Language}}$$
model model

NB: \mathbf{X} is used hereafter to denote the output feature vectors from the signal analysis module rather than DFT spectrum.

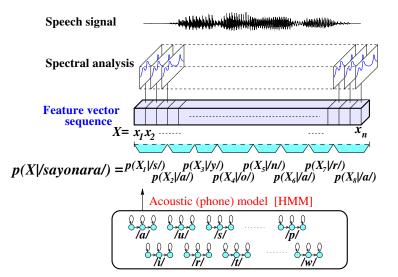
Acoustic Modelling



Hierarchical modelling of speech



Calculation of p(X|W)



NB: some conditional independency is assumed here.

6

Assume x_1, x_2, \dots, x_{T_1} corresponds to phoneme /s/, the *conditional probability* that we observe the sequence is

$$p(X_1|/s/) = p(\mathbf{x}_1, \cdots, \mathbf{x}_{T_1}|/s/), \quad \mathbf{x}_i = (x_{1i}, \cdots, x_{di})^t \in \mathcal{R}^d$$

We know that HMM can be employed to calculate this. (*Viterbi* algorithm, *Forward* / *Backward* algorithm)

To grasp the idea of probability calculation, let's consider an extremely simple case where the length of input sequence is just one $(T_1 = 1)$, and the dimensionality of x is one (d = 1), so that we don't need HMM.

$$p(X_1|/s/) \longrightarrow p(x_1|/s/)$$

How to calculate $p(X_1|/s/)$? (cont.)

p(x|/s/): conditional probability (conditional probability density function (*pdf*) of *x*)

• A *Gaussian / normal distribution* function could be employed for this:

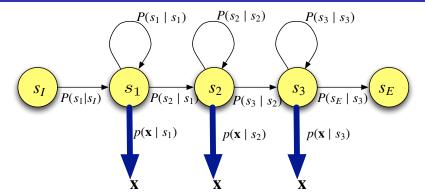
$$P(x|/s/) = \frac{1}{\sqrt{2\pi\sigma_s^2}} e^{-\frac{(x-\mu_s)^2}{2\sigma_s^2}}$$

- The function has only two parameters, μ_s and σ_s^2
- Given a set of training samples $\{x_1,\cdots,x_N\}$, we can estimate $\mu_{\rm S}$ and $\sigma_{\rm S}$

$$\hat{\mu}_{s} = \frac{1}{N} \sum_{i=1}^{N} x_{i}, \qquad \hat{\sigma}_{s}^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu_{s})^{2}$$

• For a general case where a phone lasts more than one frame, we need to employ HMM.

Acoustic Model: Continuous Density HMM



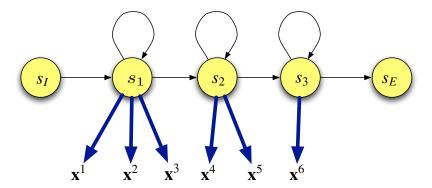
Probabilistic finite state automaton

Paramaters λ :

- Transition probabilities: $a_{kj} = P(S=j|S=k)$
- Output probability density function: $b_j(\mathbf{x}) = p(\mathbf{x} | S = j)$

NB: Some textbooks use Q or q to denote the state variable S. x corresponds to \mathbf{o}_t in Lecture slides 02.

Acoustic Model: Continuous Density HMM



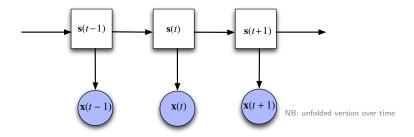
Probabilistic finite state automaton

Paramaters λ :

- Transition probabilities: $a_{kj} = P(S=j|S=k)$
- Output probability density function: $b_j(\mathbf{x}) = p(\mathbf{x} | S = j)$

NB: Some textbooks use Q or q to denote the state variable S. x corresponds to o_t in Lecture slides 02.

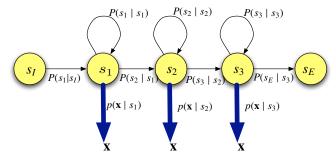
HMM Assumptions



Markov process: The probability of a state depends only on the previous state: P(S(t) | S(t-1), S(t-2), ..., S(1)) = P(S(t) | S(t-1)) A state is conditionally independent of all other states given the previous state

Observation independence: The output observation x(t) depends only on the state that produced the observation: p(x(t) | S(t), S(t-1), ..., S(1), x(t-1), ..., x(1)) = p(x(t) | S(t)) An acoustic observation x is conditionally independent of all other observations given the state that generated it

Output distribution



• Single multivariate Gaussian with mean μ_i , covariance matrix Σ_i :

$$b_j(\mathbf{x}) = p(\mathbf{x} | S = j) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

• M-component Gaussian mixture model:

$$b_j(\mathbf{x}) = p(\mathbf{x} | S = j) = \sum_{m=1}^{M} c_{jm} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{jm}, \boldsymbol{\Sigma}_{jm})$$

Neural network:

 $b_j(\mathbf{x}) \sim P(S\!=\!j \!\mid\! \mathbf{x}) \, / \, P(S\!=\!j)$ NB: NN outputs posterior probabiliies

