
Extra Note X1 ASR

Multi-Layer Neural Networks

Steve Renals

18 January 2016

1 Intorduction

The aim of neural network modelling is to learn a system which maps an input vector x to a an output
vector y.

At runtime the network computes the output y for each input x; when training the network the aim is
to optimise the parameters of the system such that the correct y is computed for each x. We are most
interested in the output accuracy of the system for unseen test data – aeneralisation.

Feed-forward networks are characterised by a number of layers of computation. A single layer net-
work has a single layer of computation to map between input and output; Multi-layer networks had
additional layers of computation using learned representations – hidden units

2 Single-layer networks

3 Outputs

Bias

5 Inputs

Input-to-output
weights

y1 y2 y3

x0 x1 x2 x3 x4 x5

w3,5

w1,0

Figure 1: Schematic of a single-layer network

Figure 1 shows a single network, which may be defined as follows:

Input vector x = (x1, x1, . . . , xd)T

Output vector y = (y1, . . . , yK)T

Weight matrix W: wki is the weight from input xi to output yk

Bias wk0 is the bias for output k

The Outputs are a weighted sum of inputs:

yk =

d∑
i=1

wkixi + wk0

1

Extra Note X1 ASR

3 Training Single Layer Networks

Training set N input/output pairs {(xn, tn) : 1 ≤ n ≤ N}

Target vector tn = (tn
1, . . . , t

n
K)T – the target output for input xn

Training problem Set the values of the weight matrix W such that each input xn is mapped to its
target tn

Error function We define the training problem in terms of an error function E defined in terms of
the network outputs yn and the targets tn. Training corresponds to minimizing the error function
E

This is a supervised learning setup - there is a target output for each input. We can also write the
network output vector as yn(xn; W) to explicitly show the dependence on the weight matrix and the
input vector.

Training requires an error function which measures how far an output vector is from its target. The
(squared) Euclidean distance – squared error function – is an example error function:

E =
1
2

N∑
n=1

||yn − tn||2 =

N∑
n=1

En

En =
1
2
||yn − tn||2

E is the total error summed over the training set; En is the error for the nth training example. We can
write En in terms of the errors for each training example:

En =
1
2

K∑
k=1

(yn
k − tn

k)2

The training process may be summarised as: set W to minimise E given the training set.

The notion of weight space is a helpful one when considering training neural networks. Weight space
is a K × d dimension space – each possible weight matrix corresponds to a point in weight space.
E(W) is the value of the error at a specific point in weight space (given the training data).

To train a neural network we can use gradient descent training: adjust the weight matrix by moving a
small direction down the gradient of E(W) given W, which is the direction along which E decreases
most rapidly. We can write this gradient as ∇WE, the vector of partial derivatives of E with respect to
the elements of W:

∇WE =

(
∂E
∂w10

, . . . ,
∂E
∂wki

, . . . ,
∂E
∂wKd

)T

.

Gradient descent training involves updating each weight wki by adding a factor proportional to the
gradient: −η · ∂E/∂wki. The hyperparameter η is a small constant called the learning rate.

1. Initialise the weight matrix with small random weights and load the training data

2. For each epoch

(a) Initialise weight changes ∆wki to zero

2

Extra Note X1 ASR

x0 x1 x2 x3 x4 x5

y2 =
5X

i=0

w2ixi

w24

�w24 =
X

n

(yn
2 � tn2)xn

4

Figure 2: Applying gradient descent to train a single-layer network

(b) For each training example n:

i. Compute the error En

ii. Compute the gradients ∂En/∂wki for all k, i
iii. Update the total gradient by a small amount in the direction of ∇WE):

∆wki ← ∆wki +
∂En

∂wki
∀k, i

(c) Update weights: wki ← wki − η∆wki ∀k, i

The procedure terminates either after a fixed number of epochs, or when the error stops decreasing by
more than a threshold. (An epoch is a complete pass through the training data).

We outline how gradient descent may be applied to a single-layer network. This is illustrated in
Figure 2, and pseudocode is given in Figure 3.

