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ABSTRACT

The notion that a word is composed of a sequence of phone seg-
ments, sometimes referred to as ‘beads on a string’, has formed the
basis of most speech recognition work for over 15 years. However,
as more researchers tackle spontaneous speech recognition tasks,
that view is being called into question. This paper raises problems
with the phoneme as the basic subword unit in speech recognition,
suggesting that finer-grained control is needed to capture the sort
of pronunciation variability observed in spontaneous speech. We
offer two different alternatives – automatically derived subword u-
nits and linguistically motivated distinctive feature systems – and
discuss current work in these directions. In addition, we look at
problems that arise in acoustic modeling when trying to incorpo-
rate higher-level structure with these two strategies.

1. INTRODUCTION

It has often been noted that automatic speech recognition perfor-
mance is much worse on spontaneous speech than on carefully
planned or read speech. For the best systems reporting results on
the 1999 DARPA Broadcast News benchmark tests, error rates on
the spontaneous speech portion of the test set (14-16%) were near-
ly double those on the baseline condition of planned, studio record-
ings (8-9%) [1]. Those sites that also participated in a workshop
on conversational speech recognition a few months later reported
word error rates of roughly 40%. Pronunciation variability has fre-
quently been cited as a key reason for the poor performance; yet,
phone-based pronunciation modeling work has so far led to only
small error rate reduction. Could it be that the reliance on the idea
of words as a sequence of phoneme segments (‘beads on a string’)
has had its day?

In this paper, we will look at evidence against the phoneme
as a basic unit in speech recognition and at two alternative lexi-
cal representations: automatically derived (sub-phone) units and
linguistically motivated states defined in terms of categorical fea-
tures. In both cases, the goal is finer-level unit control. However,
we also acknowledge the need for introducing context dependence
on syllable and higher-level structure and discuss mechanisms for
doing this. Finally, we discuss the importance of new acoustic
modeling research to support the increase in granularity without
an explosion of model parameters.

2. THE CASE AGAINST THE PHONEME

Several studies have pointed to acoustic variability as a key prob-
lem for systems recognizing spontaneous speech. For example, an
SRI study showed near doubling of word error rates on the exact
same word sequence when it was spoken spontaneously vs. read

[2]. More recently, McAllister et al. use simulated data in experi-
ments that suggest that poor pronunciation modeling accounts for
the bulk of the high error rate on the Switchboard task [3]. Not
surprisingly, there have been a large number of research efforts
devoted to pronunciation modeling in the last few years, including
techniques that use automatic learning, hand-written phonologi-
cal rules and various combinations of the two. Unfortunately, the
gains from phone-based pronunciation modeling techniques have
been disappointing, e.g. reducing word error rates from 40.9% to
38.5% on conversational speech [4]. This gain represents a statisti-
cally significant improvement on a difficult task, but not the factor
of five reduction predicted in [3]. Of course, the factor of five
is optimistic because of the match between modeling assumption-
s in the recognition and simulation of data, but most researchers
still share the intuition that there is more to be gained from pro-
nunciation modeling. Many of the pronunciation models that have
been applied are quite sophisticated and work well on read speech,
which raises the question: is recognition performance limited by
the assumption that pronunciation variation is represented in terms
of phone-level substitutions, deletions and insertions?

In an extensive series of experiments with different pronunci-
ation models and training conditions, Saraclar et al. show that im-
proving phone recognition accuracy can actually hurt word recog-
nition accuracy [5]. Results in [4] may explain this in part: decision-
tree pronunciation models generate word-level pronunciation prob-
abilities that do not match the relative frequency of those pronun-
ciations in the data – a flaw in the assumption of conditional inde-
pendence of phones. (Of course, it is also the case that, in theory,
optimizing for accuracy of low-level unit recognition is not the best
choice for recognizing higher-level units when the low-level unit-
s are sequentially dependent.) The conditional independence as-
sumption can be ameliorated by syllable-level pronunciation pre-
diction, but word error rate reduction is still less than 10% [6].