Consider a real valued random variable X

• Cumulative distribution function (cdf) F(x) for X:

$$F(x) = P(X \leq x)$$

• To obtain the probability of falling in an interval we can do the following:

$$P(a < X \le b) = P(X \le b) - P(X \le a)$$

= $F(b) - F(a)$

• The rate of change of the cdf gives us the *probability density function* (pdf), *p*(*x*):

$$p(x) = \frac{d}{dx}F(x) = F'(x)$$
$$F(x) = \int_{-\infty}^{x} p(x)dx$$

- p(x) is not the probability that X has value x. But the pdf is proportional to the probability that X lies in a small interval centred on x.
- Notation: p for pdf, P for probability

The Gaussian distribution (univariate)

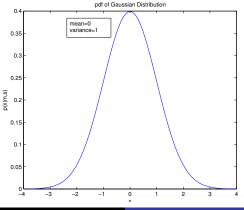
- The Gaussian (or Normal) distribution is the most common (and easily analysed) continuous distribution
- It is also a reasonable model in many situations (the famous "bell curve")
- If a (scalar) variable has a Gaussian distribution, then it has a probability density function with this form:

$$p(x \mid \mu, \sigma^2) = \mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$

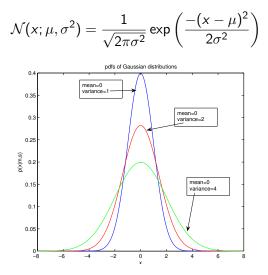
- The Gaussian is described by two parameters:
 - the mean μ (location)
 - the variance σ^2 (dispersion)

Plot of Gaussian distribution

- Gaussians have the same shape, with the location controlled by the mean, and the spread controlled by the variance
- One-dimensional Gaussian with zero mean and unit variance $(\mu = 0, \sigma^2 = 1)$:



Properties of the Gaussian distribution



- Estimate mean and variance parameters of a Gaussian from data x_1, x_2, \ldots, x_T
- Use the following as the estimates:

$$\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} x_t$$
 (mean)
 $\hat{\sigma}^2 = \frac{1}{T} \sum_{t=1}^{T} (x_t - \hat{\mu})^2$ (variance)

Exercise — maximum likelihood estimation (MLE)

Consider the log likelihood of a set of T training data points $\{x_1, \ldots, x_T\}$ being generated by a Gaussian with mean μ and variance σ^2 :

$$L = \ln p(\{x_1, \dots, x_T\} | \mu, \sigma^2) = -\frac{1}{2} \sum_{t=1}^T \left(\frac{(x_t - \mu)^2}{\sigma^2} - \ln \sigma^2 - \ln(2\pi) \right)$$
$$= -\frac{1}{2\sigma^2} \sum_{t=1}^T (x_t - \mu)^2 - \frac{T}{2} \ln \sigma^2 - \frac{T}{2} \ln(2\pi)$$

By maximising the the log likelihood function with respect to μ show that the maximum likelihood estimate for the mean is indeed the sample mean:

$$\mu_{ML} = \frac{1}{T} \sum_{t=1}^{I} x_t.$$

The multivariate Gaussian distribution

The *D*-dimensional vector **x** = (x₁,...,x_D)^T follows a multivariate Gaussian (or normal) distribution if it has a probability density function of the following form:

$$p(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

The pdf is parameterized by the mean vector $\boldsymbol{\mu} = (\mu_1, \dots, \mu_D)^T$ and the covariance matrix $\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1D} \\ \vdots & \ddots & \vdots \\ \sigma_{D1} & \dots & \sigma_{DD} \end{pmatrix}$.

- The 1-dimensional Gaussian is a special case of this pdf
- The argument to the exponential $0.5(\mathbf{x} \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} \boldsymbol{\mu})$ is referred to as a *quadratic form*.

• The mean vector μ is the expectation of **x**:

$$\mu = E[\mathbf{x}]$$

• The covariance matrix $\boldsymbol{\Sigma}$ is the expectation of the deviation of \boldsymbol{x} from the mean:

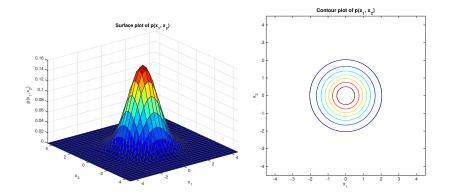
$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T]$$

• Σ is a D imes D symmetric matrix:

$$\sigma_{ij} = E[(x_i - \mu_i)(x_j - \mu_j)] = E[(x_j - \mu_j)(x_i - \mu_i)] = \sigma_{ji}$$

- The sign of the covariance helps to determine the relationship between two components:
 - If x_j is large when x_i is large, then (x_i μ_i)(x_j μ_j) will tend to be positive;
 - If x_j is small when x_i is large, then (x_i μ_i)(x_j μ_j) will tend to be negative.

