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Speaker independent / dependent / adaptive

Speaker independent (SI) systems have long been the focus
for research in transcription, dialogue systems, etc.

Speaker dependent (SD) systems can result in word error
rates 2–3 times lower than SI systems (given the same
amount of training data)

A Speaker adaptive (SA) system... we would like

Error rates similar to SD systems
Building on an SI system
Requiring only a small fraction of the speaker-specific training
data used by an SD system
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Speaker-specific variation

Acoustic model

Speaking styles
Accents
Speech production anatomy (eg length of the vocal tract)

Also non-speaker variation, such as channel conditions
(telephone, reverberant room, close talking mic) and
application domain
Speaker adaptation of acoustic models aims to reduce the
mismatch between test data and the models

Pronunciation model: speaker-specific, consistent change in
pronunciation

Language model: user-specific documents (exploited in
personal dictation systems)
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Modes of adaptation

Supervised or unsupervised

Supervised: the word level transcription of the adaptation data
is known (and HMMs may be constructed)
Unsupervised: the transcription must be estimated (eg using
recognition output)

Static or dynamic

Static: All adaptation data is presented to the system in a
block before the final system is estimated (eg as used in
enrollment in a dictation system)
Dynamic: Adaptation data is incrementally available, and
models must be adapted before all adaptation data is available
(eg as used in a spoken dialogue system)
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Approaches to adaptation

Model based: Adapt the parameters of the acoustic models to
better match the observed data

Maximum a posteriori (MAP) adaptation of HMM/GMM
parameters
Maximum likelihood linear regression (MLLR) of Gaussian
parameters
Learning Hidden Unit Contributions (LHUC) for neural
networks

Speaker normalization: Normalize the acoustic data to reduce
mismatch with the acoustic models

Vocal Tract Length Normalization (VTLN)
Constrained MLLR (cMLLR) — model-based normalisation!

Speaker space: Estimate multiple sets of acoustic models,
characterizing new speakers in terms of these model sets

Cluster-adapative training
Eigenvoices
Speaker codes
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Desirable properties for speaker adaptation

Compact: relatively few speaker-dependent parameters

Unsupervised: does not require labelled adaptation data, or
changes to the training

Efficient: low computational requirements

Flexible: applicable to different model variants
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Model-based adaptation: The MAP family

Basic idea Use the SI models as a prior probability distribution
over model parameters when estimating using speaker-specific
data

Theoretically well-motivated approach to incorporating the
knowledge inherent in the SI model parameters

Maximum likelihood (ML) training sets the model parameters
λ to maximize the likelihood p(X | λ)

Maximum a posteriori (MAP) training maximizes the
posterior of the parameters given the data:

p(λ | X) ∝ p(X | λ)p0(λ)

p0(λ) is the prior distribution of the parameters

The use of a prior distribution, based on the SI models, means
that less data is required to estimate the speaker-specific
models: we are not starting from complete ignorance
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Recall: ML estimation of GMM/HMM

The mean of the mth Gaussian component of the jth state is
estimated using a weighted average

µmj =

∑
n γjm(n)xn∑
n γjm(n)

Where
∑

n γjm(n) is the component occupation probability

The covariance of the Gaussian component is given by:

Σmj =

∑
n γjm(n)(xn − µjm)(xn − µjm)T∑

n γjm(n)
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MAP estimation

What is p0(λ)?

Conjugate prior: the prior distribution has the same form as
the posterior. There is no simple conjugate prior for GMMs,
but an intuitively understandable approach may be employed.