Another indicator of problems with the phoneme is that pho-
netic transcription of conversational speech is quite difficult for hu-
man labelers. It has been observed, in the Switchboard corpus and
in other studies, that phonemes which appear to be ‘deleted’ (in the
sense of having little or no identifiable associated time segment in a
spectrogram representation) are often still perceived because of the
presence of coarticulation effects on neighboring segments. Such
short segments are quite frequent, as evidenced by distributional
data in hand-labeled phonetic transcriptions [7] and by the high
percentage of phones mapped to the minimum allowed duration
in a forced alignment using a single-pronunciation dictionary (ob-
served in several studies). In [6], it is noted that the relatively high
rate of occurrence of phenomena such as feature spreading and cue
trading posed difficulties for labelers transcribing the Switchboard
corpus. These phenomena also pose difficulties for phone-based
computer recognition models. For example, if a phone is delet-



ed in an alternate pronunciation, a different triphone will be used
and coarticulation effects cannot be captured. In fact, this sort of
feature spreading may be better captured without explicit phone
deletion in the word pronunciation, since the triphone models may
have effectively learned the deletion pattern. Note that, in standard
HMM training, which is not constrained by hand-labeled phone
segment times, triphones learn coarticulation effects that result in
‘phonetic’ time alignments that do not correspond to where a hu-
man labeler would put a phone segment boundary. This behavior
of automatically trained triphones is yet another argument against
the phone.

Analyses of the hand-labeled Switchboard corpus in terms of
deviations from the canonical dictionary pronunciation show a strong
dependence on syllable structure, e.g. syllable onsets are most of-
ten preserved and codas are most often deleted [7]. For these and
other reasons, several researchers have recently argued for the syl-
lable as an alternative to the phoneme for representing speech. In
this paper, we take a different tack and argue for finer-grained low-
level representation, incorporating dependence on syllable (and
higher level) structure via context conditioning. There are sev-
eral reasons for looking at a finer grained temporal scale. First,
using a pronunciation model based on phones but acoustic models
based on triphones means that a phone substitution translates into
a 3-segment (or, 9-state) substitution which may be an inappropri-
ately long timespan, as pointed out by Saraclar et al. [5] who find
improved performance using state-level (vs. phone-level) pronun-
ciation modeling. Alternative views of the ‘hidden state’ of the
speech process – either as a vector of articulator trajectories (es-
sentially continuous valued) or as parallel asynchronous streams
of binary features – all point to the need for a fine-grained (larger)
state space. The need for more temporal detail is also support-
ed experimentally by observations such as improved performance
from increasing the number of HMM states per triphone (e.g. [8])
and bigger gains from adding parameters to characterize tempo-
ral variability vs. mixture components [9]. Lastly, the need for a
state-level generalization mechanism to handle unseen triphones
(and syllables) argues for a finer-grained representation.

In the two sections to follow, we will suggest two quite dif-
ferent alternatives – data-driven and linguistically based – for in-
creasing temporal resolution while at the same time retaining a
connection to syllable structure.

3. ACOUSTICALLY-DERIVED SUB-WORD UNITS

Acoustically derived sub-word units (ASWUs) represent a data-
driven approach to defining the sub-word units of speech. Recog-
nition system design involves a combination of automatic segmen-
tation into stationary regions or ‘segments’, clustering the seg-
ments based on acoustic similarity, and dictionary design. ASWUs
were proposed several years ago [10, 11, 12, 13], but they faded
from view as speaker-independent recognition became the primary
goal, because of the difficulty of distinguishing speaker variability
from real pronunciation differences. However, this problem has
recently been addressed by integrating the unit and dictionary de-
sign step [14, 15], so that an ASWU system is now a viable option
for speaker-independent recognition. For read speech tasks and e-
specially for low complexity systems, ASWU HMM systems con-
sistently outperform phone-based systems, giving word error rate

The term ‘dictionary’ is used to mean ‘pronouncing dictionary’, pri-
marily for brevity.

reductions of 10-20% for systems of equivalent complexity. Even
the limiting requirement of having several instances of each word
in the vocabulary can be addressed by using a hybrid phone and
ASWU system [16]. The problem of modeling cross-word con-
textual variations is addressed in [17], and multiple pronunciation
dictionary design is covered in [18].