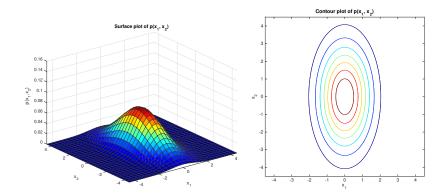
Spherical Gaussian



 $\boldsymbol{\mu} = \left(egin{array}{c} 0 \\ 0 \end{array}
ight) \qquad \boldsymbol{\Sigma} = \left(egin{array}{c} 1 & 0 \\ 0 & 1 \end{array}
ight) \qquad
ho_{12} = 0$

NB: Correlation coefficient $\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}$ $(-1 \le \rho_{ij} \le 1)$

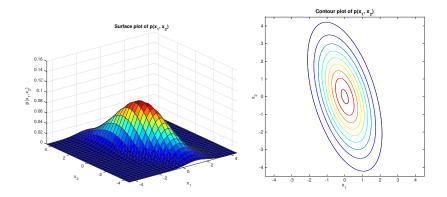
Diagonal Covariance Gaussian



 $\boldsymbol{\mu} = \left(egin{array}{c} 0 \\ 0 \end{array}
ight) \qquad \boldsymbol{\Sigma} = \left(egin{array}{c} 1 & 0 \\ 0 & 4 \end{array}
ight) \qquad
ho_{12} = 0$

NB: Correlation coefficient $\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}$ $(-1 \le \rho_{ij} \le 1)$

Full covariance Gaussian



$$\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 $\Sigma = \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix}$ $\rho_{12} = -0.5$

NB: Correlation coefficient $\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}$ $(-1 \le \rho_{ij} \le 1)$

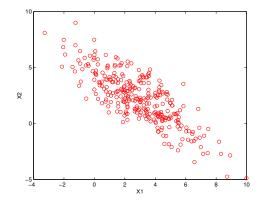
Parameter estimation of a multivariate Gaussian distribution

• It is possible to show that the mean vector $\hat{\mu}$ and covariance matrix $\hat{\Sigma}$ that maximize the likelihood of the training data are given by:

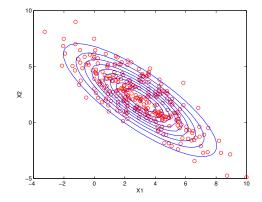
$$egin{aligned} \hat{\mu} &= rac{1}{\mathcal{T}} \sum_{t=1}^{ au} oldsymbol{x}_t \ \hat{\Sigma} &= rac{1}{\mathcal{T}} \sum_{t=1}^{ au} (oldsymbol{x}_t - \hat{\mu}) (oldsymbol{x}_t - \hat{\mu})^{\mathcal{T}} \end{aligned}$$

where $x_t = (x_{t1}, ..., x_{tD})^T$.

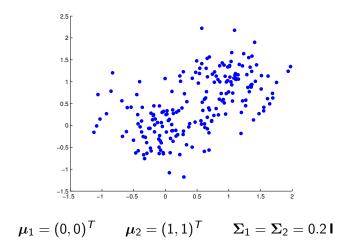
NB: T denotes either the number of samples or vector transpose depending on context.



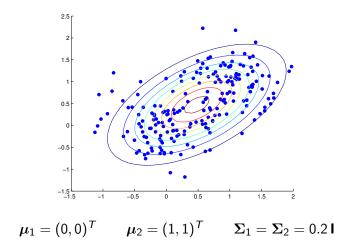
Maximum likelihood fit to a Gaussian



Data in clusters (example 1)

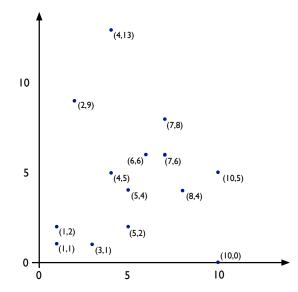


Example 1 fit by a Gaussian

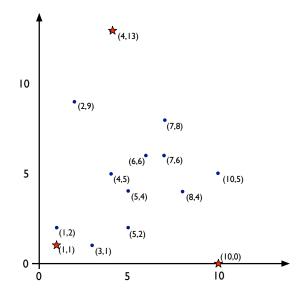


- k-means is an automatic procedure for clustering unlabelled data
- Requires a prespecified number of clusters
- Clustering algorithm chooses a set of clusters with the minimum within-cluster variance
- Guaranteed to converge (eventually)
- Clustering solution is dependent on the initialisation

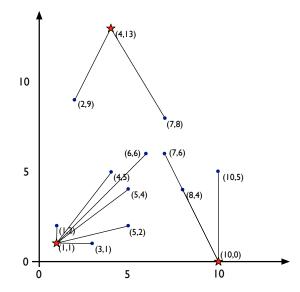
k-means example: data set



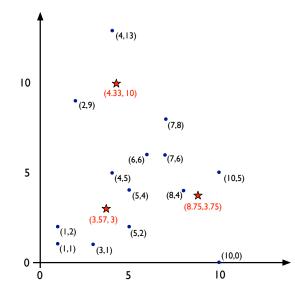
k-means example: initialization



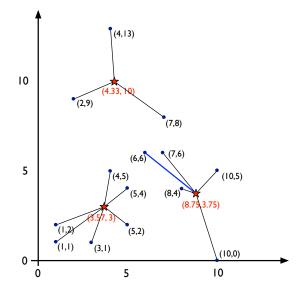
k-means example: iteration 1 (assign points to clusters)



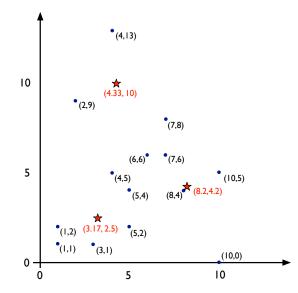
k-means example: iteration 1 (recompute centres)



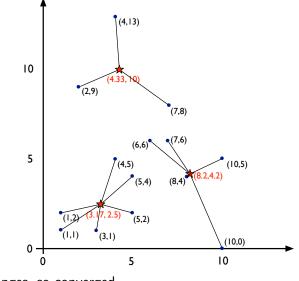
k-means example: iteration 2 (assign points to clusters)



k-means example: iteration 2 (recompute centres)



k-means example: iteration 3 (assign points to clusters)