If the prior mean is µ0, then the MAP estimate for the
adapted mean µ̂ of Gaussian is given by:

µ̂ =
τµ0 +

∑
n γ(n)xn

τ +
∑

n γ(n)

τ is a hyperparameter that controls the balance between the
ML estimate of the mean, its prior value. Typically τ is in the
range 2–20
xn is the adaptation vector at time n
γ(n) the probability of this Gaussian at this time

As the amount of training data increases, so the MAP
estimate converges to the ML estimate
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Local estimation

Basic idea The main drawback to MAP adaptation is that it is
local

Only the parameters belonging to Gaussians of observed
states will be adapted

Large vocabulary speech recognition systems have about 105

Gaussians: most will not be adapted

Structural MAP (SMAP) approaches have been introduced to
share Gaussians
The MLLR family of adaptation approaches addresses this by
assuming that transformations for a specific speaker are
systematic across Gaussians, states and models

MAP adaptation is very useful for domain adaptation:

Example: adapting a conversational telephone speech system
(100s of hours of data) to multiparty meetings (10s of hours of
data) works well with MAP
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The MLLR family

Basic idea Rather than directly adapting the model
parameters, estimate a transform which may be applied the
Gaussian means and covariances

Linear transform applied to parameters of a set of Gaussians:
adaptation transform parameters are shared across Gaussians

This addresses the locality problem arising in MAP
adaptation, since each adaptation data point can affect many
of (or even all) the Gaussians in the system

There are relatively few adaptation parameters, so estimation
is robust

Maximum Likelihood Linear Regression (MLLR) is the best
known linear transform approach to speaker adaptation
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MLLR: Maximum Likelihood Linear Regression

MLLR is the best known linear transform approach to speaker
adaptation

Affine transform of mean parameters

µ̂ = Aµ + b

If the observation vectors are d-dimension, then A is a d × d
matrix and b is d-dimension vector

If we define W = [bA] and η = [1µT ]T , then we can write:

µ̂ = Wη

In MLLR, W is estimated so as to maximize the likelihood of
the adaptation data

A single transform W can be shared across a set of Gaussian
components (even all of them!)

ASR Lecture 14 Speaker Adaptation 12



Regression classes

The number of transforms may obtained automatically

A set of Gaussian components that share a transform is called
a regression class

Obtain the regression classes by constructing a regression
class tree

Each node in the tree represents a regression class sharing a
transform

For an adaptation set, work down the tree until arriving at the
most specific set of nodes for which there is sufficient data

Regression class tree constructed in a similar way to state
clustering tree

In practice the number of regression may be very small: one
per context-independent phone class, one per broad class, or
even just two (speech/non-speech)
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Estimating the transforms

The linear transformation matrix W is obtained by finding its
setting which optimizes the log likelihood

Mean adaptation: Log likelihood

L =
∑
r

∑
n

γr (n) log

(
Kr exp

(
−1

2
(xn −Wηr )TΣ−1r (xn −Wηr )

))
where r ranges over the components belonging to the
regression class

Differentiating L and setting to 0 results in an equation for
W: there is no closed form solution if Σ is full covariance; can
be solved if Σ is diagonal (but requires a matrix inversion)

Variance adaptation is also possible

See Gales and Woodland (1996), Gales (1998) for details
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MLLR in practice

Mean-only MLLR results in 10–15% relative reduction in WER

Few regression classes and well-estimated transforms work
best in practice

Robust adaptation available with about 1 minute of speech;
performance similar to SD models available with 30 minutes
of adaptation data

Such linear transforms can account for any systematic (linear)
variation from the speaker independent models, for example
those caused by channel effects.
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Constrained MLLR (cMLLR)

Basic idea use the same linear transform for both mean and
covariance

µ̂ = A′µ− b′

Σ̂ = A′ΣA′
T

No closed form solution but can be solved iteratively

Log likelihood for cMLLR

L = N (Axn + b;µ,Σ) + log(|A|) A′ = A−1 ; b′ = Ab

Equivalent to applying the linear transform to the data!
Also called fMLLR (feature space MLLR)

Iterative solution amenable to online/dynamic adaptation, by
using just one iteration for each increment

Similar improvement in accuracy to standard MLLR
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Speaker-adaptive training (SAT)