Automatically derived units have the potential for capturing
effects associated with syllable and word position, because the as-
signment of unit sequences to a word pronunciation is complete-
ly based on acoustics. However, the connection to syllable struc-
ture can be made more explicit by learning ASWU units and pro-
nunciations from syllable tokens rather than word tokens. Using
syllable-level tokens would ameliorate the unseen word problem
in large vocabulary recognition to some extent, but there will still
be many unobserved syllables, particularly with conditioning on
lexical stress.

An alternative means of incorporating syllable structure (and
modeling state-level pronunciation variation) is to think of ASWU
design as essentially the same problem as HMM topology design.
One could apply the successive state splitting (SSS) algorithm [19],
which has been used for designing triphone state sharing, at the
syllable level. The SSS algorithm is essentially a generalization of
standard HMM tree-based clustering techniques, e.g. [20], which
can learn both contextual and temporal structure (i.e. the topology
is not fixed to a certain number of states per phone). Applied at
the syllable level, it can easily learn effects of syllable structure.
In addition, SSS can incorporate lexical stress and word position
by labeling syllables with this information as an extra context con-
ditioning variable that can be used in state splitting. In standard
decision tree clustering, this strategy for adding conditioning vari-
ables has been referred to as ‘tagged clustering,’ i.e. phones are
tagged with stress and other features and tri-tag (vs. triphone) mod-
els are clustered. The idea of tagged clustering was first introduced
in speech synthesis by Donovan [21], and subsequent application
to recognition has been described in [22, 23, 24]. A limitation of
tagged clustering is that coding phones (or syllables) causes a huge
increase in the number of elementary context-dependent models,
which leads to large memory requirements and increased complex-
ity of training because of the increase in possible data divisions.
As a result, only simple tag sets have been explored in large vo-
cabulary systems using cross-word context. Work in progress on
multi-stage clustering may address this problem by using different
subsets of features in different stages of tree (or topology) design.

Another class of approaches that falls under the data-driven
theme is the work on state-level pronunciation modeling, different
variations of which have been proposed in [25, 5]. The motivation,
as raised in the previous section, is that there are many instances
where it is more appropriate to substitute or delete part of a tri-
phone rather than the whole triphone. In this work, the subword
units are sequential ‘regions’ of phones trained using standard t-
riphone design techniques, but the final pronunciation network is
not constrained to maintain the original phone-level sequence rela-
tionships. While the work reported so far has not taken advantage
of syllable structure, it is easy to imagine doing so by starting with
triphone states designed using tagged clustering or using decision
trees for finding state transformation probabilities.

4. LINGUISTICALLY-MOTIVATED ALTERNATIVES

In linguistics, it is features and not phonemes that are viewed as the
fundamental units of speech [26], where phones are specified (or



coded) in terms of distinctive features. (Note that the term ‘feature’
is most often used in the speech recognition literature to refer to
acoustic observations, such as cepstral vectors or voice onset time,
but here we use ‘features’ to mean symbolic indicators of phonetic
contrasts.) For the most part, distinctive features are related to
the manner in which a speech sound is produced (the degree of
constriction in the vocal tract), the particular articulator that is used
(glottis, soft palate, lips and tongue blade, body and root) and/or
place of constriction, and how an articulator is used to produce the
sound. Different feature systems have been proposed, including
binary and multi-valued features; for simplicity we will restrict our
discussion to binary features, with the caveat that feature values
can sometimes be unspecified in the ‘code’ for a phoneme, which
could be thought of as a third value. Examples of binary features
are nasal, voiced, continuant, labial, etc.