No changes, so converged

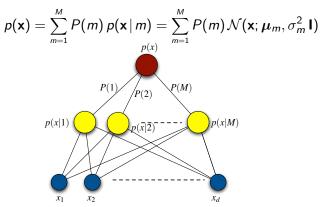
• A more flexible form of density estimation is made up of a linear combination of component densities:

$$p(\mathbf{x}) = \sum_{m=1}^{M} p(\mathbf{x} \mid m) P(m)$$

- This is called a *mixture model* or a *mixture density*
- $p(\mathbf{x} | m)$: component densities
- P(m) : mixing parameters
- Generative model:
 - **(**) Choose a mixture component based on P(m)
 - Generate a data point x from the chosen component using p(x | m)

Gaussian mixture model

- The most important mixture model is the *Gaussian Mixture Model* (GMM), where the component densities are Gaussians
- Consider a GMM, where each component Gaussian $\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$ has mean $\boldsymbol{\mu}_m$ and a spherical covariance $\boldsymbol{\Sigma}_m = \sigma_m^2 \mathbf{I}$



GMM Parameter estimation when we know which component generated the data

- Define the indicator variable z_{mt} = 1 if component m generated data point x_t (and 0 otherwise)
- If z_{mt} wasn't hidden then we could count the number of observed data points generated by m:

$$N_m = \sum_{t=1}^T z_{mt}$$

• And estimate the mean, variance and mixing parameters as:

$$\hat{\boldsymbol{\mu}}_{m} = \frac{\sum_{t} \boldsymbol{z}_{mt} \boldsymbol{x}_{t}}{N_{m}}$$
$$\hat{\sigma}_{m}^{2} = \frac{\sum_{t} \boldsymbol{z}_{mt} \| \boldsymbol{x}_{t} - \hat{\boldsymbol{\mu}}_{m} \|^{2}}{N_{m}}$$
$$\hat{\boldsymbol{\rho}}(m) = \frac{1}{T} \sum_{t} \boldsymbol{z}_{mt} = \frac{N_{m}}{T}$$

GMM Parameter estimation when we don't know which component generated the data

- *Problem:* we don't know which mixture component a data point comes from...
- Idea: use the posterior probability $P(m|\mathbf{x})$, which gives the probability that component m was responsible for generating data point \mathbf{x} .

$$P(m|\mathbf{x}) = \frac{p(\mathbf{x}|m)P(m)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|m)P(m)}{\sum_{m'=1}^{M} p(\mathbf{x}|m')P(m')}$$

- The P(m|x)s are called the component occupation probabilities (or sometimes called the responsibilities)
- Since they are posterior probabilities:

$$\sum_{m=1}^{M} P(m | \mathbf{x}) = 1$$

Soft assignment

 Estimate "soft counts" based on the component occupation probabilities P(m|x_t):

$$N_m^* = \sum_{t=1}^{T} P(m | \boldsymbol{x}_t)$$

- We can imagine assigning data points to component m weighted by the component occupation probability P(m|x_t)
- So we could imagine estimating the mean, variance and prior probabilities as:

$$\hat{\boldsymbol{\mu}}_{m} = \frac{\sum_{t} P(m | \boldsymbol{x}_{t}) \boldsymbol{x}_{t}}{\sum_{t} P(m | \boldsymbol{x}_{t})} = \frac{\sum_{t} P(m | \boldsymbol{x}_{t}) \boldsymbol{x}_{t}}{N_{m}^{*}}$$
$$\hat{\sigma}_{m}^{2} = \frac{\sum_{t} P(m | \boldsymbol{x}_{t}) \| \boldsymbol{x}_{t} - \hat{\boldsymbol{\mu}}_{m} \|^{2}}{\sum_{t} P(m | \boldsymbol{x}_{t})} = \frac{\sum_{t} P(m | \boldsymbol{x}_{t}) \| \boldsymbol{x}_{t} - \hat{\boldsymbol{\mu}}_{m} \|^{2}}{N_{m}^{*}}$$
$$\hat{P}(m) = \frac{1}{T} \sum_{t} P(m | \boldsymbol{x}_{t}) = \frac{N_{m}^{*}}{T}$$

EM algorithm

• Problem! Recall that:

$$P(m|\mathbf{x}) = \frac{p(\mathbf{x}|m)P(m)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|m)P(m)}{\sum_{m'=1}^{M} p(\mathbf{x}|m')P(m')}$$

We need to know $p(\mathbf{x}|m)$ and P(m) to estimate the parameters of $P(m|\mathbf{x})$, and to estimate P(m)....