Basic idea Rather than SI seed (canonical) models, construct
models designed for adaptation

Estimate parameters of canonical models by training MLLR
mean transforms for each training speaker

Train using the MLLR transform for each speaker; interleave
Gaussian parameter estimation and MLLR transform
estimation

SAT results in much higher training likelihoods, and improved
recognition results

But: increased training complexity and storage requirements

SAT using cMLLR, corresponds to a type of speaker
normalization at training time
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Speaker adaptation in hybrid HMM/NN systems:
CMLLR feature transformation

Basic idea: If HMM/GMM system is used to estimate a single
constrained MLLR adaptation transform, this can be viewed
as a feature space transform

Use the HMM/GMM system with the same tied state space
to estimate a single CMLLR transform for a given speaker,
and use this to transform the input speech to the DNN for the
target speaker

Can operate unsupervised (since the GMM system estimates
the transform)

Limited to a single transform (regression class)
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Speaker adaptation in hybrid HMM/NN systems:
LIN – Linear Input Network

Basic idea: single linear input layer trained to map input
speaker-dependent speech to speaker-independent network

Training: linear input network (LIN) can either be fixed as the
identity or (adaptive training) be trained along with the other
parameters

Testing: freeze the main (speaker-independent) network and
propagate gradients for speech from the target speaker to the
LIN, which is updated — linear transform learned for each
speaker

Requires supervised training data
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LIN

3-8 hidden layers

~2000 hidden units

~6000 CD phone outputs

9x39 MFCC inputs

~2000 hidden units
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Adapted
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Speaker adaptation in hybrid HMM/NN systems:
Speaker codes

Basic idea: Learn a short speaker code vector for each talker

speaker. Moreover, the speaker code size can be freely adjusted ac-
cording to the amount of available adaptation data. As a result, it is
possible to conduct a very fast adaptation of the hybrid NN/HMM
model for each speaker based on only a small amount of adaptation
data. Experimental results on TIMIT have shown that it is possible
to achieve over 10% relative reduction in phone error rate by using
only seven adaptation utterances.

2. MODEL DESCRIPTION

The baseline model is a hybrid NN-HMM model similar to the one
described in [17]. The NN computes posteriori probabilities of all
HMM states given each input feature vector. The NN inputs are con-
catenated super-vector consisting of all speech feature vectors within
a window of a number of consecutive frames. The baseline NN-
HMM model is trained without using any speaker labels information.
The NN training targets are HMM state labels. The standard back
propagation procedure is used to optimize the NN weights where the
cross entropy is used as an objective function.

As shown in the right side of Fig. 1, the proposed speaker adap-
tation method relies on learning another generic adaptation NN as
well as some speaker specific codes. The adaptation NN is inserted
above the input layer of original NN-HMM model. All layers of the
adaptation NN are standard fully connected layers with a weight ma-
trix, denoted as W(l)

a with l representing l-th layer of the adaptation
NN. The top layer of the adaptation NN represents the transformed
features and its size matches the input size.

In addition, each layer of the adaptation NN receives all activa-
tion output signals of the lower layer along with a speaker-specific
input vector, S , named as speaker code. When we estimate the adap-
tation NN using the back-propagation (BP) algorithm, the derivatives
of the objective function are calculated with respect to all weights
W(l)

a (for all l) as well as the associated speaker code S . As a result,
both of the weights and speaker codes will be learned. For exam-
ple, when we apply a speech vector from i-th speaker to update the
adaptation NN in BP, we use the computed derivatives to update all
weights, W(l)

a (for all l), and the speaker code Si specific to the i-th
speaker. In this way, we will be able to benefit from speaker la-
bels to learn a generic adaptation NN as well as a whole bunch of
speaker codes at the end of the BP training process. Each speaker
has his/her own speaker code and each speaker code, Si, is a very
compact feature vector representing speaker-dependent information.
The speaker code is fed to the adaptation NN to control how each
speaker’s data is transformed to a general speaker-independent fea-
ture space by the generic adaptation NN. Moreover, this model con-
figuration provides a very effective way to conduct speaker adapta-
tion for the hybrid NN/HMM model. To adapt an existing hybrid
NN/HMM model to a new speaker, only a new speaker code, S ,
needs to be estimated without changing any weights in both original
NN and adaptation NN in Fig. 1.