Pronunciation variations can be expressed in terms of context-
dependent rules describing changes in the feature values or in fea-
ture association with segments. Examples include devoicing of a
vowel or final consonant in the context of a subsequent voiceless
consonant, reducing a tense vowel ‘iy’ to a lax ‘ih’, and chang-
ing the place of articulation so that ‘n’ becomes ‘m’ when the ‘n’
is followed by a labial stop (as in ‘can be’). Feature changes can
also account for apparent phone segment deletion where there is
still evidence for the segment in the realization of neighboring
segments, as in a nasalized ‘ae’ in a reduced form of ‘can’t’ or
the single dental-nasal segment sometimes produced for the two
consonants in ‘in the.’ Features cannot always be mapped to syn-
chronous parallel time functions, and asynchrony can lead to cases
where segments appear to be inserted, as in an epenthetic stop in
‘warmth’ due to asynchronous changing of the nasal and continu-
ant features.

The goal of a feature-based coding of the HMM state space
is to represent such pronunciation variability in terms of asyn-
chronous linguistic feature changes. A word has a lexical repre-
sentation that is a sequence of d-dimensional symbolic feature vec-
tors, which expands into an asynchronous time sequence, which
is mapped to d-dimensional hypercube of states for decoding. In
other words, the bit vector that corresponds to the feature values
indexes an HMM state, and the state transitions are governed by
feature spreading characteristics. The key problems with using the
feature representation are simplifying search and estimation of that
high dimensional space which, like triphones, will include many s-
tates that are never observed.

Deng and colleagues [27, 28] proposed a set of parallel dis-
crete feature streams, with hand-written rules for constraining fea-
ture ‘spreading.’ (Their ‘features’ correspond to quantized vocal
tract shape parameters, but the basic idea applies directly to the
distinctive linguistic features discussed here.) The feature vector
points to a state model index, and the collection of states defined
by the feature spreading rules combine to form what is effectively
a context-dependent HMM with state sharing determined by hu-
man knowledge rather than automatic clustering. The initial work
used independent training of the composite states, which corre-
sponds to assuming that all features are interdependent and has no
mechanism for training unseen states. Recent work takes a first
step at extending triphone clustering techniques to this paradigm
[29], though more research is needed.

A more flexible structure treats the different features and their
associated acoustic parameters as independent streams synchro-
nized at the syllable level [30, 31]. By treating the streams as in-
dependent, a complex state space is achieved while at the same

time keeping the training and decoding problems relatively sim-
ple. The framework nicely accommodates a variety of differen-
t acoustic measures, which can lead to improved performance in
high noise (0dB) conditions [32] and results in reduced confusion
between certain phonemes [33]. Decoupling features from phones
may also lead to models that generalize better across languages.

The use of completely independent streams may be a bit too
flexible, however, as evidenced by the fact that a more traditional
phone-based model outperforms the feature-based system in low
noise conditions [32]. Two main problems stand out. First, it has
been observed that certain sets of features tend to spread or modify
together in groups that can be characterized by a hierarchical orga-
nization [34]. Thus, the timing of different feature streams needs
to be more coordinated, though the existence of the hierarchy facil-
itates modeling, as proposed in [35]. Secondly, the acoustic corre-
lates of the different features are not strictly independent; there are
interactions between some features that enhance certain phonetic
contrasts [36]. Such interactions imply that acoustic observation
models should be conditioned on sets of features and not individ-
ual features. The work of Bilmes on learning model structure [37]
may provide an automatic mechanism for learning an appropriate
dependence structure that also keeps the model dimensionality s-
mall.

5. DYNAMIC PRONUNCIATIONMODELS

Once one accepts the role of syllable (and/or word) structure in
modeling acoustic variability, which is by now quite clearly estab-
lished, the question is raised as to whether there might be a role
for higher-level structure. Indeed, there appears to be evidence for
word frequency, syntax and/or prosodic factors. Fosler-Lussier et
al. show an interaction between speaking rate and word frequency
in predicting how much a word pronunciation will deviate from a
dictionary baseform [6]. Syntax appears to be a factor as well –
one can say ‘gonna’ for ‘going to’ for the infinitive ‘to’ but not for
the preposition.