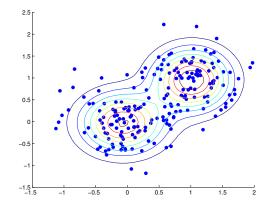
- Solution: an iterative algorithm where each iteration has two parts:
 - Compute the component occupation probabilities $P(m|\mathbf{x})$ using the current estimates of the GMM parameters (means, variances, mixing parameters) (E-step)
 - Computer the GMM parameters using the current estimates of the component occupation probabilities (M-step)
- Starting from some initialization (e.g. using k-means for the means) these steps are alternated until convergence
- This is called the *EM Algorithm* and can be shown to maximize the likelihood

• The likelihood of a data set $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T\}$ is given by:

$$\mathcal{L} = \prod_{t=1}^{T} p(\boldsymbol{x}_t) = \prod_{t=1}^{T} \sum_{m=1}^{M} p(\boldsymbol{x}_t | m) P(m)$$

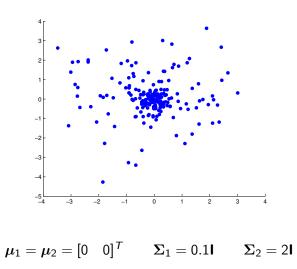
- We can regard the *negative log likelihood* as an error function:
- Considering the derivatives of *E* with respect to the parameters, gives expressions like the previous slide

Example 1 fit using a GMM

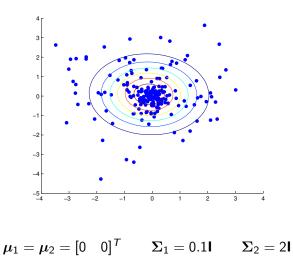


Fitted with a two component GMM using EM

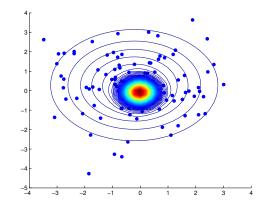
Peakily distributed data (Example 2)



Example 2 fit by a Gaussian

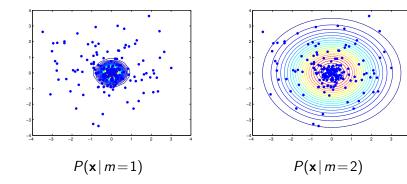


Example 2 fit by a GMM



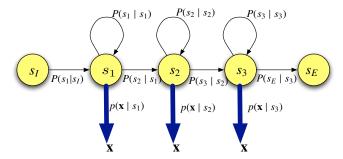
Fitted with a two component GMM using EM

Example 2: component Gaussians



- GMMs trained using the EM algorithm are able to self organize to fit a data set
- Individual components take responsibility for parts of the data set (probabilistically)
- Soft assignment to components not hard assignment "soft clustering"
- GMMs scale very well, e.g.: large speech recognition systems can have 30,000 GMMs, each with 32 components: sometimes 1 million Gaussian components!! And the parameters all estimated from (a lot of) data by EM

Back to HMMs...



Output distribution:

• Single multivariate Gaussian with mean μ_j , covariance matrix Σ_j :

$$b_j(\mathbf{x}) = p(\mathbf{x} | S = j) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

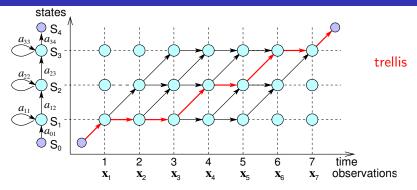
• *M*-component Gaussian mixture model:

$$b_j(\mathbf{x}) = p(\mathbf{x} | S = j) = \sum_{m=1}^{M} c_{jm} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{jm}, \boldsymbol{\Sigma}_{jm})$$

Working with HMMs requires the solution of three problems:

- Likelihood Determine the overall likelihood of an observation sequence X = (x₁,..., x_t,..., x_T) being generated by an HMM.
- Oecoding Given an observation sequence and an HMM, determine the most probable hidden state sequence
- **Training** Given an observation sequence and an HMM, learn the best HMM parameters $\lambda = \{\{a_{jk}\}, \{b_j()\}\}$

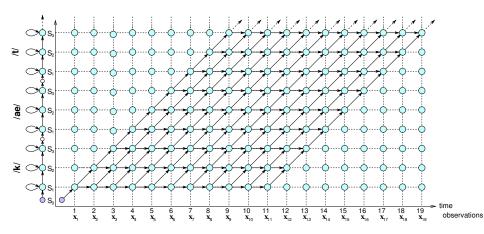
1. Likelihood: how to calculate?



$$\begin{aligned} P(\mathbf{X}, \text{path}_{\ell} | \boldsymbol{\lambda}) &= P(\mathbf{X} | \text{path}_{\ell}, \boldsymbol{\lambda}) P(\text{path}_{\ell} | \boldsymbol{\lambda}) \\ &= P(\mathbf{X} | s_0 s_1 s_1 s_1 s_2 s_2 s_3 s_3 s_4, \boldsymbol{\lambda}) P(s_0 s_1 s_1 s_1 s_2 s_2 s_3 s_3 s_4 | \boldsymbol{\lambda}) \\ &= b_1(\mathbf{x}_1) b_1(\mathbf{x}_2) b_1(\mathbf{x}_3) b_2(\mathbf{x}_4) b_2(\mathbf{x}_5) b_3(\mathbf{x}_6) b_3(\mathbf{x}_7) a_{01} a_{11} a_{11} a_{12} a_{22} a_{23} a_{33} a_{34} \end{aligned}$$

$$\begin{split} P(\mathbf{X} | \boldsymbol{\lambda}) &= \sum_{\{ \text{path}_{\ell} \}} P(\mathbf{X}, \text{path}_{\ell} | \boldsymbol{\lambda}) &\simeq \max_{\text{path}_{\ell}} P(\mathbf{X}, \text{path}_{\ell} | \boldsymbol{\lambda}) \\ & \text{forward(backward) algorithm} \quad \text{Viterbi algorithm} \end{split}$$

Trellis for /k ae t/



1. Likelihood: The Forward algorithm

• Goal: determine $p(\mathbf{X} | \boldsymbol{\lambda})$

- Sum over all possible state sequences $s_1 s_2 \dots s_T$ that could result in the observation sequence **X**
- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)

• Hown many paths calculations in $p(\mathbf{X}|\boldsymbol{\lambda})$?