• Differentiate the error function with respect to each weight:

En =
1
2

K∑
k=1

(yn
k − tn

k)2 =
1
2

K∑
k=1

 d∑
i=0

wkixn
i − tn

k

2

∂En

∂wrs
= (yn

r − tn
r)xn

s = δn
r xn

s ; δn
r = yn

r − tn
r

∂E
∂wrs

=

N∑
n=1

∂En

∂wrs
=

N∑
n=1

δn
r xn

s

• Weight update is

wrs ← wrs − η

N∑
n=1

δn
r xn

s

This is sometimes called the delta rule.

3

Extra Note X1 ASR

1: procedure gradientDescentTraining(X,T,W)
2: initialize W to small random numbers
3: while not converged do
4: for all k, i: ∆wki ← 0
5: for n← 1,N do
6: for k ← 1,K do
7: yn

k ←
∑d

i=0 wkixn
i

8: δn
k ← yn

k − tn
k

9: for i← 1, d do
10: ∆wki ← ∆wki + δn

k · x
n
i

11: end for
12: end for
13: end for
14: for all k, i: wki ← wki − η · ∆wki

15: end while
16: end procedure

Figure 3: Pseudocode for gradient training of a single-layer network

In practice we use stochastic gradient descent. Rather than computing the exact gradient by summing
per-example gradients over the complete training set (“batch gradient descent”) which is very slow
(only one update per epoch), the true gradient ∂E/∂wki (obtained by summing over the entire training
dataset) is approximated by the gradient for a point ∂En/∂wki. This is called stochastic gradient
descent, and the weights are updated after each training example rather than after the batch of training
examples. Inaccuracies in the gradient estimates are washed away by the many approximations. To
prevent multiple similar data points (all with similar gradient approximation inaccuracies) appearing
consecutively, the training set is presented in random order. Pseudocode for SGD is given in Figure 4.

1: procedure SGDTraining(X,T,W)
2: initialize W to small random numbers
3: randomize order of training examples in X
4: while not converged do
5: for n← 1,N do
6: for k ← 1,K do
7: yn

k ←
∑d

i=0 wkixn
i

8: δn
k ← yn

k − tn
k

9: for i← 1, d do
10: wki ← wki − η · δ

n
k · x

n
i

11: end for
12: end for
13: end for
14: end while
15: end procedure

Figure 4: Pseudocode for stochastic gradient training of a single-layer network

In practice, minibatches are used: the gradient is computed from a minibatch of M training examples,
where M > 1, M << N. The main reason for this is computationally efficiency as it enables the best
use of vectorisation, keeping processor pipelines full.

4

Extra Note X1 ASR

4 Classification, sigmoids and softmax

In speech recognition we are often interested in classification – given some acoustic observation can
we classify it as a phone or a word? Classification outputs can be binary (1/0) or probabilistic – p,
1 − p, for a 2-class problem. One could train a linear single layer network as a classifier in which
the output targets are 1/0; at run time if the output y > 0.5 classify as yes, otherwise classify as no.
This will work, but it is better to use output activation functions to constrain the outputs to binary or
probabilistic values.

4.1 Sigmoids

Consider a single-layer network with a sigmoid output (Figure 5). In this case the output is the
weighted sum of the inputs (as before) followed by a sigmoid function f :

f (a) =
1

1 + exp(−a)

The sigmoid (plotted in Figure 6) is a squashing function with strongly negative inputs saturating to
0, and strongly positive inputs saturating to 1.

Input: x

+

f Output: y

Activation: a

Figure 5: Single-layer network with sigmoid output

We can interpret the output of a sigmoid single layer network probabilistically (statisticians would call
this logistic regression). Let a be the activation of the single output unit, the value of the weighted
sum of inputs, before the activation function, so:

y = f (a) = f

∑
i

wixi

For two classes, we have single output y, with weights wi

To train a sigmoid single layer network, gradient descent requires ∂E/∂wi for all weights:

∂En

∂wi
=
∂En

∂yn

∂yn

∂an

∂an

∂wi

5

Extra Note X1 ASR

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

g(
a)

Logistic sigmoid activation function g(a) = 1/(1+exp(−a))

Figure 6: Sigmoid activation function

For a sigmoid:

y = f (a)
dy
da

= f (a)(1 − f (a))

(Show that this is indeed the derivative of a sigmoid.) Therefore:

∂En

∂wi
= (yn − tn)︸ ︷︷ ︸

δn

f (an)(1 − f (an))︸ ︷︷ ︸
f ′(an)

xn
i

The application of gradient descent to a sigmoid single-layer network is illustrated in Figure 7.