However, such phenomena may be more directly described
in terms of prosodic structure [38], i.e. the perceived emphasis
and chunking patterns of speech that are related to (but not iden-
tical to) syntactic constituents. Cross-word boundary phonolog-
ical changes, including ‘gonna’ but also assimilation as in ‘gas
shortage,’ typically do not occur at major prosodic phrase bound-
aries, and other insertion-like effects do occur at prosodic bound-
aries. Dilley et al. [39] found that glottalization was more likely
at vowel-initial word boundaries when those words were pitch-
accented and/or in word-initial position of prosodic phrase bound-
aries. The frequency of glottalization increased with increased
saliency of the location, such that glottalization was quite likely
( % for the female subjects) if a word was both accented and
phrase-initial. There may also be an effect of enhanced phonetic
realization via ‘inserted’ features at particularly salient regions of
the speech signal. In the Switchboard corpus, there are at least
anecdotal examples, e.g. an off-glide of ‘ae’ is ‘enhanced’ in an
emphasized pronunciation of ‘and’ resulting in ‘ae eh n d’ (us-
ing a phonetic alphabet). We conjecture that conditioning feature
changes on a prosodic hierarchy, starting from the level of the syl-
lable, will be needed to better explain the pronunciation variability
in speech.

The dependence of pronunciation variability on higher-level
linguistic structure is of great importance to speech recognition
systems, because it provides a means of dynamically varying pro-



nunciation probabilities. When all the observed pronunciation-
s of a word are allowed in speech recognition decoding, perfor-
mance degrades because of the increased confusability between
words, e.g. allowing ‘ae n’ as a pronunciation for ‘and’ increas-
es the possibility of confusing ‘and’ and ‘an’. For this reason,
researchers have begun exploring methods for introducing higher-
level structure within the context of the standard statistical (e.g.
HMM) recognition paradigm, but taking advantage of multi-pass
search architectures to condition on hypothesized word context.
But how can high-level structure be incorporated at the same time
as the granularity of the model is shrinking?

The answer is really no different than for phone-level mod-
eling. In a multipass search framework, it is possible to condi-
tion a word pronunciation model on a broader context, leading to
dynamic pronunciation probabilities, as in [22, 40, 6]. The criti-
cal, and as yet unanswered question, is at what stage to introduce
higher-level context conditioning in unit design. It is impractical
to automatically learn structure – whether in terms of acoustically
derived units or feature interdependence – when clustering is based
on atomic units with only a few (if any) observations. In the data-
driven approach, we are currently exploring different alternatives
in a multi-stage clustering paradigm.

6. IMPLICATIONS FOR ACOUSTIC MODELING

In this paper, we have raised questions about the phoneme as a suit-
able sub-word unit for speech recognition and argues for moving
to a finer-grained representation. At the same time, we acknowl-
edge that there is a clear dependence on higher level structure that
should be accounted for via context conditioning in a dynamic pro-
nunciation model. Alternatives for defining finer-grained units are
described based on acoustically-derived or data-driven approaches
and linguistically-motivated feature coding of the state space.

In the above discussion, we assumed that the acoustic model
is a discrete state HMM, and there are several interesting research
paths to pursue within this framework. However, within the dis-
crete state framework, there is a serious problem of explosion of
the parameter space, as alluded to earlier. Certainly much can be
done in the short term with clever clustering schemes and HMM-
s will long be relied on in early stages of a multipass search, but
the huge number of parameters associated with simple HMM ex-
tensions to a large state space calls the approach into question.
By Occam’s razor, we should be striving for a more parsimonious
model. The distinctive feature representation offers the potential
for a simplified model if the feature streams are sufficiently inde-
pendent, but there is evidence that the timing is fairly systematic
with respect to higher level structure. Results in robust recogni-
tion that argue for multi-rate feature streams further complicate
this picture.

The key point that these arguments lead to is that moving away
from the ‘beads on a string’ model is not simply a pronunciation
model or unit design issue – it is also an acoustic modeling prob-
lem. Changes to the pronunciation model are most likely to suc-
ceed if matched with an appropriate acoustic model. Improved
acoustic models may require additional layers of hidden states at
different time scales, mixed memory Markov models [41], a mixed
continuous and discrete hidden state [42], a discrete event model
[43], and/or other alternatives. Active research on such alternatives
is critical to the advancement of speech recognition.
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