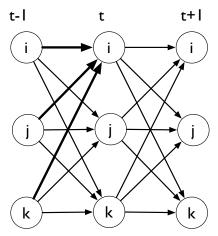
$$\sim \underbrace{N \times N \times \cdots N}_{T \text{ times}} = N^{T} \qquad N: \text{ number of HMM states} \\ T: \text{ length of observation}$$

e.g. $N^T \approx 10^{10}$ for N = 3, T = 20

- Computation complexity of multiplication: $O(2TN^T)$
- The Forward algorithm reduces this to $O(TN^2)$

Recursive algorithms on HMMs

Visualize the problem as a state-time trellis



1. Likelihood: The Forward algorithm

- Goal: determine $p(\mathbf{X} | \boldsymbol{\lambda})$
- Sum over all possible state sequences $s_1 s_2 \dots s_T$ that could result in the observation sequence **X**
- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)
- Forward probability, α_t(j): the probability of observing the observation sequence x₁...x_t and being in state j at time t:

$$\alpha_t(j) = p(\mathbf{x}_1, \ldots, \mathbf{x}_t, S(t) = j | \boldsymbol{\lambda})$$

1. Likelihood: The Forward recursion

Initialization

$$lpha_0(s_l) = 1$$

 $lpha_0(j) = 0$ if $j \neq s_l$

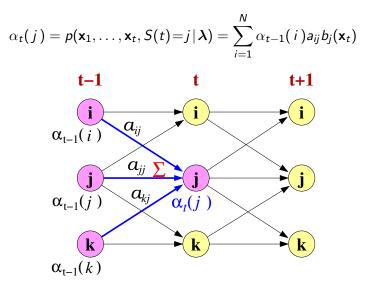
$$\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i) a_{ij} b_j(\mathbf{x}_t) \qquad 1 \le j \le N, \ 1 \le t \le T$$

Termination

$$p(\mathbf{X} | \boldsymbol{\lambda}) = \alpha_{T}(s_{E}) = \sum_{i=1}^{N} \alpha_{T}(i) a_{iE}$$

 s_I : initial state, s_E : final state

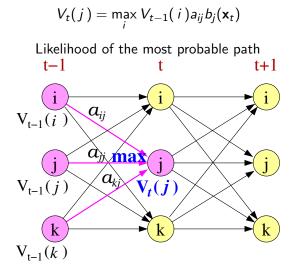
1. Likelihood: Forward Recursion



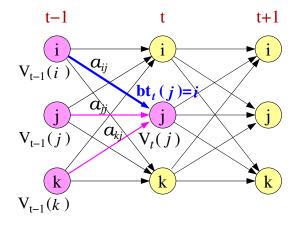
- Instead of summing over all possible state sequences, just consider the most likely
- Achieve this by changing the summation to a maximisation in the recursion:

$$V_t(j) = \max_i V_{t-1}(i) a_{ij} b_j(\mathbf{x}_t)$$

- Changing the recursion in this way gives the likelihood of the most probable path
- We need to keep track of the states that make up this path by keeping a sequence of *backpointers* to enable a Viterbi *backtrace*: the backpointer for each state at each time indicates the previous state on the most probable path



Backpointers to the previous state on the most probable path



2. Decoding: The Viterbi algorithm

Initialization

$$V_0(i) = 1$$

$$V_0(j) = 0 \quad \text{if } j \neq i$$

$$bt_0(j) = 0$$

Recursion

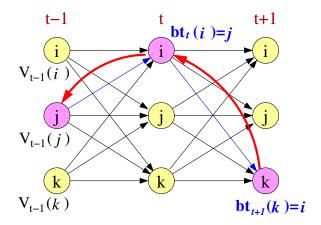
$$V_t(j) = \max_{i=1}^N V_{t-1}(i) a_{ij} b_j(\mathbf{x}_t)$$
$$bt_t(j) = \arg\max_{i=1}^N V_{t-1}(i) a_{ij} b_j(\mathbf{x}_t)$$

Termination

$$P^* = V_T(s_E) = \max_{i=1}^N V_T(i)a_{iE}$$

 $s_T^* = \operatorname{bt}_T(q_E) = \arg\max_{i=1}^N V_T(i)a_{iE}$

Backtrace to find the state sequence of the most probable path



3. Training: Forward-Backward algorithm

- Goal: Efficiently estimate the parameters of an HMM λ from an observation sequence
- Assume single Gaussian output probability distribution

$$b_j(\mathbf{x}) = p(\mathbf{x} \mid j) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