4.2 Cross-entropy error function

If we use a sigmoid single layer network for a two class problem (C1 (target t = 1) and C2 (t = 0)),
then we can interpret the output as follows

y ∼ P(C1 | x) = P(t = 1 | x)
(1 − y) ∼ P(C2 | x) = P(t = 0 | x)

Combining, and recalling the target is binary

P(t | x,W) = yt · (1 − y)1−t

This is a Bernoulli distribution. We can write the log probability:

ln P(t | x,W) = t ln y + (1 − t) ln(1 − y)

6

Extra Note X1 ASR

f
+

x0 x1 x2 x3 x4 x5

w4

y = f

5X

i=0

wixi

!

w4 = w4 � ⌘(yn � tn)yn(1 � yn)xn
4

Figure 7: Training a single-layer network with sigmoid output

We optimise the weights W to maximise the log probability – or to minimise the negative log proba-
bility. Write the error function as follows:

En = −(tn ln yn + (1 − tn) ln(1 − yn)) .

This is called the cross-entropy error function

Gradient descent training requires the derivative ∂E/∂wi (where wi connects the ith input to the single
output).

∂E
∂y

= −
t
y

+
1 − t
1 − y

=
−(1 − y)t + y(1 − t)

y(1 − y)
∂E
∂wi

=
∂E
∂y
·
∂y
∂a
·
∂a
∂wi

=
−(1 − y)t + y(1 − t)

y(1 − y)
· y(1 − y) · xi = (y − t)xi

(derivative of the sigmoid y(1 − y) cancels)

4.3 Multi-class networks and Softmax

If we have K classes we can use a “one-hot” (“one-from-N”) output coding – the target of the correct
class is 1, all other targets are zero. It is possible to have a multi-class net with sigmoid output
functions, but this is not the best approach. Using multiple sigmoids for multiple classes means that∑

k P(k|x) is not constrained to equal 1 – we want this if we would like to interpret the outputs of the
net as class probabilities. The solution is to use an activation function with a sum-to-one constraint:
softmax.

7

Extra Note X1 ASR

The softmax activation function is given as follows:

yk =
exp(ak)∑K
j=1 exp(a j)

ak =

d∑
i=0

wkixi

Softmax has the following properties

• Each output will be between 0 and 1

• The denominator ensures that the K outputs will sum to 1

Using softmax we can interpret the network output yn
k as an estimate of P(k|xn) – Softmax is the

multiclass version of the two-class sigmoid.

To train a softmax network, we can extend the cross-entropy error function to the multiclass case

En = −

C∑
k=1

tn
k ln yn

k

Again the overall gradient we need is

∂En

∂wki
=

C∑
c=1

∂E
∂yc
·
∂yc

∂ak
·
∂ak

∂wki

=

C∑
c=1

−
tc

yc
·
∂yc

∂ak
· xi

Note that the kth activation ak – and hence the weight wki – influences the error function through
all the output units, because of the normalising term in the denominator. We have to take this into
account when differentiating. However when you do the differentiation, the resulting expression is
very simple:

∂yc

∂ak
= yc(δck − yk)

Here δck (δck = 1 if c = k, δck = 0 if c , k is called the Kronecker delta. Putting it all together we find:

∂En

∂wki
= (yn

k − tn
k)xn

i

The delta rule!

8

	Intorduction
	Single-layer networks
	Training Single Layer Networks
	Classification, sigmoids and softmax
	Sigmoids
	Cross-entropy error function
	Multi-class networks and Softmax