The advantage of our proposed method is that only a small
speaker code needs to be estimated for each new speaker. This
largely reduces the required amount of adaptation data per speaker
particularly when a small speaker code is chosen for each speaker.
As a result, it is possible conduct very rapid speaker adaptation for
the hybrid NN-HMM model based on only a few utterances per
speaker. On the other hand, if a large amount of adaptation data is
available per speaker, the size of speaker code can be increased to
allow a better representation of each speaker. Moreover, the generic
adaptation NN is learned using all training data. This allows to
build a large-scale adaptation NN that is powerful enough to model

 

Speaker 
Code 

Features 
vector 

Features 
vector 

Original Network 

Adaptation 
NN 

Original 
Network 

Composite NN 

Transformed 
Features 

Fig. 1. Speaker adaptation of the hybrid NN-HMM model based on
speaker code.

a complex transformation function between different feature spaces.
This method is clearly superior to other speaker adaptation methods
that learn a complete independent transform for each speaker, where
each transformation needs to be linear.

2.1. Training

During training, we want to learn three sets of parameters: the orig-
inal NN weights, the adaptation weights, and the training speakers
codes. First of all, the original NN weights is learned without in-
serting the adaptation weights in the same way as a standard hybrid
NN-HMM model without using any speaker information. This re-
sults in a speaker independent (SI) NN-HMM model.

Secondly, the adaptation layers are inserted and all adaptation
weights, W(l)

a (for all l), and speakers codes Si for all speakers in
the training set, are learned jointly in such a way that the frame-
wise classification performance is optimized. In this paper, these
parameters are optimized using the standard back-propagation al-
gorithm with the cross entropy objective function. Both adaptation
weights and speaker codes are initialized randomly at the beginning.
No weight in the original NN is modified during this phase.

Of course, other training scenarios are possible here. For exam-
ple, all or part of the original NN weights can be further fine tuned
when learning the adaptation NN to further optimize the whole net-
work because speaker labels are considered in this phase. Another
possibility is to learn all the three sets of parameters at the same time.
However, this may result in two inseparable NNs and they eventu-
ally become one large deep NN with only a number of lower layers
receiving a speaker code. Another possibility is to use the learned
adaptation NN to transform all training data and a new NN is learned
from scratch. This NN receives speaker-normalized features instead
of the original features. This can be considered as a form of speaker
adaptive training for the NN-HMM model.

2.2. Adaptation

After learning all adaptation NN weights using all training data as
above, adaptation to a new speaker is done by learning a new speaker
code for each new speaker who is not observed in the training set.

����
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Speaker adaptation in hybrid HMM/NN systems:
LHUC – Learning Hidden Unit Contributions

Basic idea: Add a learnable
speaker dependent
ampolitude to each hidden
unit

Speaker independent:
amplituides set to 1

Speaker dependent: learn
amplitudes from data, per
speaker

3-8 hidden layers

~2000 hidden units

~6000 CD phone outputs

~2000 hidden units

 inputs
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LHUC adaptation by speaker

Results on speakers across AMI, TED, Switchboard corpora
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Speaker adaptation in hybrid HMM/NN systems:
Experimental Results on TED
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Summary

Speaker Adaptation

One of the most intensive areas of speech recognition research
since the early 1990s

HMM/GMM

Substantial progress, resulting in significant, additive,
consistent reductions in word error rate
Close mathematical links between different approaches
Linear transforms at the heart of many approaches

HMM/NN

Open research topic
GMM-based feature space transforms somewhat effective
Direct weight adaptation less effective
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