- Parameters λ:
 - Transition probabilities *a_{ij}*:

$$\sum_{j}a_{ij}=1$$

 Gaussian parameters for state j: mean vector μ_j; covariance matrix Σ_j

Viterbi Training

- If we knew the state-time alignment, then each observation feature vector could be assigned to a specific state
- A state-time alignment can be obtained using the most probable path obtained by Viterbi decoding
- Maximum likelihood estimate of a_{ij}, if C(i → j) is the count of transitions from i to j

$$\hat{a}_{ij} = \frac{C(i \to j)}{\sum_{k} C(i \to k)}$$

• Likewise if Z_j is the set of observed acoustic feature vectors assigned to state j, we can use the standard maximum likelihood estimates for the mean and the covariance:

$$\hat{\mu}_j = rac{\sum_{oldsymbol{x}\in Z_j}oldsymbol{x}}{|Z_j|} \ \hat{\Sigma}_j = rac{\sum_{oldsymbol{x}\in Z_j}(oldsymbol{x}-\hat{\mu}_j)(oldsymbol{x}-\hat{\mu}_j)^{ au}}{|Z_j|}$$

EM Algorithm

- Viterbi training is an approximation—we would like to consider *all* possible paths
- In this case rather than having a hard state-time alignment we estimate a probability
- State occupation probability: The probability γ_t(j) of occupying state j at time t given the sequence of observations.

Compare with component occupation probability in a GMM

- We can use this for an iterative algorithm for HMM training: the EM algorithm (whose adaption to HMM is called 'Baum-Welch algorithm')
- Each iteration has two steps:
 - E-step estimate the state occupation probabilities (Expectation)
 - M-step re-estimate the HMM parameters based on the estimated state occupation probabilities (Maximisation)

Backward probabilities

 To estimate the state occupation probabilities it is useful to define (recursively) another set of probabilities—the *Backward* probabilities

$$\beta_t(j) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_T | S(t) = j, \lambda)$$

The probability of future observations given a the HMM is in state j at time t

These can be recursively computed (going backwards in time)
 Initialisation

$$\beta_T(i) = a_{iE}$$

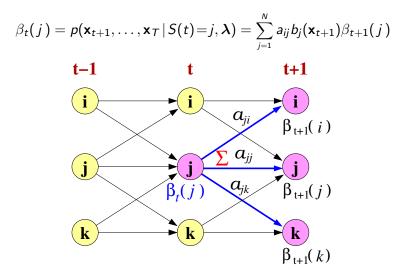
Recursion

$$\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(\mathbf{x}_{t+1}) \beta_{t+1}(j)$$
 for $t = T - 1, ..., 1$

Termination

$$p(\mathbf{X} | \boldsymbol{\lambda}) = \beta_0(I) = \sum_{j=1}^N a_{lj} b_j(\mathbf{x}_1) \beta_1(j) = \alpha_T(s_E)$$

Backward Recursion



State Occupation Probability

- The state occupation probability γ_t(j) is the probability of occupying state j at time t given the sequence of observations
- Express in terms of the forward and backward probabilities:

$$\gamma_t(j) = P(S(t) = j | \mathbf{X}, \mathbf{\lambda}) = \frac{1}{\alpha_T(s_E)} \alpha_t(j) \beta_t(j)$$
ng that $p(\mathbf{X} | \mathbf{\lambda}) = \alpha_T(s_E)$

recalling that $p(\mathbf{X} | \boldsymbol{\lambda}) = \alpha_T(s_E)$

Since

$$\alpha_t(j)\beta_t(j) = p(\mathbf{x}_1, \dots, \mathbf{x}_t, S(t) = j | \boldsymbol{\lambda})$$

$$p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_T | S(t) = j, \boldsymbol{\lambda})$$

$$= p(\mathbf{x}_1, \dots, \mathbf{x}_t, \mathbf{x}_{t+1}, \dots, \mathbf{x}_T, S(t) = j | \boldsymbol{\lambda})$$

$$= p(\mathbf{X}, S(t) = j | \boldsymbol{\lambda})$$

$$P(S(t)=j \mid \mathbf{X}, \boldsymbol{\lambda}) = rac{p(\mathbf{X}, S(t)=j \mid \boldsymbol{\lambda})}{p(\mathbf{X} \mid \boldsymbol{\lambda})}$$

- The sum of state occupation probabilities through time for a state, may be regarded as a "soft" count
- We can use this "soft" alignment to re-estimate the HMM parameters:

$$\hat{\boldsymbol{\mu}}_{j} = \frac{\sum_{t=1}^{T} \gamma_{t}(j) \boldsymbol{x}_{t}}{\sum_{t=1}^{T} \gamma_{t}(j)}$$
$$\hat{\boldsymbol{\Sigma}}_{j} = \frac{\sum_{t=1}^{T} \gamma_{t}(j) (\boldsymbol{x}_{t} - \hat{\boldsymbol{\mu}}_{j}) (\boldsymbol{x} - \hat{\boldsymbol{\mu}}_{j})^{T}}{\sum_{t=1}^{T} \gamma_{t}(j)}$$

Re-estimation of transition probabilities

• Similarly to the state occupation probability, we can estimate $\xi_t(i, j)$, the probability of being in i at time t and j at t + 1, given the observations:

$$\xi_t(i, j) = P(S(t) = i, S(t+1) = j | \mathbf{X}, \lambda)$$
$$= \frac{p(S(t) = i, S(t+1) = j, \mathbf{X} | \lambda)}{p(\mathbf{X} | \lambda)}$$
$$= \frac{\alpha_t(i) a_{ij} b_j(\mathbf{x}_{t+1}) \beta_{t+1}(j)}{\alpha_T(s_E)}$$

