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Training HMM/GMM acoustic models

Use forward-backward algorithm to estimate the state
occupation probabilities (E-step), which are used to
re-estimate the parameters (M-step)

Maximum likelihood estimation: estimate the parameters so
that the model reproduces the training data with the greatest
probability (maximum likelihood)

Discriminative training: directly estimate the parameters so as
to make the fewest classification errors (optimize the word
error rate)

Focus on learning boundaries between classes
Consider incorrect word sequences as well as correct word
sequences
This is related to direct optimisation of the posterior
probability of the words given the acoustics P(W | X)
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Hybrid HMM/NN acoustic models

Neural networks are discriminatively trained at the frame level

Consider a context-dependent DNN

Output is a softmax over HMM states
Training involves increasing the probability of the correct state
– and hence decreasing the probabilities of the others, since
probabilities sum to 1
Frame-level discrimination – the network learns to optimise
discrimination at the frame level by choosing the best state at
each time frame

Sequence discrimination – train the system to select the
best sequence of frames by increasing the probability of the
best sequence and decreasing the probability of all competing
sequences

Can train both GMM and DNN based models using sequence
discrimination
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Recall: Maximum likelihood estimation (MLE)

Maximum likelihood estimation (MLE) sets the parameters so
as to maximize an objective function FMLE:

FMLE =
U∑

u=1

logPλ(Xu | M(Wu))

for training utterances X1 . . .XU where Wu is the word
sequence given by the transcription of the uth utterance,
M(Wu) is the corresponding HMM, and λ is the set of HMM
parameters
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Maximum mutual information estimation

Maximum mutual information estimation (MMIE) aims to
directly maximise the posterior probability (sometimes called
conditional maximum likelihood). Using the same notation as
before, with P(w) representing the language model probability
of word sequence w :

FMMIE =
U∑

u=1

logPλ(M(Wu) | Xu)

=
U∑

u=1

log
Pλ(Xu | M(Wu))P(Wu)∑
w ′ Pλ(Xu | M(w ′))P(w ′)
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Maximum mutual information estimation

Numerator: Pλ(Xu | M(Wu))P(Wu)
the likelihood of the data given the correct word sequence

Denominator:
∑

w ′ Pλ(Xu | M(w ′u))P(w ′u)
the total likelihood of the data given all possible word
sequences – obtained by summing over all possible word
sequences estimated by the full acoustic and language models
in recognition (Mden):

P(X | Mden) =
∑
w ′

Pλ(Xu | M(w ′u))P(w ′u)

Estimate by generating lattices, and summing over all words
in the lattice

The objective function FMMIE is optimised by making the
correct word sequence likely (maximise the numerator), and
all other word sequences unlikely (minimise the denominator)
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MPE: Minimum phone error

Basic idea adjust the optimization criterion so it is directly
related to word error rate

Minimum phone error (MPE) criterion

A(W ,Wu) is the phone transcription accuracy of the sentence
W given the reference Wu

FMPE is a weighted average over all possible sentences w of
the raw phone accuracy

Although MPE optimizes a phone accuracy level, it does so in
the context of a word-level system: it is optimized by finding
probable sentences with low phone error rates
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Example: meeting speech recognition

WER for HMM/GMM system

System Training criterion WER/%

Baseline ML 28.7
SAT ML 27.6
SAT MPE 24.5
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Sequence training of hybrid HMM/DNN systems

Can train HMM/NN systems using a MMI-type objective
function (e.g. Bridle and Dodd, 1991)

Forward- and back-propagation equations are structurally
similar to forward and backward recursions in HMM training

Was not used in practice, for another 20 years...

Now used for DNN systems (e.g. Vesely et al, 2013)

The tricky parts are in the optimisation and in the use of
lattices to compute the denominator term...
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Limitations of HMMs

Sequence trained HMM/NN systems have limitations

Markov assumption – current state depends on only the
previous state
Conditional independence assumptions – dependence on
previous acoustic observations encapsulated in the current state

RNNs are powerful sequence models

recurrent hidden state much richer history representation than
HMM state
can learn representations
can directly model dependences through time

But HMM/RNN systems only use RNNs to model time within
a phone / HMM state...
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“End-to-end” (“HMM-Free”) RNN speech recognition

Can RNNs replace the HMM sequence model?

Yes – active research topic. On approach is to use an RNN
encoder-decoder model

The encoder maps the the input sequence vector into a
sequence of RNN hidden states

The decoder maps the RNN hidden states into an output
sequence

Input and output sequences may be different lengths

Input sequence of frames
Output sequence of phones or letters or words!

Mapping to directly to words results in a joint acoustic and
language model
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RNN Encoder-Decoder

The overall task is to compute the probability of an output
sequence given an input sequence,
P(y1, . . . , yO |x1, . . . , xT ) = P(yO1 |xT1 )

Encoder: compute a context co for each output yo

Decoder: compute

P(yO1 |xT1 ) =
∏
o

P(yo |yo−11 , co)︸ ︷︷ ︸
RNN

P(yo |yo−11 , co) = softmax(yo−1, so , co)

so = f (yo−1, so−1, co)

yo−1 is the previous output
so is the decoder state (recurrent hidden layer)
co is the encoder context
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RNN decoder

yo�1 yo+1yo

soso�1 so+1

co+1co�1 co
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RNN encoder

coco�1

ht+1ht�1 ht

xtxt�1 xt+1

co =
∑
t

αotht

αot = softmax(g(so−1,ht)︸ ︷︷ ︸
NN

)
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RNN encoder-decoder

Train all the parameters to maximise logP(yO1 |xT1 ) using
backprop through time

The encoder is a bidirectional RNN

Training/testing on Switchboard, directly mapping MFCCs to
words (no pronunciation model, no language model) gives
49% WER

Improved training scheme, FBANK features gives 37% WER

Potential improvements

multiple recurrent layers in the encoder
incorporating a language model in the decoder
using character-based output sequence
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Reading

HMM discriminative training: Sec 27.3.1 of: S Young (2008),
“HMMs and Related Speech Recognition Technologies”, in
Springer Handbook of Speech Processing, Benesty, Sondhi
and Huang (eds), chapter 27, 539–557.
http://www.inf.ed.ac.uk/teaching/courses/asr/

2010-11/restrict/Young.pdf

NN sequence training: K Vesely et al (2013),
“Sequence-discriminative training of deep neural networks”,
Interspeech-2013, http://homepages.inf.ed.ac.uk/
aghoshal/pubs/is13-dnn_seq.pdf

RNN encoder-decoder: L Lu et al (2015), “A Study of the
Recurrent Neural Network Encoder-Decoder for Large
Vocabulary Speech Recognition”, Interspeech-2015, http:
//homepages.inf.ed.ac.uk/llu/pdf/liang_is15a.pdf
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