• We can use this to re-estimate the transition probabilities

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T} \xi_t(i, j)}{\sum_{k=1}^{N} \sum_{t=1}^{T} \xi_t(i, k)}$$

• Iterative estimation of HMM parameters using the EM algorithm. At each iteration

E step For all time-state pairs

- Recursively compute the forward probabilities $\alpha_t(j)$ and backward probabilities $\beta_t(j)$
- Compute the state occupation probabilities $\gamma_t(j)$ and $\xi_t(i, j)$
- M step Based on the estimated state occupation probabilities re-estimate the HMM parameters: mean vectors μ_j , covariance matrices Σ_j and transition probabilities a_{ij}
- The application of the EM algorithm to HMM training is sometimes called the Forward-Backward algorithm

Extension to a corpus of utterances

- We usually train from a large corpus of R utterances
- If x^r_t is the t th frame of the r th utterance X^r then we can compute the probabilities α^r_t(j), β^r_t(j), γ^r_t(j) and ξ^r_t(i, j) as before
- The re-estimates are as before, except we must sum over the *R* utterances, eg:

$$\hat{\boldsymbol{\mu}}_{j} = \frac{\sum_{r=1}^{R} \sum_{t=1}^{T} \gamma_{t}^{r}(j) \boldsymbol{x}_{t}^{r}}{\sum_{r=1}^{R} \sum_{t=1}^{T} \gamma_{t}^{r}(j)}$$

 In addition, we usually employ "embedded training", in which fine tuning of phone labelling with "forced Viterbi alignment" or forced alignment is involved. (For details see Section 9.7 in Jurafsky and Martin's SLP)

Extension to Gaussian mixture model (GMM)

- The assumption of a Gaussian distribution at each state is very strong; in practice the acoustic feature vectors associated with a state may be strongly non-Gaussian
- In this case an *M*-component Gaussian mixture model is an appropriate density function:

$$b_j(\mathbf{x}) = p(\mathbf{x} | S = j) = \sum_{m=1}^M c_{jm} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{jm}, \boldsymbol{\Sigma}_{jm})$$

Given enough components, this family of functions can model any distribution.

• Train using the EM algorithm, in which the component estimation probabilities are estimated in the E-step

EM training of HMM/GMM

 Rather than estimating the state-time alignment, we estimate the component/state-time alignment, and component-state occupation probabilities γ_t(j, m): the probability of occupying mixture component m of state j at time t.

 $(\xi_{tm}(j) \text{ in Jurafsky and Martin's SLP})$

• We can thus re-estimate the mean of mixture component *m* of state *j* as follows

$$\hat{\boldsymbol{\mu}}_{jm} = \frac{\sum_{t=1}^{T} \gamma_t(j, m) \boldsymbol{x}_t}{\sum_{t=1}^{T} \gamma_t(j, m)}$$

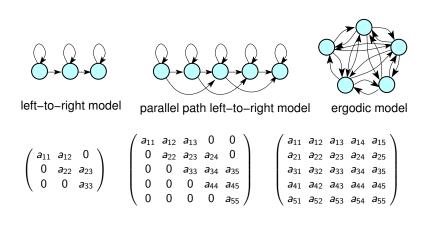
And likewise for the covariance matrices (mixture models often use diagonal covariance matrices)

• The mixture coefficients are re-estimated in a similar way to transition probabilities:

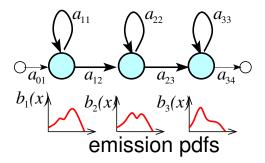
$$\hat{c}_{jm} = \frac{\sum_{t=1}^{I} \gamma_t(j, m)}{\sum_{m'=1}^{M} \sum_{t=1}^{T} \gamma_t(j, m')}$$

- The forward, backward and Viterbi recursions result in a long sequence of probabilities being multiplied
- This can cause floating point underflow problems
- In practice computations are performed in the log domain (in which multiplies become adds)
- Working in the log domain also avoids needing to perform the exponentiation when computing Gaussians

A note on HMM topology



A note on HMM emission probabilities



	Emission prob.	
Continuous (density) HMM	continuous density	GMM, NN/DNN
Discrete (probability) HMM	discrete probability	VQ
Semi-continuous HMM	continuous density	tied mixture
(tied-mixture HMM)		

- HMMs provide a generative model for statistical speech recognition
- Three key problems
 - Computing the overall likelihood: the Forward algorithm
 - 2 Decoding the most likely state sequence: the Viterbi algorithm
 - Estimating the most likely parameters: the EM (Forward-Backward) algorithm
- Solutions to these problems are tractable due to the two key HMM assumptions
 - Conditional independence of observations given the current state
 - 2 Markov assumption on the states

- Gales and Young (2007). "The Application of Hidden Markov Models in Speech Recognition", *Foundations and Trends in Signal Processing*, 1 (3), 195–304: section 2.2.
- Jurafsky and Martin (2008). Speech and Language Processing (2nd ed.): sections 6.1-6.5; 9.2; 9.4. (Errata at http://www.cs.colorado.edu/~martin/SLP/Errata/SLP2-PIEV-Errata.html)
- Rabiner and Juang (1989). "An introduction to hidden Markov models", *IEEE ASSP Magazine*, **3** (1), 4–16.
- Renals and Hain (2010). "Speech Recognition", *Computational Linguistics and Natural Language Processing Handbook*, Clark, Fox and Lappin (eds.), Blackwells.